首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The availability of most edible ectomycorrhizal mushrooms depends on their natural fructification. Sporocarp formation of these fungi is linked to habitat characteristics and climate conditions, but these data alone do not explain all the trends of fungal fruiting and dynamics. It could be hypothesized that the amount of soil mycelia could also be related to the production of carpophores. Soil samples (five cylinders of 250 cm3 per plot) were taken monthly, from September to November, in five fenced permanent plots (5 × 5 m) in Pinar Grande (Soria, Spain), a Pinus sylvestris stand situated in the north of the Sistema Ibérico mountain range. Plots were chosen to establish a gradient of Boletus edulis productivity from 0 to 38.5 kg/ha year, according to the mean fresh weight of sporocarps collected during the last 10 years. B. edulis ectomycorrhizal root tips were identified in each soil sample according to its morphology and counted. DNA extractions were performed with the PowerSoilTM DNA Isolation Kit and quantification of extraradical soil mycelium by real-time polymerase chain reaction using specific primers and a TaqMan? probe. The concentration of soil mycelium of B. edulis (mg mycelium/g soil) did not differ significantly between plots (p = 0.1397), and sampling time (p = 0.7643) within the fructification period. The number of mycorrhizal short roots per soil volume showed significant differences between the plots (p = 0.0050) and the three sampling times (p < 0.0001). No significant correlation between the number of mycorrhizas and the productivity of the plot (kg of B. edulis/ha year) was detected (p = 0.615). A statistically significant positive correlation (p = 0.0481) was detected between the concentration of mycelia of B. edulis in the soil samples and the presence of short roots mycorrhizal with B. edulis in these samples. The productivity of the plots, in terms of sporocarps produced during the last 10 years, was not correlated either with the concentration of soil mycelium or with the presence or abundance of ectomycorrhizas.  相似文献   

2.
The distribution of plant species in boreal forest understories is hypothesized to reflect mycorrhizal guilds and associated adaptations for organic nitrogen (N) acquisition. In this study of a natural edaphic gradient, where supply rates of inorganic N increase with site productivity, we noted a decline in understory ectomycorrhizal, ericoid, and arbutoid plant communities on productive sites, in contrast to a positive response by most arbuscular species. We then assessed the rate of change in foliar N concentration (Nconc) and abundance of 15N (δ15N) of select plants from these mycorrhizal guilds. Two arbuscular plant species (Rubus parviflorus and Viburnum edule) had the sharpest increases in foliar Nconc with enhanced supplies of NH4 + and NO3 , but with no differences in foliar δ15N. An ectomycorrhizal species, Abies lasiocarpa, and ericoid species, Vaccinium membranaceum, had parallel increases in both Nconc and δ15N with soil N supply. The foliar δ15N of two arbutoid plants (Orthilia secunda and Pyrola asarifolia) were as enriched as ectomycorrhizal sporocarps, likely indicating N transfer from mycorrhizal networks. The depletion of foliar δ15N by ectomycorrhizal and ericoid plants on poorer sites likely reflected a high degree of N retention and photosynthate demand by fungi, whereas arbuscular plants may have had a less significant δ15N response because of a more passive role by fungi in scavenging organic N. The results suggest differences in how mycorrhiza exploit diverse soil N supplies (recalcitrant and labile organic N, NH4 +, NO3 , and parasitized N) could be an important factor in boreal plant community composition.  相似文献   

