首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
Studying the binding properties of cellulases to lignocellulosic substrates is critical to achieving a fundamental understanding of plant cell wall saccharification. Lignin auto-fluorescence and degradation products formed during pretreatment impede accurate quantification of individual glycosyl hydrolases (GH) binding to pretreated cell walls. A high-throughput fast protein liquid chromatography (HT-FPLC)-based method has been developed to quantify cellobiohydrolase I (CBH I or Cel7A), cellobiohydrolase II (CBH II or Cel6A), and endoglucanase I (EG I or Cel7B) present in hydrolyzates of untreated, ammonia fiber expansion (AFEX), and dilute-acid pretreated corn stover (CS). This method can accurately quantify individual enzymes present in complex binary and ternary protein mixtures without interference from plant cell wall-derived components. The binding isotherms for CBH I, CBH II, and EG I were obtained after incubation for 2 h at 4 °C. Both AFEX and dilute acid pretreatment resulted in increased cellulase binding compared with untreated CS. Cooperative binding of CBH I and/or CBH II in the presence of EG I was observed only for AFEX treated CS. Competitive binding between enzymes was found for certain other enzyme-substrate combinations over the protein loading range tested (i.e., 25-450 mg/g glucan). Langmuir single-site adsorption model was fitted to the binding isotherm data to estimate total available binding sites E(bm) (mg/g glucan) and association constant K(a) (L/mg). Our results clearly demonstrate that the characteristics of cellulase binding depend not only on the enzyme GH family but also on the type of pretreatment method employed.  相似文献   

2.
The cost of enzymes that hydrolyse lignocellulosic substrates to fermentable sugars needs to be reduced to make cellulosic ethanol a cost-competitive liquid transport fuel. Sugarcane is a perennial crop and the successful integration of cellulase transgenes into the sugarcane production system requires that transgene expression is stable in the ratoon. Herein, we compared the accumulation of recombinant fungal cellobiohydrolase I (CBH I), fungal cellobiohydrolase II (CBH II), and bacterial endoglucanase (EG) in the leaves of mature, initial transgenic sugarcane plants and their mature ratoon. Mature ratoon events containing equivalent or elevated levels of active CBH I, CBH II, and EG in the leaves were identified. Further, we have demonstrated that recombinant fungal CBH I and CBH II can resist proteolysis during sugarcane leaf senescence, while bacterial EG cannot. These results demonstrate the stability of cellulase enzyme transgene expression in transgenic sugarcane and the utility of sugarcane as a biofactory crop for production of cellulases.  相似文献   

3.
Filamentous fungi are native secretors of lignocellulolytic enzymes and are used as protein‐producing factories in the industrial biotechnology sector. Despite the importance of these organisms in industry, relatively little is known about the filamentous fungal secretory pathway or how it might be manipulated for improved protein production. Here, we use Neurospora crassa as a model filamentous fungus to interrogate the requirements for trafficking of cellulase enzymes from the endoplasmic reticulum to the Golgi. We characterized the localization and interaction properties of the p24 and ERV‐29 cargo adaptors, as well as their role in cellulase enzyme trafficking. We find that the two most abundantly secreted cellulases, CBH‐1 and CBH‐2, depend on distinct ER cargo adaptors for efficient exit from the ER. CBH‐1 depends on the p24 proteins, whereas CBH‐2 depends on the N. crassa homolog of yeast Erv29p. This study provides a first step in characterizing distinct trafficking pathways of lignocellulolytic enzymes in filamentous fungi.  相似文献   

4.
Plant cell wall degradation into fermentable sugars by cellulases is one of the greatest barriers to biofuel production. Expansin protein loosens the plant cell wall by opening up the complex of cellulose microfibrils and polysaccharide matrix components thereby increasing its accessibility to cellulases. We over-expressed cucumber expansin in maize kernels to produce enough protein to assess its potential to serve as an industrial enzyme for applications particularly in biomass conversion. We used the globulin-1 embryo-preferred promoter to express the cucumber expansin gene in maize seed. Expansin protein was targeted to one of three sub-cellular locations: the cell wall, the vacuole, or the endoplasmic reticulum (ER). To assess the level of expansin accumulation in seeds of transgenic kernels, a high throughput expansin assay was developed. The highest expressing plants were chosen and enriched crude expansin extract from those plants was tested for synergistic effects with cellulase on several lignocellulosic substrates. Activity of recombinant cucumber expansin from transgenic kernels was confirmed on these pretreated substrates. The best transgenic lines (ER-targeted) can now be used for breeding to increase expansin expression for use in the biomass conversion industry. Results of these experiments show the success of expansin over-expression and accumulation in transgenic maize seed without negative impact on growth and development and confirm its synergistic effect with cellulase on deconstruction of complex cell wall substrates.  相似文献   

