首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Unloading in spaceflight or long-term bed rest induces to pronounced atrophy of anti-gravity skeletal muscles. Passive stretch partially resists unloading-induced atrophy of skeletal muscle, but the mechanism remains elusive. The aims of this study were to investigate the hypotheses that stretch tension might increase protein level of neuronal nitric oxide synthase (nNOS) in unloaded skeletal muscle, and then nNOS-derived NO alleviated atrophy of skeletal muscle by inhibiting calpain activity. The tail-suspended rats were used to unload rat hindlimbs for 2 weeks, at the same time, left soleus muscle was stretched by applying a plaster cast to fix the ankle at 35° dorsiflexion. Stretch partially resisted atrophy and inhibited the decreased protein level and activity of nNOS in unloaded soleus muscles. Unloading increased frequency of calcium sparks and elevated intracellular resting and caffeine-induced Ca(2+) concentration ([Ca(2+)]i) in unloaded soleus muscle fibers. Stretch reduced frequency of calcium sparks and restored intracellular resting and caffeine-induced Ca(2+) concentration to control levels in unloaded soleus muscle fibers. The increased protein level and activity of calpain as well as the higher degradation of desmin induced by unloading were inhibited by stretch in soleus muscles. In conclusion, these results suggest that stretch can preserve the stability of sarcoplasmic reticulum Ca(2+) release channels which prevents the elevated [Ca(2+)]i by means of keeping nNOS activity, and then the enhanced protein level and activity of calpain return to control levels in unloaded soleus muscles. Therefore, stretch can resist in part atrophy of unloaded soleus muscles.  相似文献   

2.
Calpains are Ca2+-dependent proteinases that mediate protein turnover in crustacean skeletal muscles. We used an antibody directed against lobster muscle-specific calpain (Ha-CalpM) to examine its distribution in differentiating juvenile lobster claw muscles. These muscles are comprised of both fast and slow fibers early in development, but become specialized into predominantly fast or exclusively slow muscles in adults. The transition into adult muscle types requires that myofibrillar proteins specific for fast or slow muscles to be selectively removed and replaced by the appropriate proteins. Using immunohistochemistry, we observed a distinct staining pattern where staining was preferentially localized in the fiber periphery along one side of the fiber. Immunolabeling with an antibody directed against synaptotagmin revealed that the calpain staining was greatest in the cytoplasm adjacent to synaptic terminals. In complementary analyses, we used sequence-specific primers with real-time PCR to quantify the levels of Ha-CalpM in whole juvenile claw muscles. These expression levels were not significantly different between cutter and crusher claws, but were positively correlated with the expression of fast myosin heavy chain. The anatomical localization of Ha-CalpM near motor endplates, coupled with the correlation with fast myofibrillar gene expression, suggests a role for this intracellular proteinase in fiber type switching.  相似文献   

3.
Rat skeletal muscle contains a calpain activator protein characterized by a high specificity for calpain II, the high Ca(2+)-requiring isoform of this class of proteinases. The activator protein increases the rate of intramolecular conversion of the native 80-kDa catalytic subunit of calpain into the autolysed 75-kDa forms with maximal rate at concentrations of calcium approximately 25 times lower than those required by the native proteinase. The activator protein interacts with native calpain II forming a 1:1 complex; interaction does not occur with the fully activated form, produced by autoproteolysis. Even after immobilization to membranes, the activator binds to calpain, which then undergoes sequential activation and release from its bound form. The activator is itself resistant to digestion by calpain II, whereas it increases the rate at which homologous calpastatin is degraded by the proteinase. Taken together, these results are indicative of the existence in rat skeletal muscle of an activating system specific for calpain II which is potentially involved in the regulation of the inhibitory efficiency of calpastatin, through modulation of its intracellular level.  相似文献   

4.
The present study demonstrates the activation of calpain I and calpain II by micromolar levels of terbium and has utilized the enhancement in the fluorescence of protein-bound terbium to study and compare the calcium binding sites of the two enzymes. Calpain I and calpain II were isolated from bovine erythrocytes and brain, respectively. While the rates of activation of calpain I by terbium and calcium are comparable, the rate of activation of calpain II was much greater in the presence of terbium than in the presence of calcium. Binding of terbium ions to calpains was monitored by the enhanced terbium fluorescence and by the changes in the intrinsic protein fluorescence of calpains. Stoichiometric titrations indicated that calpain I and calpain II bound four and six molar equivalents of terbium ion, respectively. During the titration, the intrinsic protein fluorescence of calpain II was successively quenched whereas that of calpain I showed an abrupt drop just prior to the saturation. The association constants (Ka) increased from 10(5) to 10(7) M-1 for calpain I and from 10(4) to 10(6) M-1 for calpain II with addition of increasing molar equivalents of terbium. Titration of enzymatic activities with calcium showed that the activation of calpain I required fewer molar equivalents of metal ions than were necessary for the activation of calpain II, in agreement with stoichiometric titration with terbium.  相似文献   