3.
Understanding spatial patterns of net primary production (NPP) is central to the study of terrestrial ecosystems, but efforts are frequently hampered by a lack of spatial information regarding factors such as nitrogen availability and site history. Here, we examined the degree to which canopy nitrogen can serve as an indicator of patterns of NPP at the Bartlett Experimental Forest in New Hampshire by linking canopy nitrogen estimates from two high spectral resolution remote sensing instruments with field measurements and an ecosystem model. Predicted NPP across the study area ranged from less than 700 g m−2 year−1 to greater than 1300 g m−2 year−1 with a mean of 951 g m−2 year−1. Spatial patterns corresponded with elevation, species composition and historical forest management, all of which were reflected in patterns of canopy nitrogen. The relationship between production and elevation was nonlinear, with an increase from low- to mid-elevation deciduous stands, followed by a decline in upper-elevation areas dominated by evergreens. This pattern was also evident in field measurements and mirrored an elevational trend in foliar N concentrations. The increase in production from low-to mid-elevation deciduous stands runs counter to the generally accepted pattern for the northeastern U.S. region, and suggests an importance of moisture limitations in lower-elevation forests. Field measurements of foliar N, wood production and leaf litterfall were also used to evaluate sources of error in model estimates and to determine how predictions are affected by different methods of acquiring foliar N input data. The accuracy of predictions generated from remotely sensed foliar N approached that of predictions driven by field-measured foliar N. Predictions based on the more common approach of using aggregated foliar N for individual cover types showed reasonable agreement in terms of the overall mean, but were in poor agreement on a plot-by-plot basis. Collectively, these results suggest that variation in foliar N exerts an important control on landscape-level spatial patterns and can serve as an integrator of other underlying factors that influence forest growth rates.  相似文献   

4.
Regester KJ  Lips KR  Whiles MR 《Oecologia》2006,147(2):303-314
Breeding adults and metamorphosing larval amphibians transfer energy between freshwater and terrestrial ecosystems during seasonal migrations and emergences, although rarely has this been quantified. We intensively sampled ambystomatid salamander assemblages (Ambystoma opacum,A. maculatum, and A. tigrinum) in five forested ponds in southern Illinois to quantify energy flow associated with egg deposition, larval production, and emergence of metamorphosed larvae. Oviposition by female salamanders added 7.0–761.4 g ash-free dry mass (AFDM) year−1 to ponds (up to 5.5 g AFDM m−2 year−1). Larval production ranged from 0.4 to 7.4 g AFDM m−2 year−1 among populations in three ponds that did not dry during larval development, with as much as 7.9 g AFDM m−2 year−1 produced by an entire assemblage. Mean larval biomass during cohort production intervals in these three ponds ranged from 0.1 to 2.3 g AFDM m−2 and annual P/B (production/biomass) ranged from 4 to 21 for individual taxa. Emergent biomass averaged 10% (range=2–35%) of larval production; larval mortality within ponds accounted for the difference. Hydroperiod and intraguild predation limited larval production in some ponds, but emerging metamorphs exported an average of 70.0±33.9 g AFDM year−1 (range=21.0–135.2 g AFDM year−1) from ponds to surrounding forest. For the three ponds where larvae survived to metamorphosis, salamander assemblages provided an average net flux of 349.5±140.8 g AFDM year−1 into pond habitats. Among all ponds, net flux into ponds was highest for the largest pond and decreased for smaller ponds with higher perimeter to surface area ratios (r 2 =0.94, P<0.05, n=5). These results are important in understanding the multiple functional roles of salamanders and the impact of amphibian population declines on ecosystems. Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users.  相似文献   