5.
A major strategic goal in making ethanol from lignocellulosic biomass a cost-competitive liquid transport fuel is to reduce the cost of production of cellulolytic enzymes that hydrolyse lignocellulosic substrates to fermentable sugars. Current production systems for these enzymes, namely microbes, are not economic. One way to substantially reduce production costs is to express cellulolytic enzymes in plants at levels that are high enough to hydrolyse lignocellulosic biomass. Sugar cane fibre (bagasse) is the most promising lignocellulosic feedstock for conversion to ethanol in the tropics and subtropics. Cellulolytic enzyme production in sugar cane will have a substantial impact on the economics of lignocellulosic ethanol production from bagasse. We therefore generated transgenic sugar cane accumulating three cellulolytic enzymes, fungal cellobiohydrolase I (CBH I), CBH II and bacterial endoglucanase (EG), in leaves using the maize PepC promoter as an alternative to maize Ubi1 for controlling transgene expression. Different subcellular targeting signals were shown to have a substantial impact on the accumulation of these enzymes; the CBHs and EG accumulated to higher levels when fused to a vacuolar-sorting determinant than to an endoplasmic reticulum-retention signal, while EG was produced in the largest amounts when fused to a chloroplast-targeting signal. These results are the first demonstration of the expression and accumulation of recombinant CBH I, CBH II and EG in sugar cane and represent a significant first step towards the optimization of cellulolytic enzyme expression in sugar cane for the economic production of lignocellulosic ethanol.  相似文献   

6.
Cellobiohydrolase (CBH) I, a main component of Trichoderma extracellular protein, was purified to an electrophoretically homogeneous state from a commercial cellulase preparation (Meicelase from T. viride) by column chromatography on anion and cation exchangers. The difference in the cross-reactivity of cellulolytic enzyme systems of brown-rot and white-rot fungi with the polyclonal antibodies to the CBH I was studied by enzyme-linked immunosorbent assay (ELISA). The antibodies were observed to react quantitatively and with great sensitivity with the antigen (CBH I), and at the same time to cross-react to some extent with T. viride cellulase components other than the CBH I. Nevertheless, the intensity of cross-reactivity of wood-rot fungi cellulases with the antibodies was parallel to the activity of exo-1,4-ß-glucanase. The cellulase system from brown-rot fungi, believed to lack exo-1,4-ß-glucanases, gave a negative response towards the antibodies. These results suggested the presence of some homologous sequences and structures with the T. viride CBH I in the enzymes of white-rot fungi and their absence in those of brown-rot fungi. Correspondence to: M. Ishihara  相似文献   

7.
Summary An enzyme-linked immunosorbent assay (ELISA) using monoclonal antibodies has been developed to measure the concentration of three main cellulase components from Trichoderma reesei, cellobiohydrolase I (CBH I), cellobiohydrolase II (CBH II) and I (EG I), in both commercial enzyme preparations as well as in samples from laboratory fermentations. The sensitivity of the assay is 1–10 ng protein, depending on the type of cellulase. The coefficient of variability is between 10% and 20%. By a combination of two different domain-specific monoclonals against CBH I or II it is also possible to quantify the concentration of intact and truncated forms of these two enzymes, respectively. The use of the ELISA to quantify the formation of the three cellulase components under different cultivation conditions is described. Offprint requests to: C. P. Kubicek  相似文献   