5.
Huntington's disease (HD) is a neurodegenerative disorder caused by a polyglutamine (polyQ) tract expansion near the N terminus of huntingtin (Htt). Proteolytic processing of mutant Htt and abnormal calcium signaling may play a critical role in disease progression and pathogenesis. Recent work indicates that calpains may participate in the increased and/or altered patterns of Htt proteolysis leading to the selective toxicity observed in HD striatum. Here, we identify two calpain cleavage sites in Htt and show that mutation of these sites renders the polyQ expanded Htt less susceptible to proteolysis and aggregation, resulting in decreased toxicity in an in vitro cell culture model. In addition, we found that calpain- and caspase-derived Htt fragments preferentially accumulate in the nucleus without the requirement of further cleavage into smaller fragments. Calpain family members, calpain-1, -5, -7, and -10, have increased levels or are activated in HD tissue culture and transgenic mouse models, suggesting they may play a key role in Htt proteolysis and disease pathology. Interestingly, calpain-1, -5, -7, and -10 localize to the cytoplasm and the nucleus, whereas the activated forms of calpain-7 and -10 are found only in the nucleus. These results support the role of calpain-derived Htt fragmentation in HD and suggest that aberrant activation of calpains may play a role in HD pathogenesis.  相似文献   

6.
Aerobic exercise training (AET) is an important mechanical stimulus that modulates skeletal muscle protein turnover, leading to structural rearrangement. Since the ubiquitin-proteasome system (UPS) and calpain system are major proteolytic pathways involved in protein turnover, we aimed to investigate the effects of intensity-controlled AET on the skeletal muscle UPS and calpain system and their association to training-induced structural adaptations. Long-lasting effects of AET were studied in C57BL/6J mice after 2 or 8 wk of AET. Plantaris cross-sectional area (CSA) and capillarization were assessed by myosin ATPase staining. mRNA and protein expression levels of main components of the UPS and calpain system were evaluated in plantaris by real-time PCR and Western immunoblotting, respectively. No proteolytic system activation was observed after 2 wk of AET. Eight weeks of AET resulted in improved running capacity, plantaris capillarization, and CSA. Muscle RING finger-1 mRNA expression was increased in 8-wk-trained mice. Accordingly, elevated 26S proteasome activity was observed in the 8-wk-trained group, without accumulation of ubiquitinated or carbonylated proteins. In addition, calpain abundance was increased by 8 wk of AET, whereas no difference was observed in its endogenous inhibitor calpastatin. Taken together, our findings indicate that skeletal muscle enhancements, as evidenced by increased running capacity, plantaris capillarization, and CSA, occurred in spite of the upregulated UPS and calpain system, suggesting that overactivation of skeletal muscle proteolytic systems is not restricted to atrophying states. Our data provide evidence for the contribution of the UPS and calpain system to metabolic turnover of myofibrillar proteins and skeletal muscle adaptations to AET.  相似文献   

7.
Resumption of meiosis at fertilization is mediated by increased levels of calcium which activate several calcium-dependent enzymes. Calpain, a neutral calcium-activated thiol protease, is present in the cytoplasm of many cells. Its activation is associated with limited autolysis and relocalization in the cell. Calpain is thought to participate in the regulation of mitosis and resumption of meiosis in Xenopus oocytes. In this study we followed the activation and localization of calpain during maturation and fertilization in rat eggs using a polyclonal antibody raised against chicken muscle calpain. A band of 80 kDa was detected in GV oocytes and its level increased in unfertilized MII eggs. At the early stages of fertilization, we observed a transient decrease in the level of calpain which was regained at the pronuclear stage. Adding Ca2+ to lysate of MII eggs resulted in an additional band, representing the degraded fragment of the activated protein. In eggs activated by ionomycin, calpain level decreased, followed by an increase in a dynamic similar to that observed in fertilized eggs. Egg activation also led to changes in calpain localization. A homogenous distribution was observed in GV and in MII eggs, while in activated eggs it was localized predominantly overlying the metaphase plate. In the current study we demonstrate the presence of calpain in the rat egg. During maturation, calpain level increases; however, during egg activation, in response to [Ca2+]i changes, calpain undergoes autolysis, translocation, and fluctuation in its level. We therefore suggest a correlation between calpain activation and fertilization. Mol. Reprod. Dev. 48:119–126, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