5.
Hobbie EA  Jumpponen A  Trappe J 《Oecologia》2005,146(2):258-268
Nitrogen isotopes (15N/14N ratios, expressed as δ15N values) are useful markers of the mycorrhizal role in plant nitrogen supply because discrimination against 15N during creation of transfer compounds within mycorrhizal fungi decreases the 15N/14N in plants (low δ15N) and increases the 15N/14N of the fungi (high δ15N). Analytical models of 15N distribution would be helpful in interpreting δ15N patterns in fungi and plants. To compare different analytical models, we measured nitrogen isotope patterns in soils, saprotrophic fungi, ectomycorrhizal fungi, and plants with different mycorrhizal habits on a glacier foreland exposed during the last 100 years of glacial retreat and on adjacent non-glaciated terrain. Since plants during early primary succession may have only limited access to propagules of mycorrhizal fungi, we hypothesized that mycorrhizal plants would initially be similar to nonmycorrhizal plants in δ15N and then decrease, if mycorrhizal colonization were an important factor influencing plant δ15N. As hypothesized, plants with different mycorrhizal habits initially showed similar δ15N values (−4 to −6‰ relative to the standard of atmospheric N2 at 0‰), corresponding to low mycorrhizal colonization in all plant species and an absence of ectomycorrhizal sporocarps. In later successional stages where ectomycorrhizal sporocarps were present, most ectomycorrhizal and ericoid mycorrhizal plants declined by 5–6‰ in δ15N, suggesting transfer of 15N-depleted N from fungi to plants. The values recorded (−8 to −11‰) are among the lowest yet observed in vascular plants. In contrast, the δ15N of nonmycorrhizal plants and arbuscular mycorrhizal plants declined only slightly or not at all. On the forefront, most ectomycorrhizal and saprotrophic fungi were similar in δ15N (−1 to −3‰), but the host-specific ectomycorrhizal fungus Cortinarius tenebricus had values of up to 7‰. Plants, fungi and soil were at least 4‰ higher in δ15N from the mature site than in recently exposed sites. On both the forefront and the mature site, host-specific ectomycorrhizal fungi had higher δ15N values than ectomycorrhizal fungi with a broad host range. From these isotopic patterns, we conclude:(1) large enrichments in 15N of many ectomycorrhizal fungi relative to co-occurring ectomycorrhizal plants are best explained by treating the plant-fungal-soil system as a closed system with a discrimination against 15N of 8–10‰ during transfer from fungi to plants, (2) based on models of 15N mass balance, ericoid and ectomycorrhizal fungi retain up to two-thirds of the N in the plant-mycorrhizal system under the N-limited conditions at forefront sites, (3) sporocarps are probably enriched in 15N by an additional 3‰ relative to available nitrogen, and (4) host-specific ectomycorrhizal fungi may transfer more N to plant hosts than non-host-specific ectomycorrhizal fungi. Our study confirms that nitrogen isotopes are a powerful tool for probing nitrogen dynamics between mycorrhizal fungi and associated plants.  相似文献   

6.
Life-history and production of Olinga feredayi in both benthic and hyporheic stream habitats were investigated in a pristine Waikato, New Zealand, forest stream over two years to investigate the contribution of hyporheic habitat to total secondary production. O. feredayi had a univoltine life-history with adult emergence occurring from November to March. Larvae with case lengths < 2 mm were present on most dates suggesting delayed egg hatching. Benthic densities were inversely related to maximum peak daily flow in the month prior to sampling, and positively related to the dry mass of particulate organic matter present in samples. Reach-average benthic production calculated by the size-frequency method was 0.024 g DM m−2 year−1. Hyporheic production was 4.276 g DM m−3 year−1 and 6.462 g DM m−3 year−1 in colonisation baskets set at 15–30 cm and 30–45 cm within the substratum, respectively, 2.3–3.4 times greater than production in surface baskets (0–15 cm). Averaged out over the reach scale, it was estimated that 96% of annual secondary production of O. feredayi occurred in hyporheic habitats >10 cm below the streambed surface. Our study clearly demonstrates that only sampling benthic habitats can lead to gross under-estimation of population-level annual production, and provides evidence for the role of the hyporheos as a source of secondary production that may partly account for the Allen Paradox.  相似文献   

