首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 29 毫秒
1.
 Barley (Hordeum vulgare L.) hordeins are alcohol-soluble redundant storage proteins that accumulate in protein bodies of the starchy endosperm during seed development. Strong endosperm-specific β-glucuronidase gene-(uidA; gus) expression driven by B1- and D-hordein promoters was observed in stably transformed barley plants co-transformed with the selectable herbicide resistance gene, bar. PCR analysis using DNA from calli of 22 different lines transformed with B1- or D-hordein promoter-uidA fusions showed the expected 1.8-kb uidA fragment after PCR amplification. DNA-blot analysis of genomic DNA from T0 leaf tissue of 13 lines showed that 12 (11 independent) lines produced uidA fragments and that one line was uidA-negative. T1 progeny from 6 out of 12 independent regenerable transgenic lines tested for uidA expression showed a 3 : 1 segregation pattern. Of the remaining six transgenic lines, one showed a segregation ratio of 15 : 1 for GUS, one expressed bar alone, one lacked transmission of either gene to T1 progeny, and three were sterile. Stable GUS expression driven by the hordein promoters was observed in T5 progeny in one line, T4 progeny in one line, T3 progeny in three lines and T2 or T1 progeny in the remaining two fertile lines tested; homozygous transgenic plants were obtained from three lines. In the homozygous lines the expression of the GUS protein, driven by either the B1- or D-hordein promoters, was highly expressed in endosperm at early to mid-maturation stages. Expression of bar driven by the maize ubiquitin promoter was also stably transmitted to T1 progeny in seven out of eight lines tested. However, in most lines PAT expression driven by the maize ubiquitin promoter was gradually lost in T2 or later generations; one homozygous line was obtained. In contrast, six out of seven lines stably expressed GUS driven by the hordein promoters in T2 or later generations. We conclude that the B1- and D-hordein promoters can be used to engineer, and subsequently study, stable endosperm-specific gene expression in barley and potentially to modify barley seeds through genetic engineering. Received: 28 May 1998 / Accepted: 19 December 1998  相似文献   

2.
A system for enhanced induction of somatic embryo-genesis and regeneration of plants from isolated scutellar tissue of wheat has been developed. This system has been successfully used in the development of a simple and reproducible protocol for the production of self-fertile transgenic wheat plants. The procedure is rapid resulting in the production of transgenic plantlets within 12 weeks from initiation of cultures and it avoids the need for establishing long-term callus, cell suspension or protoplast cultures. Somatic embryos regenerated from scutella bombarded with plasmid pBARGUS were selected on L-phosphinothricin (L-PPT) to obtain herbicide-resistant self-fertile transgenic plants. Phosphinothricin acetyltransferase (PAT) activity was observed at varying levels in 50% of the plants selected on L-PPT whereas none of the plants showed β-glucuronidase (GUS) activity. Molecular analysis of PAT-positive plants confirmed stable integration of both bar and gus genes in R0 and R1 progeny plants. Segregation of the PAT activity and herbicide resistance in R1 progeny plants confirmed the Mendelian inheritance of the bar gene. Additionally, isolated scutella bombarded with plasmid DNA containing a gus::nptII fusion gene driven by a rice actin promoter and its first intron were selected in the presence of geneticin to obtain fully fertile transgenic plants. Functional expression of the fusion gene was demonstrated in transgenic plants by GUS and neomycin phospho-transferase (NPTII) enzyme assays. Southern blot analysis confirmed the integration of transgenes into the wheat genome. Histochemical GUS staining showed transmission of the fusion gene to floral organs of primary transformants and confirmed Mendelian segregation of the transgene in R1 progeny.  相似文献   