8.
The intracellular Ca(2+)-dependent protease calpain and the specific calpain endogenous inhibitor calpastatin are widely distributed, with the calpastatin/calpain ratio varying among tissues and species. Increased Ca(2+) and calpain activation have been implicated in Alzheimer's disease (AD), with scant data available on calpastatin/calpain ratio in AD. Information is lacking on calpain activation and calpastatin levels in transgenic mice that exhibit AD-like pathology. We studied calpain and calpastatin in Tg2576 mice and in their wild type littermates (control mice). We found that in control mice calpastatin level varies among brain regions; it is significantly higher in the cerebellum than in the hippocampus, frontal and temporal cortex, whereas calpain levels are similar in all these regions. In the Tg2576 mice, calpain is activated, calpastatin is diminished, and calpain-dependent proteolysis is observed in brain regions affected in AD and in transgenic mice (especially hippocampus). In contrast, no differences are observed between the Tg2576 and the control mice in the cerebellum, which does not exhibit AD-like pathology. The results are consistent with the notion that a high level of calpastatin in the cerebellum renders the calpain in this brain region less liable to be activated; in the other brain parts, in which calpastatin is low, calpain is more easily activated in the presence of increased Ca(2+), and in turn the activated calpain leads to further diminution in calpastatin (a known calpain substrate). The results indicate that calpastatin is an important factor in the regulation of calpain-induced protein degradation in the brains of the affected mice, and imply a role for calpastatin in attenuating AD pathology. Promoting calpastatin expression may be used to ameliorate some manifestations of AD.  相似文献   

9.
Skeletal muscle regenerates after injury. Tissue remodelling, which takes place during muscle regeneration, is a complex process involving proteolytic enzymes. It is inferred that micro and milli calpains are involved in the protein turnover and structural adaptation associated with muscle myolysis and reconstruction. Using a whole-crush injured skeletal muscle, we previously have shown that in vivo muscle treatment with synthetic heparan sulfate mimetics, called RGTAs (for ReGeneraTing Agents), greatly accelerates and improves muscle regeneration after crushing. This effect was particularly striking in the case of the slow muscle Soleus that otherwise would be atrophied. Therefore, we used this regeneration model to study milli and micro calpain expressions in the regenerating Soleus muscle and to address the question of a possible effect of RGTAs treatment on calpain levels. Micro and milli calpain contents increased by about five times to culminate at days 7 and 14 after crushing respectively, thus during the phases of fibre reconstruction and reinnervation. After 64 days of regeneration, muscles still displayed higher levels of both calpains than an intact uninjured muscle. Milli calpain detected by immunocytochemistry was shown in the cytoplasm whereas micro calpain was in both nuclei and cytoplasm in small myofibres but appeared almost exclusively in nuclei of more mature fibres. Interestingly, the treatment of muscles with RGTA highly reduced the increase of both milli and micro calpain contents in Soleus regenerating muscles. These results suggest that the improvement of muscle regeneration induced by RGTA may be partly mediated by minimising the consequences of calpain activity.  相似文献   

10.
Calpains are calcium regulated cysteine proteases that have been described in a wide range of cellular processes, including apoptosis, migration and cell cycle regulation. In addition, calpains have been implicated in differentiation, but their impact on neural differentiation requires further investigation. Here, we addressed the role of calpain 1 and calpain 2 in neural stem cell (NSC) self-renewal and differentiation. We found that calpain inhibition using either the chemical inhibitor calpeptin or the endogenous calpain inhibitor calpastatin favored differentiation of NSCs. This effect was associated with significant changes in cell cycle-related proteins and may be regulated by calcium. Interestingly, calpain 1 and calpain 2 were found to play distinct roles in NSC fate decision. Calpain 1 expression levels were higher in self-renewing NSC and decreased with differentiation, while calpain 2 increased throughout differentiation. In addition, calpain 1 silencing resulted in increased levels of both neuronal and glial markers, β-III Tubulin and glial fibrillary acidic protein (GFAP). Calpain 2 silencing elicited decreased levels of GFAP. These results support a role for calpain 1 in repressing differentiation, thus maintaining a proliferative NSC pool, and suggest that calpain 2 is involved in glial differentiation.  相似文献   