7.
In this study, we present the detailed molecular investigation of the ectomycorrhizal (ECM) community of Quercus petraea and Quercus robur seedlings grown in bare-root forest nurseries. In all tested oak samples, mycorrhizal colonization was nearly 100%. Morphological observation and molecular investigations (sequencing of fungal ITS rDNA) revealed a total of 23 mycorrhizal taxa. The most frequent and abundant fungal taxa were Hebeloma sacchariolens, Tuber sp., and Peziza sp.; from the detected fungal taxa, 20 were noted for Q. petraea and 23 for Q. robur. Depending on the nursery, the species richness of identified ECM fungal taxa for both oak species ranged from six to 11 taxa. The mean species richness for all nurseries was 5.36 and 5.82 taxa per Q. petraea and Q. robur sample, respectively. According to the analysis of similarity, ECM fungal communities were similar for Q. petraea and Q. robur (R = 0.019; p = 0.151). On the other hand, detected fungal communities were significantly different between nurseries (R = 0.927; p < 0.0001). Using the Spearman rank correlation, it was determined that the ectomycorrhizal diversity (in terms of richness, the Shannon diversity, evenness, and Simpson dominance indices) is significantly related to the soil parameters of each nursery. We conclude that individual nursery may be considered as separate ecological niches that strongly discriminate diversity of ECM fungi.  相似文献   

8.
Invasive species can monopolize resources and thus dominate ecosystem production. In this study we estimated secondary production and diet of four populations of Pomacea canaliculata, a freshwater invasive snail, in wetlands (abandoned paddy, oxbow pond, drainage channel, and river meander) in monsoonal Hong Kong (lat. 22°N). Apple snail secondary production (ash-free dry mass [AFDM]) ranged from 165.9 to 233.3 g m−2 year−1, and varied between seasons. Production was lower during the cool dry northeast monsoon, when water temperatures might have limited growth, but fast growth and recruitment of multiple cohorts were possible throughout much (7–10 months) of the year and especially during the warm, wet southwest monsoon. The diet, as revealed by stomach-content analysis, consisted mainly of detritus and macrophytes, and was broadly consistent among habitats despite considerable variation in the composition and cover of aquatic plants. Apple snail annual production was >10 times greater than production estimates for other benthic macroinvertebrates in Hong Kong (range 0.004–15 g AFDM m−2 year−1, n = 29). Furthermore, annual production estimates for three apple snail populations (i.e. >230 g AFDM m−2 year−1) were greater than published estimates for any other freshwater snails (range 0.002–194 g AFDM m−2 year−1, n = 33), regardless of climatic regime or habitat type. High production by P. canaliculata in Hong Kong was attributable to the topical climate (annual mean ~24°C), permitting rapid growth and repeated reproduction, together with dietary flexibility including an ability to consume a range of macrophytes. If invasive P. canaliculata can monopolize food resources, its high productivity indicates potential for competition with other macroinvertebrate primary consumers. Manipulative experiments will be needed to quantify these impacts on biodiversity and ecosystem function in wetlands, combined with management strategies to prevent further range extension by P. canaliculata.  相似文献   

9.
Urban environments are highly disturbed and fragmented ecosystems that commonly have lower mycorrhizal fungal species richness and diversity compared to rural or natural ecosystems. In this study, we assessed whether the mycorrhizal status and colonization of trees are influenced by the overall environment (rural vs. urban) they are growing in. Soil cores were collected from the rhizosphere of trees growing in urban and rural environments around southern Ontario. Roots were extracted from the soil cores to determine whether the trees were colonized by arbuscular mycorrhizal fungi, ectomycorrhizal fungi, or both, and to quantify the percent colonization of each type of mycorrhizal fungi. All 26 tree species were colonized by arbuscular mycorrhizal fungi, and seven tree species were dually colonized by arbuscular mycorrhizal and ectomycorrhizal fungi. Overall, arbuscular mycorrhizal and ectomycorrhizal fungal colonization was significantly (p < 0.001) lower in trees growing in urban compared to rural environments. It is not clear what ‘urban’ factors are responsible for the reduction in mycorrhizal fungal colonization; more research is needed to determine whether inoculating urban trees with mycorrhizal fungi would increase colonization levels and growth of the trees.  相似文献   