3.
 Our long-term goal is to control wheat diseases through the enhancement of host plant resistance. The constitutive expression of plant defense genes to control fungal diseases can be engineered by genetic transformation. Our experimental strategy was to biolistically transform wheat with a vector DNA containing a rice chitinase gene under the control of the CaMV 35 S promoter and the bar gene under control of the ubiquitin promoter as a selectable marker. Immature embryos of wheat cv ‘Bobwhite’ were bombarded with plasmid pAHG11 containing the rice chitinase gene chi11 and the bar gene. The embryos were subcultured on MS2 medium containing the herbicide bialaphos. Calli were then transferred to a regeneration medium, also containing bialaphos. Seventeen herbicide-resistant putative transformants (T0) were selected after spraying with 0.2% Liberty, of which 16 showed bar gene expression as determined by the phosphinothricin acetyltransferase (PAT) assay. Of the 17 plants, 12 showed the expected 35-kDa rice chitinase as revealed by Western blot analysis. The majority of transgenic plants were morphologically normal and self-fertile. The integration, inheritance and expression of the chi11 and bar genes were confirmed by Southern hybridization, PAT and Western blot analysis of T0 and T1 transgenic plants. Mendelian segregation of herbicide resistance was observed in some T1 progenies. Interestingly, a majority of the T1 progeny had very little or no chitinase expression even though the chitinase transgene was intact. Because PAT gene expression under control of the ubiquitin promoter was unaffected, we conclude that the CaMV 35 S promoter is selectively inactivated in T1 transgenic wheat plants. Received: 12 May 1998 / Accepted: 15 May 1998  相似文献   

4.
Variation in the inheritance of expression among subclones for an unselected (uidA) and a selected (bar) transgene was analyzed in two individual transformation events in maize. The unselectable gene (uidA) and the selectable gene (bar), on two separate plasmids, were transferred to maize (Hi-II derivative) by particle bombardment of embryogenic calli or suspension cells. A total of 188 fertile T1 plants were obtained from one transformant (transformation event BG which integrated uidA and bar). A total of 98 fertile T1 plants were obtained from a second transformant (transformation event B which integrated bar). Through self-pollination and/or cross-pollination in the greenhouse, approximately 10 000 T2 progeny were obtained from event BG, and more than 1000 T2 progeny were obtained from event B. Segregation of transgene expression was analyzed statistically in a total of 2350 T2 progeny from 40 T1 subclones of event BG and in 217 T2 progeny from six T1 subclones from event B. Variation in the inheritance of expression among subclones for the two transgenes (uidA and bar) was observed in the two transformants. A significant difference was observed between the use of the female or male as the transgenic parent in the inheritance of expression for the two transgenes in event BG. No inheritance through the pollen was observed in two of four T1 subclones analyzed in event B. Co-expression analysis of event BG showed that both transgenes were co-expressed in 67.7% of the T2 plants which expressed at least one of the two transgenes. Of the T2 expressing plants, 30.4% expressed only bar, and 1.9% expressed only uidA. Inactivation of the unselected (uidA) and the selected (bar) transgenes was observed in individual T2 plants.  相似文献   

5.
We have used the bar gene in combination with the herbicide Basta to select transformed rice (Oryza sativa L. cv. Radon) protoplasts for the production of herbicide-resistant rice plants. Protoplasts, obtained from regenerable suspension cultures established from immature embryo callus, were transformed using PEG-mediated DNA uptake. Transformed calli could be selected 2–4 weeks after placing the protoplast-derived calli on medium containing the selective agent, phosphinothricin (PPT), the active component of Basta. Calli resistant to PPT were capable of regenerating plants. Phosphinothricin acetyltransferase (PAT) assays confirmed the expression of the bar gene in plants obtained from PPT-resistant calli. The only exceptions were two plants obtained from the same callus that had multiple copies of the bar gene integrated into their genomes. The transgenic status of the plants was varified by Southern blot analysis. In our system, where the transformation was done via the protoplast method, there were very few escapes. The efficiency of co-transformation with a reporter gene gusA, was 30%. The To plants of Radon were self-fertile. Both the bar and gusA genes were transmitted to progeny as confirmed by Southern analysis. Both genes were expressed in T1 and T2 progenies. Enzyme analyses on T1 progeny plants also showed a gene dose response reflecting their homozygous and heterozygous status. The leaves of To plants and that of the progeny having the bar gene were resistant to application of Basta. Thus, the bar gene has proven to be a useful selectable and screenable marker for the transformation of rice plants and for the production of herbicide-resistant plants.  相似文献   