8.
Cellobiohydrolase CBH I (Cel7A) from the filamentous fungus Trichoderma reesei (TrCBHI), which is a member of glycoside hydrolase family (GHF) 7, was expressed in Aspergillus oryzae. We found that the recombinant enzyme showed significant chitosanase activity, as well as cellulase activity, and acted in an endo-type manner on soluble polymeric substrate. Furthermore, another GHF7 CBH I from Aspergillus aculeatus (AaCBHI) expressed in A. oryzae also had chitosanase activity, while endoglucanase EG I (Cel7B) from T. reesei had no activity towards chitosan. To our knowledge, this is the first report of GHF7 enzymes possessing chitosanase activity.  相似文献   

9.
10.
Hydrolysis of microcrystalline cellulose (Avicel) by cellobiohydrolase I and II (CBH I and II) from Trichoderma reesei has been studied. Adsorption and synergism of the enzymes were investigated. Experiments were performed at different temperatures and enzyme/substrate ratios using CBH I and CBH II alone and in reconstituted equimolar mixtures. Fast protein liquid chromatography (FPLC) analysis was found to be an accurate and reproducible method to follow the enzyme adsorption. A linear correlation was found between the conversion and the amount of adsorbed enzyme when Avicel was hydrolyzed by increasing amounts of CBH I and/or CBH II. CBH I had lower specific activity compared to CBH II although, over a wide concentration range, more CBH I was adsorbed than CBH II. Synergism between the cellobiohy-drolases during hydrolysis of the amorphous fraction of Avicel showed a maximum as a function of total enzyme concentration. Synergism measured as a function of bound enzyme showed a continuous increase, which indicates that by decreasing the distance between the two enzymes the synergism is enhanced. The adsorption process for both enzymes was slow. Depending on the enzyme/substrate ratio it took 30-90 min to reach 95% of the equilibrium binding. The amount of bound enzyme decreased with increasing temperature. The two enzymes compete for the adsorption sites but also bind to specific sites. Stronger competition for adsorption sites was shown by CBH I. (c) 1994 John Wiley & Sons, Inc.  相似文献   

11.
12.
Two recombinant strains of Saccharomyces cerevisiae Y294 producing cellulase using different expression strategies were compared to a reference strain in aerobic culture to evaluate the potential metabolic burden that cellulase expression imposed on the yeast metabolism. In a chemically defined mineral medium with glucose as carbon source, S. cerevisiae strain Y294[CEL5] with plasmid-borne cellulase genes produced endoglucanase and β-glucosidase activities of 0.038 and 0.30 U mg dry cell weight(-1), respectively. Chromosomal expression of these two cellulases in strain Y294[Y118p] resulted in no detectable activity, although low levels of episomally co-expressed cellobiohydrolase (CBH) activity were detected. Whereas the biomass concentration of strain Y294[CEL5] was slightly greater than that of a reference strain, CBH expression by Y294[Y118p] resulted in a 1.4-fold lower maximum specific growth rate than that of the reference. Supplementation of the growth medium with amino acids significantly improved culture growth and enzyme production, but only partially mitigated the physiological effects and metabolic burden of cellulase expression. Glycerol production was decreased significantly, up to threefold, in amino acid-supplemented cultures, apparently due to redox balancing. Disproportionately higher levels of glycerol production by Y294[CEL5] indicated a potential correlation between the redox balance of anabolism and the physiological stress of cellulase production. With the reliance on cellulase expression in yeast for the development of consolidated bioprocesses for bioethanol production, this work demonstrates the need for development of yeasts that are physiologically robust in response to burdens imposed by heterologous enzyme production.  相似文献   