10.
Deciduous forests may respond differently from coniferous forests to the anthropogenic deposition of nitrogen (N). Since fungi, especially ectomycorrhizal (EM) fungi, are known to be negatively affected by N deposition, the effects of N deposition on the soil microbial community, total fungal biomass and mycelial growth of EM fungi were studied in oak-dominated deciduous forests along a nitrogen deposition gradient in southern Sweden. In-growth mesh bags were used to estimate the production of mycelia by EM fungi in 19 oak stands in the N deposition gradient, and the results were compared with nitrate leaching data obtained previously. Soil samples from 154 oak forest sites were analysed regarding the content of phospholipid fatty acids (PLFAs). Thirty PLFAs associated with microbes were analysed and the PLFA 18:2ω6,9 was used as an indicator to estimate the total fungal biomass. Higher N deposition (20 kg N ha−1 y−1 compared with 10 kg N ha−1 y−1) tended to reduce EM mycelial growth. The total soil fungal biomass was not affected by N deposition or soil pH, while the PLFA 16:1ω5, a biomarker for arbuscular mycorrhizal (AM) fungi, was negatively affected by N deposition, but also positively correlated to soil pH. Other PLFAs positively affected by soil pH were, e.g., i14:0, a15:0, 16:1ω9, a17:0 and 18:1ω7, while some were negatively affected by pH, such as i15:0, 16:1ω7t, 10Me17:0 and cy19:0. In addition, N deposition had an effect on the PLFAs 16:1ω7c and 16:1ω9 (negatively) and cy19:0 (positively). The production of EM mycelia is probably more sensitive to N deposition than total fungal biomass according to the fungal biomarker PLFA 18:2ω6,9. Low amounts of EM mycelia covaried with increased nitrate leaching, suggesting that EM mycelia possibly play an important role in forest soil N retention at increased N input.  相似文献   

11.
To quantify organic matter mineralization at estuarine intertidal flats, we measured in situ sediment respiration rates using an infrared gas analyzer in estuarine sandy intertidal flats located in the northwestern Seto Inland Sea, Japan. In situ sediment respiration rates showed spatial and seasonal variations, and the mean of the rates is 38.8 mg CO2-C m−2 h−1 in summer. In situ sediment respiration rates changed significantly with sediment temperature at the study sites (r 2 = 0.70, p < 0.05), although we did not detect any significant correlations between the rates and sediment characteristics. We prepared a model for estimating the annual sediment respiration based on the in situ sediment respiration rates and their temperature coefficient (Q 10 = 1.8). The annual sediment respiration was estimated to be 92 g CO2-C m−2 year−1. The total amount of organic carbon mineralization for the entire estuarine intertidal flats through sediment respiration (43 t C year−1) is equivalent to approximately 25% of the annual organic carbon load supplied from the river basin of the estuary.  相似文献   

12.
This study evaluated the effects of forest fertilization on the forest carbon (C) dynamics in a 36-year-old larch (Larix leptolepis) plantation in Korea. Above- and below-ground C storage, litterfall, root decomposition and soil CO2 efflux rates after fertilization were measured for 2 years. Fertilizers were applied to the forest floor at rates of 112 kg N ha−1 year−1, 75 kg P ha−1 year−1 and 37 kg K ha−1 year−1 for 2 years (May 2002, 2003). There was no significant difference in the above-ground C storage between fertilized (41.20 Mg C ha−1) and unfertilized (42.25 Mg C ha−1) plots, and the C increment was similar between the fertilized (1.65 Mg C ha−1 year−1) and unfertilized (1.52 Mg C ha−1 year−1) plots. There was no significant difference in the soil C storage between the fertilized and unfertilized plots at each soil depth (0–15, 15–30 and 30–50 cm). The organic C inputs due to litterfall ranged from 1.57 Mg C ha−1 year−1 for fertilized to 1.68 Mg C ha−1 year−1 for unfertilized plots. There was no significant difference in the needle litter decomposition rates between the fertilized and unfertilized plots, while the decomposition of roots with 1–2 mm diameters increased significantly with the fertilization relative to the unfertilized plots. The mean annual soil CO2 efflux rates for the 2 years were similar between the fertilized (0.38 g CO2 m−2 h−1) and unfertilized (0.40 g CO2 m−2 h−1) plots, which corresponded with the similar fluctuation in the organic carbon (litterfall, needle and root decomposition) and soil environmental parameters (soil temperature and soil water content). These results indicate that little effect on the C dynamics of the larch plantation could be attributed to the 2-year short-term fertilization trials and/or the soil fertility in the mature coniferous plantation used in this study.  相似文献   