6.
Transgenic plants of Florunner and Florigiant, two of the most widely cultivated peanut cultivars in the USA, have been developed using the ACCELL® gene delivery method. Shoot meristems of mature embryonic axes were bombarded with gold beads coated with DNA encoding β-glucuronidase (gus), phosphinothricin acetyl transferase (bar), and tomato spotted wilt virus-nucleocapsid protein (tswv-np) genes. Transgenic shoots were identified by screening for GUS activity, and independent transformants were recovered from both cultivars. Molecular analysis of two of these transformants in R0 and R1 generations demonstrated the stable integration of the foreign genes into the plant genome. One transgenic plant had one to two copies of the genes integrated into the genome of its progeny, whereas the other had multiple copies. Gus and bar genes exhibited predictable segregation ratios in the R1 and R2 generations and were genetically linked. Integration of the bar gene conferred resistance to BASTATM, a wide-spectrum herbicide, applied at 500 p.p.m. of active ingredient. Resistance of the transgenic plants to tomato spotted wilt virus is currently being tested under greenhouse conditions. The ACCELL® particle bombardment system is expected to be effective for transformation of a wide variety of commercial peanut cultivars.  相似文献   

7.
A very efficient transformation system, using biolistic bombardment, has been developed for the production of transgenic plants of Kentucky bluegrass (Poa pratensis L.). Embryogenic calli, initiated from immature embryos, were transformed either with pAct1IHPT-4 containing the hygromycin phosphotransferase (hpt) gene or with pDM803 containing the phosphinothricin acetyltransferase (bar) gene and the β-glucuronidase (uidA) gene. In total 119 independent transgenic plants were recovered from 153 hygromycin-resistant lines. Bialaphos selection yielded a total of 99 bialaphos-resistant lines and from these 34 independent transgenic plants were recovered. Southern blot analysis demonstrated the independent nature of the transgenic plants and also revealed a complex transgene integration pattern with multiple insertions. The first two author contributed equally to this work  相似文献   

8.
Transgenic cereal plants expressing the β-glucuronidase (uidA) and neomycin phosphotransferase (neo) genes were obtained via microprojectile bombardment of immature inflorescence tissue of tritordeum (the fertile Hordeum x Triticum amphiploid, HchHchAABB). A total of 17 independent transgenic plants were recovered from 32 bombardments (on average four inflorescences per shot). Of the bombardment and culture parameters tested, explant preculture had the most influence on stable transformation frequency. The uidA and neo genes were supplied on two separate plasmids (co-transformation) and 88% of the transgenic plants recovered expressed both genes. Southern analysis confirmed the results of histochemical GUS and NPT II assays. Transgenic plants were grown to maturity and flowered and set seed. Pollen from four T0 GUS+ plants analysed showed GUS activity and T1 seedlings derived from one of the transgenic plants showed a segregation of 2.75:1 (GUS+:GUS) for uidA gene activity.  相似文献   

9.
Four different pearl millet breeding lines were transformed and led to the regeneration of fertile transgenic plants. Scutellar tissue was bombarded with two plasmids containing the bar selectable marker and the -glucuronidase reporter gene (gus or uidA) under control of the constitutive CaMV 35S promoter or the maize Ubiquitin1 promoter (the CaMV 35S is not a maize promoter). For the delivery of the DNA-coated microprojectiles, either the particle gun PDS 1000/He or the particle inflow gun was used. The calli and regenerants were selected for their resistance to the herbicide Basta (glufosinate ammonium) mediated by the bar gene. Putative transformants were screened for enzyme activity by painting selected leaves or spraying whole plants with an aqueous solution of the herbicide Basta and by the histochemical GUS assay using cut leaf segments. PCR and Southern blot analysis of genomic DNA indicated the presence of introduced foreign genes in the genomic DNA of the transformants. Five regenerated plants represent independent transformation events and have been grown to maturity and set seed. The integration of the bar selectable and the gus reporter gene was confirmed by genomic Southern blot analysis in all five plants. All five plants had multiple integrations of both marker genes. To date, the T1 progeny of three out of four lines generated by the PDS particle gun shows co-segregating marker genes, indicating an integration of the bar and the gus gene at the same locus in the genome.  相似文献   