11.
Hill JW  Hu JJ  Evans MK 《DNA Repair》2008,7(4):648-654
Deficient repair activity for 8-hydroxy-2'-deoxyguanine (8-oxoguanine), a premutagenic oxidative DNA damage, has been observed in affected tissues in neurodegenerative diseases of aging, such as Alzheimer's disease, and in ischemia/reperfusion injury, type 2 diabetes mellitus, and cancer. These conditions have in common the accumulation of oxidative DNA damage, which is believed to play a role in disease progression, and loss of intracellular calcium regulation. These observations suggest that oxidative DNA damage repair capacity may be influenced by fluctuations in cellular calcium. We have identified human 8-oxoguanine-DNA glycosylase 1 (OGG1), the major 8-oxoguanine repair activity, as a specific target of the Ca(2+)-dependent protease Calpain I. Protein sequencing of a truncated partially calpain-digested OGG1 revealed that calpain recognizes OGG1 for degradation at a putative PEST (proline, glutamic acid, serine, threonine) sequence in the C-terminus of the enzyme. Co-immunoprecipitation experiments showed that OGG1 and Calpain I are associated in human cells. Exposure of HeLa cells to hydrogen peroxide or cisplatin resulted in the degradation of OGG1. Pretreatment of cells with the calpain inhibitor calpeptin resulted in inhibition of OGG1 proteolysis and suggests that OGG1 is a target for calpain-mediated degradation in vivo during oxidative stress- and cisplatin-induced apoptosis. Polymorphic OGG1 S326C was comparatively resistant to calpain digestion in vitro, yet was also degraded by a calpain-dependent pathway in vivo following DNA damaging agent exposure. The degradation of OGG1 by calpain may contribute to decreased 8-oxoguanine repair activity and elevated levels of 8-oxoguanine reported in tissues undergoing chronic oxidative stress, ischemia/reperfusion, and other cellular stressors known to produce perturbations of intracellular calcium homeostasis which activate calpain.  相似文献   

12.
The calpain system is a family of calcium activated proteases that degrade myofibrillar protein. Male broiler chickens (Ross) were provided a standard starter diet top-dressed with Oasis((R)) nutritional supplement (fed; Novus International, St. Louis, MO, USA), or they were not provided any feed (starved) for the first 3 days posthatch. Subsequently, the standard starter diet was provided to all chickens between 3 and 7 days posthatch. RNA was extracted from the Pectoralis thoracicus, and skeletal muscle-specific n-calpain-1 (p94) calpain, mu-calpain, and m-calpain expression was evaluated using quantitative Northern analysis. Early posthatch starvation did not (P>0.05) affect calpain mRNA levels on each day examined. Similarly, there were no (P>0.05) changes in mu-calpain or m-calpain mRNA levels between 0 and 7 days posthatch in fed birds. However, p94 calpain mRNA levels were significantly (P<0.05) lower at 7 days posthatch compared to 0 or 2 days posthatch. Therefore, in the early posthatch chicken, it appears that the calpain system may not be affected by the presence of oral nutrition, and that there is an age-related downregulation of p94 calpain mRNA expression.  相似文献   

13.
The active form of vitamin D(3) (1,25(OH)(2)D(3)) induces an increase in the intracellular free calcium ([Ca(2+)](i)) and caspase-independent cell death in human breast cancer cells. Here we show that the treatment of MCF-7 breast cancer cells with 1,25(OH)(2)D(3) or its chemotherapeutic analog, EB 1089, releases Ca(2+) from the endoplasmic reticulum. The increase in [Ca(2+)](i) was associated with the activation of a calcium-dependent cysteine protease, mu-calpain. Interestingly, ectopic expression of a calcium-binding protein, calbindin-D(28k), in MCF-7 cells not only attenuated the elevation in [Ca(2+)](i) and calpain activation, but also reduced death triggered by vitamin D compounds. Similarly, the inhibition of calpain activity by structurally unrelated chemical inhibitors increased the survival of the cells and reduces the amount of annexin V-positive cells. Despite the complete absence of effector caspase activation, transmission electron microscopy of MCF-7 cells treated with 1,25(OH)(2)D(3) or EB 1089 revealed apoptosis-like morphology characterized by the condensed cytoplasm, nuclei, and chromatin. Overall, these results suggest that calpain may take over the role of the major execution protease in apoptosis-like death induced by vitamin D compounds. Thus, these compounds may prove useful in the treatment of tumors resistant to therapeutic agents dependent on the classical caspase cascade.  相似文献   