13.
 The influence of 23 years of phosphorus (P) application at three annual rates of 0, 17.5 and 52.5 kg ha–1 on arbuscular mycorrhizal (AM) fungal colonization was studied 10 years after the fertilization treatment ended. The annual application of 52.5 kg ha–1 was about twice the annual crop P extraction and after 23 years had resulted in a measured increase of 23% in the soil total-P concentration. After 10 and 11 years without fertilization, the total mycorrhizal and arbuscular colonization of the plots previously fertilized at this high rate were still significantly lower than in the plots subjected to the 0 and 17.5 kg ha–1 rates. Plots previously fertilized annually at the rate of 52.5 kg ha–1 also had a lower benefit : cost ratio for the symbiosis between AM fungi and plants. Furthermore, P-use efficiency was lower in these plots, although no decrease in total dry matter production was found. Accepted: 13 October 2000  相似文献   

14.
Earthworms make up the dominant fraction of the biomass of soil animals in most temperate grasslands and have important effects on the structure and function of these ecosystems. We hypothesized that the effects of elevated atmospheric CO2 on soil moisture and plant biomass production would increase earthworm activity, expressed as surface cast production. Using a screen-aided CO2 control facility (open top and open bottom rings), eight 1.2-m2 grassland plots in Switzerland have been maintained since March 1994 at ambient CO2 concentrations (350 μl CO2 l−1) and eight at elevated CO2 (610 μl CO2 l−1). Cumulative earthworm surface cast production measured 40 times over 1 year (April 1995–April 1996) in plots treated with elevated CO2 (2206 g dry mass m−2 year−1) was 35% greater (P<0.05) than that measured in plant communities maintained at ambient CO2 (1633 g dry mass m−2 year−1). At these rates of surface cast production, worms would require about 100 years to egest the equivalent of the amount of soil now found in the Ah horizon (top 15 cm) under current ambient CO2 concentrations, and 75 years under elevated CO2. Elevated atmospheric CO2 had no influence on the seasonality of earthworm activity. Cumulative surface cast production measured over the 7-week period immediately following the 6-week summer dry period in 1995 (no surface casting) was positively correlated (P<0.05) with the mean soil water content calculated over this dry and subsequent wetter period, when viewed across all treatments. However, no correlations were observed with soil temperature or with annual aboveground plant biomass productivity. No CO2-related differences were observed in total nitrogen (Ntot) and organic carbon (Corg) concentration of surface casts, although concentrations of both elements varied seasonally. The CO2-induced increase in earthworm surface casting activity corresponded to a 30% increase of the amount of Ntot (8.9 mg N m−2 vs. 6.9 mg N m−2) and Corg (126 mg C m−2 vs. 94 mg C m−2) egested by the worms in one year. Thus, our results demonstrate an important indirect stimulatory effect of elevated atmospheric CO2 on earthworm activity which may have profound effects on ecosystem function and plant community structure in the long term. Received: 3 November 1996 / Accepted: 11 January 1997  相似文献   