10.
For regulatory issues and research purposes it would be desirable to have the ability to segregate transgenes in co-transformed maize. We have developed a highly efficient system to segregate transgenes in maize that was co-transformed using an Agrobacterium tumefaciens 2 T-DNA binary system. Three vector treatments were compared in this study; (1) a 2 T-DNA vector, where the selectable marker gene bar (confers resistance to bialaphos) and the -glucuronidase (GUS) reporter gene are on two separate T-DNA's contained on a single binary vector; (2) a mixed strain treatment, where bar and GUS are contained on single T-DNA vectors in two separate Agrobacterium strains; (3) and a single T-DNA binary vector containing both bar and GUS as control treatment. Bialaphos resistant calli were generated from 52 to 59% of inoculated immature embryos depending on treatment. A total of 93.4% of the bialaphos selected calli from the 2 T-DNA vector treatment exhibited GUS activity compared to 11.7% for the mixed strain treatment and 98.2% for the cis control vector treatment. For the 2 T-DNA vector treatment, 86.7% of the bialaphos resistant/GUS active calli produced R0 plants exhibiting both transgenic phenotypes compared to 10% for the mixed strain treatment and 99% for the single T-DNA control vector treatment. A total of 87 Liberty herbicide (contains bialaphos as the active ingredient) resistant/GUS active R0 events from the 2 T-DNA binary vector treatment were evaluated for phenotypic segregation of these traits in the R1 generation. Of these R0 events, 71.4% exhibited segregation of Liberty resistance and GUS activity in the R1 generation. A total of 64.4% of the R0 2 T-DNA vector events produced Liberty sensitive/GUS active (indicating selectable-marker-free) R1 progeny. A high frequency of phenotypic segregation was also observed using the mixed strain approach, but a low frequency of calli producing R0 plants displaying both transgenic phenotypes makes this method less efficient. Molecular analyses were then used to confirm that the observed segregation of R1 phenotypes were highly correlated to genetic segregation of the bar and GUS genes. A high efficiency system to segregate transgenes in co-transformed maize plants has now been demonstrated.  相似文献   

11.
12.
 Highly regenerative tissues of tall fescue and red fescue produced from mature seed-derived embryogenic callus were induced and proliferated on medium containing 2,4-dichlorophenoxyacetic acid (4.5 or 9.0 μM), 6-benzylaminopurine (0, 0.044, 0.44 or 2.2 μM) and cupric sulfate (0.1 or 5.0 μM) under dim-light conditions (10 to 30 μE m–2 s–1, 16 h light). Tall fescue tissues were transformed with three plasmids containing the genes for hygromycin phosphotransferase (hpt), phosphinothricin acetyltransferase (bar) and β-glucuronidase (uidA;gus), and red fescue with three plasmids containing hpt, uidA and a synthetic green fluorescent protein gene [sgfp(S65T)]. DNA from T0 plants of eight independently transformed lines from tall fescue and 11 from red fescue were analyzed by PCR and DNA blot hybridization. The co-expression frequency of all three transgenes [hpt/bar/uidA or hpt/uidA/sgfp(S65T)] in transgenic tall fescue and red fescue plants was 25–27%; for two transgenes [hpt/bar or hpt/uidA for tall fescue and hpt/uidA or hpt/sgfp(S65T) for red fescue], the co-expression frequency was 50–75%. Received: 28 September 1999 / Revision received: 13 March 2000 / Accepted: 16 March 2000  相似文献   