13.
Microcrystalline cellulose (10 g/L Avicel) was hydrolysed by two major cellulases, cellobiohydrolase I (CBH I) and endoglucanase II (EG II), of Trichoderma reesei. Two types of experiments were performed, and in both cases the enzymes were added alone and together, in equimolar mixtures. In time course studies the reaction time was varied between 3 min and 48 h at constant temperature (40 degrees C) and enzyme loading (0.16 micromol/g Avicel). In isotherm studies the enzyme loading was varied in the range of 0.08-2.56 micromol/g at 4 degrees C and 90 min. Adsorption of the enzymes and production of soluble sugars were followed by FPLC and HPLC, respectively. Adsorption started quickly (50% of maximum achieved after 3 min) but was not completed before 60-90 min. For CBH I a linear relationship was observed between the production of soluble sugars and adsorption, showing that the average activity of the bound CBH I molecules does not change with increasing saturation. For EG II the corresponding curve levelled off which is explained by initial hydrolysis of loose ends on Avicel. The enzymes competed for binding sites, binding of EG II was considerably affected by CBH I, especially at high concentration. CBH I produced more soluble sugars than EG II, except at conversions below 1%. At 40 degrees C when the enzymes were added together they produced 27-45% more soluble sugars than the sum of what they produced alone, i.e. synergistic action was observed (the final conversion after 48 h of hydrolysis was 3, 6, and 13% for EG II, CBH I, and their mixture, respectively). At 4 degrees C, on the other hand, when the conversion was below 2.5%, almost no synergism could be observed. Molar proportions of the produced sugars were rather stable for CBH I (11-15%, 82-89%, and <6% for glucose, cellobiose, and cellotriose, respectively), while it varied considerably with both time and enzyme concentration for EG II. The observed stable but high glucose to cellobiose ratio for CBH I indicates that the processivity for this enzyme is not perfect. EG II produced significant amounts of glucose, cellobiose, and cellotriose, which are not the expected products of a typical endoglucanase activity on a solid substrate. We explain this by hypothesizing that EG II may show processivity due to its extended substrate binding site and the presence of its cellulose binding domain.  相似文献   

14.
A method for analysis of the component composition of multienzyme complexes secreted by the filamentous fungus Trichoderma reesei was developed. The method is based on chromatofocusing followed by further identification of protein fractions according to their substrate specificity and molecular characteristics of the proteins. The method allows identifying practically all known cellulases and hemicellulases of T. reesei: endoglucanase I (EG I), EG II, EG III, cellobiohydrolase I (CBH I), CBH II, xylanase I (XYL I), XYL II, beta-xylosidase, alpha-L-arabinofuranosidase, acetyl xylan esterase, mannanase, alpha-galactosidase, xyloglucanase, polygalacturonase, and exo-beta-1,3-glucosidase. The component composition of several laboratory and commercial T. reesei preparations was studied and the content of the individual enzymes in these preparations was quantified. The influence of fermentation conditions on the component composition of secreted enzyme complexes was revealed. The characteristic features of enzyme preparations obtained in "cellulase" and "xylanase" fermentation conditions are shown.  相似文献   

15.
A series of in vitro experiments were conducted to assess three fibrolytic enzyme preparations as potential feed additives in equine diets. The three fibrolytic enzyme preparations were a concentrated cellulase (E1), an acid cellulase (E2) and a concentrated xylanase (E3). The enzymes were evaluated on their ability to modify the cell wall fraction of high-temperature dried lucerne (HTL) under various experimental conditions including differences in temperature, pH, incubation period, substrate levels and particle size to enable selection of the enzyme preparation most effective in the hydrolysis of lucerne. Results showed enzyme activities (as measured by reducing sugar assays) to be greatest at 50 °C, pH 5 and over an incubation period of greater than 20 h. E1 exhibited the greatest effect on total monosaccharide release from the HTL compared to E2 and E3. Moreover, dry matter (DM) and total non-starch polysaccharide (TNSP) losses were also greater in HTL treated with E1 compared to E2 and E3. Therefore, since the cell wall fraction of HTL contained substantial amounts of cellulose, the enzyme with the highest cellulase activity (Enzyme 1) was most effective in hydrolysing the cell walls of HTL. Consequently, it would appear that the application of exogenous fibrolytic enzyme preparations to forages requires the chemical characterisation of the target forage to enable selection of enzymes that are (a) most suitable to degrade the cell wall components of the candidate forage and (b) effective under field conditions.  相似文献   