15.
Malaysia is the world’s leading producer of palm oil products that contribute US$ 7.5 billion in export revenues. Like any other agro-based industries, it generates waste that could be utilized as a source of organic nutrients for microalgae culture. Present investigation delves upon Isochrysis sp. culture in POME modified medium and its utilization as a supplement to Nanochloropsis sp. in rotifer cultures. The culture conditions were optimized using a 1 L photobioreactor (Temp: 23°C, illumination: 180 ∼ 200 μmol photons m−2s−1, n = 6) and scaled up to 10 L outdoor system (Temp: 26–29°C, illumination: 50 ∼ 180 μmol photons m−2s−1, n = 3). Algal growth rate in photobioreactor (μ = 0.0363 h−1) was 55% higher compared to outdoor culture (μ = 0.0163 h−1), but biomass production was 1.3 times higher in outdoor culture (Outdoor = 91.7 mg m−2d−1; Photobioreactor = 69 mg m−2d−1). Outdoor culture produced 18% higher lipid; while total fatty acids (FA) was not significantly affected by the change in culture systems as both cultures yield almost similar concentrations of fatty acids per gram of sample (photobioreactor = 119.17 mg g−1; outdoor culture = 104.50 mg g−1); however, outdoor cultured Isochrysis sp. had 26% more polyunsaturated fatty acids (PUFAs). Rotifers cultured in Isochrysis sp./ Nanochloropsis sp. (1:1, v/v) mixture gave similar growth rate as 100% Nanochoropsis sp. culture (μ = 0.40 d−1), but had 45% higher counts of rotifers with eggs (t = 7, maximum). The Isochrysis sp. culture successfully lowered the nitrate (46%) and orthophosphate (83%) during outdoor culture.  相似文献   

16.
Fungi are usually thought not to have a boron (B) requirement. It is not known if mycorrhizas take up B from low concentrations that are common in forest soils, as fungi might also immobilise B. Here, we studied the B concentrations in sporophores of 49 ectomycorrhizal and 10 saprotrophic fungi to assess whether B is translocated in mycelium or not. Additionally, P and metal concentrations were measured for comparison. Variability both within species and between species was very large, as the lowest measured B concentration was 0.01 mg kg−1 in Amanita muscaria, and the highest was 280 mg kg−1 in Paxillus involutus. There was no clear difference between saprotrophic and mycorrhizal fungi. The majority of species did not accumulate B at more than 0.01–3 mg kg−1, but there were some species that consistently had median concentration values higher than 5–6 mg kg−1 and much higher maximum values, particularly Paxillus involutus, Lactarius necator and several Russula species. Most species increased their B concentration in B fertilised plots, but there were exceptions, particularly Rozites caperatus and Lactarius camphoratus. Boron concentrations did not correlate with those of other elements. In conclusion, B is translocated in the mycelia of most of the studied species. The differences between species may be due to differences in their water use, or carbohydrates used in translocation. It remains to be studied, if B concentrations in mycorrhizas or mycelia in soil are in the same order of magnitude as the larger ones found here, and if this has any effects on the host plants.  相似文献   

17.
Phosphorus concentrations in many south-east Asian tropical rain forest soils are very low. To determine the growth responses of seedlings of a light-demanding (Shorea leprosula) and a more shade-tolerant (Hopea nervosa) dipterocarp species to increasing P, we carried out a nursery fertilisation experiment. Responses of symbiotic ectomycorrhizal (EcM) fungi to the treatments were also determined. Seedlings were grown under high light (13 mol m−2 d−1) or moderate light (4 mol m−2 d−1) in shade-chambers and were fertilised with a solution containing 0, 1, 10 or 100 mg L−1 P. The growth of Hopea and Shorea showed different responses to the light and P fertilisation treatments with Hopea having greater growth under moderate light conditions and Shorea having greater growth under high light conditions. Shorea responded to P fertilisation by increasing its foliar P concentrations and growth rates, whereas Hopea did not take up additional P and did not improve its growth rates. There was no effect of either light or P fertilisation on total EcM colonisation or EcM diversity, but around half of the EcM morphotypes observed were affected by one of these two abiotic perturbations, most notably for Riessiella sp. which increased with P fertilisation suggesting it may not be a mutualistic fungus. These results show how niche partitioning in both dipterocarp seedlings and EcM fungi can be divided along contrasting axes.  相似文献   