13.
Summary Transgenic Atropa belladonna conferred with a herbicide-resistant trait was obtained by transformation with an Ri plasmid binary vector and plant regeneration from hairy roots. We made a chimeric construct, pARK5, containing the bar gene encoding phosphinothricin acetyltransferase flanked with the promoter for cauliflower mosaic virus 35S RNA and the 3 end of the nos gene. Leaf discs of A. belladonna were infected with Agrobacterium rhizogenes harboring an Ri plasmid, pRi15834, and pARK5. Transformed hairy roots resistant to bialaphos (5 mg/l) were selected and plantlets were regenerated. The integration of T-DNAs from pRi15834 and pARK5 were confirmed by DNA-blot hybridization. Expression of the bar gene in transformed R0 tissues and in backcrossed F1 progeny with a nontransformant and self-fertilized progeny was indicated by enzymatic activity of the acetyltransferase. The transgenic plants showed resistance towards bialaphos and phosphinothricin. Tropane alkaloids of normal amounts were produced in the transformed regenerants. These results present a successful application of transformation with an Ri plasmid binary vector for conferring an agronomically useful trait to medicinal plants.Abbreviations CaMV cauliflower mosaic virus - NPT-II neomycin phosphotransferase II - PAT phosphinothricin acetyltransferase - PPT phosphinothricin  相似文献   

14.
Summary Suspension cells of Oryza sativa L. (rice) were transformed, by microprojectile bombardment, with plasmids carrying the coding region of the Streptomyces hygroscopicus phosphinothricin acetyl transferase (PAT) gene (bar) under the control of either the 5 region of the rice actin 1 gene (Act1) or the cauliflower mosaic virus (CaMV) 35S promoter. Subsequently regenerated plants display detectable PAT activity and are resistant to BASTATM, a phosphinothricin (PPT)-based herbicide. DNA gel blot analyses showed that PPT resistant rice plants contain a bar-hybridizing restriction fragment of the expected size. This report shows that expression of the bar gene in transgenic rice plants confers resistance to PPT-based herbicide by suppressing an increase of ammonia in plants after spraying with the herbicide.  相似文献   

15.
Meadow fescue (Festuca pratensis Huds.) is an important cool-season forage grass in Europe and Asia. We developed a protocol for producing meadow fescue transgenic plants mediated by Agrobacterium tumefaciens transformation. Embryogenic calli derived from mature embryos were transformed with A. tumefaciens strain AGL1 carrying the binary vector pDM805, coding for the phosphinothricin acetyltransferase (bar) and β-glucuronidase (uidA) genes. Bialaphos was used as the selective agent throughout all phases of tissue culture. In total, 40 independent transgenic plants were recovered from 45 bialaphos-resistant callus lines and an average transformation efficiency of 2% was achieved. The time frame from infection of embryogenic calli with Agrobacterium to transferring the transgenic plants to the greenhouse was 18 weeks. In a study of 11 BASTA-resistant transgenic lines, the uidA gene was expressed in 82% of the transgenic lines. Southern blot analysis revealed that 82% of the tested lines integrated one or two copies of the uidA gene. C. Gao and J. Liu contributed equally to the work.  相似文献   

16.
Summary A rapid transformation and regeneration system has been developed forM. truncatula cv Jemalong (barrel medic) by which it is possible to obtain transgenic plants within 2.5 months. The procedure involvesAgrobacterium-mediated transformation of cotyledon explants coupled with the regeneration of transformed plants via direct organogenesis. To develop the procedure,M. truncatula explants were transformed with the binary plasmid pSLJ525 which carries thebar gene. Thebar gene encodes phosphinothricin acetyl transferase, and transformed plants were selected on media containing phosphinothricin (Ignite, AgrEvo). Transformed plants show phosphinothricin acetyl transferase activity and Southern blot analysis indicates that they carry thebar gene integrated into their genomes. The resistance to phosphinothricin is stable and is inherited by the R1 progeny as a single dominant Mendelian trait. The transgenic plants are highly resistant to the broad spectrum herbicide, Ignite and therefore may also have commercial applications.  相似文献   