14.
Specific proteolysis of the NR2 subunit at multiple sites by calpain   总被引:4,自引:0,他引:4  
The NMDA subtype of glutamate receptor plays an important role in the molecular mechanisms of learning, memory and excitotoxicity. NMDA receptors are highly permeable to calcium, which can lead to the activation of the calcium-dependent protease, calpain. In the present study, the ability of calpain to modulate NMDA receptor function through direct proteolytic digestion of the individual NMDA receptor subunits was examined. HEK293t cells were cotransfected with the NR1a/2A, NR1a/2B or NR1a/2C receptor combinations. Cellular homogenates of these receptor combinations were prepared and digested by purified calpain I in vitro. All three NR2 subunits could be proteolyzed by calpain I while no actin or NR1a cleavage was observed. Based on immunoblot analysis, calpain cleavage of NR2A, NR2B and NR2C subunits was limited to their C-terminal region. In vitro calpain digestion of fusion protein constructs containing the C-terminal region of NR2A yielded two cleavage sites at amino acids 1279 and 1330. Although it has been suggested that calpain cleavage of the NMDA receptor may act as a negative feedback mechanism, the current findings demonstrated that calpain cleavage did not alter [(125)I]MK801 binding and that receptors truncated to the identified cleavage sites had peak intracellular calcium levels, (45)Ca uptake rates and basal electrophysiological properties similar to wild type.  相似文献   

15.
Calpain inhibitors show the potential to serve as non-surgical alternatives in treating diabetic cataract and other types of these disorders. Here, we have tested the recently developed calpain inhibitor, SJA6017, for its ability to inhibit cataractogenesis in porcine lenses. These lenses were incubated in increasing levels of extralenticular calcium (Ca2+; 5-30 mM). Atomic absorption spectroscopy was used to determine total internal lens Ca2+ and a correlation between porcine lens Ca2+ uptake and levels of lens opacification were found with a total internal lens Ca2+ level of 5.8 microM Ca2+ g(-1) wet lens weight corresponding to the onset of catarctogenesis. A total internal lens Ca2+ level of 8.0 microM Ca2+ g(-1) wet lens weight corresponded to cataract occupying approximately 70% of the lens cell volume. This degree of cataract was reduced by approximately 40%, when SJA6017 (final concentration 0.8 microM) was included in the extralenticular medium, suggesting that the Ca2+-mediated activation of calpains may be involved in the observed opacification. Supporting this suggestion atomic absorption spectroscopy showed that the effect of SJA6017 (final concentration 0.8 microM) on lens opacification was not due to the compound restricting porcine lens Ca2+ uptake. The results indicate that calpain-induced cataractogenesis is dependent on extracellular Ca2+ and the calpain inhibitor SJA6017 (0.8 microM) had no significant effect on Ca2+ uptake by lens. Its inhibitory effect on lens opacification may be due to a direct action on the activity of calpain.  相似文献   

16.
Calpains are calcium- and thiol-dependent proteases that cleave a variety of intracellular substrates. Overactivation of the calpains has been implicated in a number of diseases and conditions such as ischemic stroke indicating a need for the development of calpain inhibitors. A major problem with current calpain inhibitors has been specific targeting to calpain. To identify highly specific calpain interacting peptides, we developed a peptide-phage library screening method based on the calcium-dependent conformation change associated with calpain activation. A phage-peptide library representing greater than 2 billion expressed 12-mers was incubated with calpain I in the presence of calcium. The calcium-dependent bound phage was then eluted by addition of EGTA. After four rounds of selection we found a conserved 5-mer sequence represented by LSEAL. Synthetic LSEAL inhibited tau-calpain interaction and in vitro proteolysis of tau- and alpha-synuclein by calpains. Deletion of the portion of the tau protein containing a homologous sequence to LSEAL resulted in decreased calpain-mediated tau degradation. These data suggest that these peptides may represent novel calpastatin mimetics.  相似文献   