16.
The class I β-1,3-glucanases are basic, vacuolar enzymes implicated in the defense of plants against pathogen infection. The tobacco (Nicotiana tabacum L.) enzyme is synthesized as a preproprotein with an N-terminal signal peptide for targeting to the lumen of the endoplasmic reticulum and an N-glycosylated C-terminal extension which is lost during protein maturation. The transport and processing of β-1,3-glucanase in cellsuspension cultures of the tobacco cultivar Havana 425 was investigated by pulse-chase labelling and cell fractionation. We verified that mature β-1,3-glucanase is localized in the vacuole of the suspension-cultured cells. Comparison of the time course of processing in homogenates, the soluble fraction, and membrane fractions indicates that proglucanase is transported from the endoplasmic reticulum via the Golgi compartment to the vacuole. Processing to the mature form occurs in the vacuole. Treatment of cells with tunicamycin, which inhibits N-glycosylation, and digestion of the 35S-labelled processing intermediates with endoglycosidase H indicate that β-1,3-glucanase has a single N-glycan attached to the C-terminal extension. Glycosylation is not required for proteolytic processing or correct targeting to the vacuole.  相似文献   

17.
A double-antibody sandwich enzyme-linked immunosorbent assay was developed for quantifying cellobiohydrolase I (CBH I) in crude preparations of the cellulase complex from Trichoderma reesei. The other enzymes (endoglucanase and β-glucosidase) in this complex and other ingredients in culture broth did not interfere with this assay. The antibody configuration that resulted in the highest specificity for the assay of CBH I employed a monoclonal antibody to coat wells in polystyrene plates and peroxidase-labeled polyclonal antibody to detect cellobiohydrolase bound to the immobilized monoclonal antibody. Previously, procedures have not been available for the direct assay of CBH I activity in the presence of the other enzymes in the complex, and current indirect procedures are cumbersome and inaccurate. The direct procedure described here is highly specific for CBH I and useful for quantifying this enzyme in the range of 0.1 to 0.8 μg/ml.  相似文献   

18.
19.
We evaluated transgenic tobacco plants as an alternative to Escherichia coli for the production of recombinant human complement factor 5a (C5a). C5a has not been expressed in plants before and is highly unstable in vivo in its native form, so it was necessary to establish the most suitable subcellular targeting strategy. We used the strong and constitutive CaMV 35S promoter to drive transgene expression and compared three different subcellular compartments. The yields of C5a in the T0 transgenic plants were low in terms of the proportion of total soluble protein (TSP) when targeted to the apoplast (0.0002% TSP) or endoplasmic reticulum (0.0003% TSP) but was one order of magnitude higher when targeted to the vacuole (0.001% TSP). The yields could be increased by conventional breeding (up to 0.014% TSP in the T2 generation). C5a accumulated to the same level in seeds and leaves when targeted to the apoplast but was up to 1.7-fold more abundant in the seeds when targeted to the ER or vacuole, although this difference was less striking in the better-performing lines. When yields were calculated as an amount per gram fresh weight of transgenic plant tissue, the vacuole targeting strategy was clearly more efficient in seeds, reaching 35.8 µg C5a per gram of fresh seed weight compared to 10.62 µg C5a per gram fresh weight of leaves. Transient expression of C5aER and C5aVac in N. benthamiana, using MagnICON vectors, reached up to 0.2% and 0.7% of TSP, respectively, but was accompanied by cytotoxic effects and induced leaf senescence. Western blot of the plant extracts revealed a band matching the corresponding glycosylated native protein and the bioassay demonstrated that recombinant C5a was biologically active.  相似文献   

20.
Cotton woven fabrics which were previously dyed with a reactive dye were treated with a commercial cellulase preparation. Dyeing with a reactive dye for cotton apparently inhibited the weight loss activity and saccharification activity of cellulase. In addition, dyed cotton was treated with highly purified cellulases which were exo-type cellulases (Cellobiohydrolase I (CBH I) and Cellobiohydrolase II (CBH II)) and endo-type cellulase (Endoglucanase II (EG II)). Exo-type cellulases were inhibited more than endo-type cellulase by dyeing in the case of saccharification activity. CBH I was severely inhibited by dyeing as compared with CBH II or EG II from the viewpoint of morphological changes in the fiber surface. Dyes on the cellulose substrates severely influenced CBH I in spite of the rare modification, because CBH I hydrolyzed cellulose with true-processive action. The change in the activity of each cellulase component on dyed cotton can affect the synergistic action of cellulases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号