17.
A simple and inexpensive system for the generation of fertile, transgenic maize plants has been developed. Cells from embryogenic maize suspension cultures were transformed using silicon carbide whiskers to deliver plasmid DNA carrying the bacterial bar and uidA (gus) genes. Transformed cells were selected on medium containing the herbicide bialaphos. Integration of the bar gene and activity of the enzyme phosphinothricin acetyl transferase (PAT) were confirmed in all bialaphos-resistant callus lines analysed. Fertile transgenic maize plants were regenerated. Herbicide spraying of progeny plants revealed that the bar gene was transmitted in a Mendelian fashion.  相似文献   

18.
A plasmid pARK 22 harbouring thebar gene encoding phosphinothricin acetyltransferase (PAT) under the control of the cauliflower mosaic virus (CaMV) 35S promoter and nopaline synthase (NOS) terminator was constructed and introduced into root sections ofArabidopsis thaliana using the pneumatic particle gun. The root sections that had been bombarded with this plasmid gave four to eight times higher yield of drug-resistant calluses than those sections bombarded with pCaMVNEO or pCH, which respectively contain the neomycin phosphotransferase and hygromycin phosphotransferase genes. Among a number of primary transformant (T0) plants obtained from independent bialaphos-resistant calluses, three were studied by Southern blot hybridization and PAT enzyme activity analyses, confirming the stable integration of the foreign gene into theArabidopsis genome and its expression in plants. The progeny analysis showed transmission of the foreign gene and its expression in up to the T2 generation. Some of the T1 progeny showed morphological abnormalities. Thus, thebar gene can be used effectively to allow selection of transgenicA. thalianna plants.  相似文献   

19.
 Genetic transformation of Petunia hybrida with a reporter gene and selectable marker gene (35S-bar) was achieved in similar frequencies by pollinating flowers with pollen vacuum-infiltrated with Agrobacterium tumefaciens or applying a drop of Agrobacterium suspension to the stigma immediately prior to pollination. Nine percent of the T1, and 5% of the T2 progeny germinated in nutrient medium with 3 mgl/l BastaR. Polymerase chain reaction assays indicated that of the BastaR-resistant plants, 66% of the T1 plants, and 61% of the T2 plants harboured the GUS gene. Histochemical assays showed that 10% of the putatively transformed T1 plants and 5% of their progeny expressed GUS in leaf tissue, pistils and young anthers. Southern hybridization confirmed genomic integration of the bar gene in one to three places in selected T1 and T2 progeny. Received: 12 March 1999 / Revision received: 1 October 1999 / Accepted: 20 October 1999  相似文献   

20.
Summary Two commercial wheat cultivars with low embryogenesis efficiencies, AC Karma and Hy417, were transformed by the bombardment of isolated scutella with two gene constructs. Three AC Karma plants (433, 436, and 437) carrying plasmid pRC62 containing a gus:npt fusion gene, and one Hy417 plant (438) carrying plasmid pBARGUS containing a bar gene and a gusA gene were recovered and characterized. Presence of transgenes in T0 and T1 plants was confirmed by both PCR and Southern hybridization. Copy number of transgenes varied from one to six in these four plants. The inheritance of transgenes in the progeny was characterized. The gusA gene and its activity in AC Karma plant 436 and bar gene and its activity in Hy417 plant 438 segregated in the selfed T1 progeny in a Mendelian 3:1 ratio, but gusA gene and its activity in AC Karma plants 433 and 437 segregated in selfed T1 progeny in a non-Mendelian 1:1 ratio. The gusA activity in all three AC Karma plants was stably transmitted to selfed T2 or T3 progenies. The levels of gusA and nptII activities in nine T1 plants from AC Karma plant 437 were also determined. A GusA fluorometric assay indicated that gusA activity in the nine T1 plants increased by 2.5–7.2-fold compared with the nontransformed control, while and NptII ELISA assay detected nptII activity only in two of the nine T1 plants, suggesting the nptII gene was silenced in the other seven T1 plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号