17.
Molecular chaperone activity of lens alpha-crystallins is reduced by loss of the C terminus. The purpose of this experiment was to 1) determine the cleavage sites produced in vitro by ubiquitous m-calpain and lens-specific Lp82 on alpha-crystallins, 2) identify alpha-crystallin cleavage sites produced in vivo during maturation and cataract formation in rat lens, and 3) estimate the relative activities of Lp82 and m-calpain by appearance of protease-specific cleavage products in vivo. Total soluble protein from young rat lens was incubated with recombinant m-calpain or Lp82 and 2 mM Ca2+. Resulting fragmented alpha-crystallins were separated by two-dimensional gel electrophoresis. Eluted alpha-crystallin spots were analyzed by mass spectrometry. Cleavage sites on insoluble alpha-crystallins were determined similarly in mature rat lens nucleus and in cataractous rat lens nucleus induced by selenite. In vitro proteolysis of alphaA-crystallin by Lp82 and m-calpain produced unique cleavage sites by removing 5 and 11 residues, respectively, from the C terminus. In vivo, the protease-specific truncations removing 5 and 11 residues from alphaA were both found in maturing lens, whereas only the truncation removing 5 residues was found in cataractous lens. Other truncation sites, common to both calpain isoforms, resulted from the removal of 8, 10, 16, 17, and 22 residues from the C terminus of alphaA. Using uniquely truncated alphaA-crystallins as in vivo markers, Lp82 and m-calpain were both found to be active during normal maturation of rat lens, whereas Lp82 seemed especially active during selenite cataract formation. These C-terminal truncations decrease chaperone activity of alpha-crystallins, possibly leading to the observed increases in insoluble proteins during aging and cataract. The methodology that allowed accurate mass measurements of proteins eluted from 2D gels should be useful to examine rapidly other post-translational modifications.  相似文献   

18.
Characterization and regulation of lens-specific calpain Lp82   总被引:2,自引:0,他引:2  
Eye tissues contain splice variants of muscle-preferred p94 (calpain 3), such as lens-specific Lp82 and Lp85, retina-specific Rt88, and cornea-specific Cn94. The purpose of the present experiment was to analyze the activation and regulation of the best characterized p94 splice variant, Lp82. Recombinant rat Lp82 (rLp82) was expressed using the baculovirus system, purified with Ni-NTA affinity and DEAE-ion exchange chromatographies, and characterized by SDS-PAGE, casein zymography, and immunoblotting. After incubation with calcium, rLp82 autolyzed into two major fragments at approximately 60 and 22 kDa. Sequencing of the autolytic fragments showed loss of three amino acids from the N terminus and cleavage near the IS2 region. Also, Lp82 and calpain 2 were found to hydrolyze each other. Calpastatin inhibited calpain 2 activity, but not Lp82. Homology modeling suggested that the lack of inhibition of Lp82 by calpastatin was due to molecular clashes at the unique AX1 region of Lp82. Lp82 also hydrolyzed calpastatin. These results suggested that Lp82 might regulate other calpain activities and cause hydrolysis of substrates such as crystallins during lens cataract formation.  相似文献   

19.
Summary Observations described here provide the first demonstration that calpain (Ca2+-dependent cysteine protease) can degrade proteins of skeletal muscle plasma membranes. Frog muscle plasma membrane vesicles were incubated with calpain preparations and alterations of protein composition were revealed by sodium dodecyl sulfate polyacrylamide gel electrophoresis. Calpain II (activated by millimolar concentrations of Ca2+) was isolated from frog skeletal muscle, but the activity of calpain I (activated by micromolar concentrations of Ca2+) was lost during attempts at fractionation. Calpain I obtained from skeletal muscle and erythrocytes of rats was tested instead, and exerted effects similar to those of frog muscle calpain on the membrane proteins. All of the calpain preparations caused striking losses of a major membrane protein of molecular mass of approximately 97 kDa, designated band c, and diminution of a thinner band of approximately 200 kDa. There were concomitant increases in 83-and 77-kDa polypeptides. These effects were absolutely dependent on the presence of free Ca2+, and were completely blocked by calpastatin, a specific inhibitor of calpain action. Frog muscle calpain differed only in being relatively more active at 0°C than were the calpains from rat tissues. Experimental observations suggest that calpain acts at the cytoplasmic surface of the plasma membrane.  相似文献   

20.
We previously showed that changes in calcium concentrations were related to cell apoptosis in vitro. The endoplasmic reticulum (ER) is the main component of calcium storage and signal transduction, and disrupting the balance of intracellular Ca2+ can cause endoplasmic reticulum stress (ERS). In this process, the ER releases stored Ca 2+ into the cytoplasm and activates calpain-2. To further investigate the effect of calpain in hepatic stellate cells (HSCs), in the current study, we examine the effect of N-acetyl-leu-leu-norleucinal (ALLN) on apoptosis resulting from calcium ionophore A23187–induced ERS. Our findings indicate that calpain inhibition reduces calcium ionophore A23187–induced apoptosis of HSCs and decreases the expression of ER stress proteins that may be related to the calpain/caspase signaling pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号