18.
From 1996 to 2002, we measured litterfall, standing litter crop, and litter turnover rates in scrub, basin, fringe and riverine forests in two contrasting mangrove ecosystems: a carbonate-dominated system in the Southeastern Everglades and a terrigenous-dominated system in Laguna de Terminos (LT), Mexico. We hypothesized that litter dynamics is driven by latitude, geomorphology, hydrology, soil fertility and soil salinity stress. There were significant temporal patterns in LT with litterfall rates higher during the rainy season (2.4 g m−2 day−1) than during the dry season (1.8 g m−2 day−1). Total annual litterfall was significantly higher in the riverine forest (12.8 Mg ha−2 year−1) than in the fringe and basin forests (9.7 and 5.2 Mg ha−2 year−1, respectively). In Southeastern Everglades, total annual litterfall was also significantly higher during the rainy season than during the dry season. Spatially, the scrub forest had the lowest annual litterfall (2.5 Mg ha−2 year−1), while the fringe and basin had the highest (9.1 and 6.5 Mg ha−2 year−1, respectively). In LT, annual standing litter crop was 3.3 Mg ha−1 in the fringe and 2.2 Mg ha−1 in the basin. Litter turnover rates were significantly higher in the fringe mangrove forest (4.1 year−1) relative to the basin forests (2.2 year−1). At Southeastern Everglades there were significant differences in annual standing litter crop: 1.9, 3.3 and 4.5 Mg ha−1 at scrub, basin and fringe mangrove sites, respectively. Furthermore, turnover rates were similar at both basin and fringe mangrove types (2.1 and 2.0 year−1, respectively) but significantly higher than scrub mangrove forest (1.3 year−1). These findings suggest that litter export is important in regulating litter turnover rates in frequently flooded riverine and fringe forests, while in infrequently flooded basin forests, in situ litter decomposition controls litter turnover rates.  相似文献   

19.
The polychaete Nereis falsa Quatrefages, 1866 is present in the area of El Kala National Park on the East coast of Algeria. Field investigations were carried out from January to December 2007 to characterize the populations’ reproductive cycle, secondary production and dynamics. Reproduction followed the atokous type, and spawning occured from mid-June to the end of August/early September when sea temperature was highest (20–23°C). The diameter of mature oocytes was approximately 180 μm. Mean lifespan was estimated to about one year. In 2007, the mean density was 11.27 ind. m−2 with a minimum of 7.83 ind. m−2 in April and a maximum of 14.5 ind. m−2 in February. The mean annual biomass was 1.36 g m−2 (fresh weight) with a minimum of 0.86 g m−2 in December and a maximum of 2.00 g m−2 in June. The population consisted of two cohorts distinguishable from size frequency distributions. One cohort corresponded to the recruitment of 2006 and the other appeared during the study period in September 2007. The annual production of N. falsa was 1.45 g m−2 year−1, and the production/biomass ratio was 1.07 year−1.  相似文献   

20.
Annual net production was estimated in the secondary coppice forest near Tokyo, which was dominated by a deciduous oak,Quercus serrata Thunb. Lateral growth of stems and old branches was directly estimated by examining the annual rings for 35 shoots in a clear-cut quadrat of 10m×10m. Phytomasses of current organs were also weighed in the quadrat. Preharvest losses of current organs were determined by twelve 0.5 m2 litter traps for fine litter and twelve 6 m2 quadrats for woody litter. Branch production was also assessed indirectly by use of the stem-branch allometry and death of branches. The results of the indirect method were in sufficient agreement with the result of the direct one. Grazing loss of leaves from the canopy was estimated directly from the loss in leaf area and indirectly from the animal faeces caught by the litter traps. Net production of the canopy trees was 149 kg a−1 year−1, in which leaf production was 36.9 kg. Animals grazed about 14% of the leaf area by the end of the growing season. True consumption of leaves by animals was 7.6% of leaf production or 10% of leaf mass. Production of undergrowth, mainly a dwarf bamboo,Pleioblastus chino Makino, was 28 kg a−1 year−1, being 15% of the total stand production. Productivity of this forest was significantly higher than that of cool-temperate deciduous broadleaf forests.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号