首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We aimed to (i) assess the extant genetic diversity of the riparian relict tree Pterocarya fraxinifolia across its current distribution range in the South Caucasus, including the past refugial areas Colchis and Hyrcan, and (ii) test if a separation of these areas is reflected in its phylogeographic history. Genetic diversity of natural populations was examined using nuclear microsatellite and plastid DNA markers. Spatial genetic structure was evaluated using Bayesian clustering methods and the reconstruction of plastid DNA networks. Divergence times of Colchic and Hyrcanian populations were estimated via divergence dating using a relaxed molecular clock. Allelic richness, private allelic richness, and expected heterozygosity were significantly higher in Hyrcan than in Colchis and the Greater Caucasus, and significant genetic differentiation was revealed between the two groups. Whereas only two plastid haplotypes were detected for the Colchic and Caucasian populations, the Hyrcanian populations displayed 11 different haplotypes. Significant isolation by distance was detected in Hyrcan. The most recent common ancestor of all P. fraxinifolia haplotypes was dated to a time well before a suggested glaciation period in the Caucasus during the late Pliocene (5.98 Ma [11.3–2.48 Ma HPD]). The widespread Colchic haplotype that also occurs along the southern slope of the Greater Caucasus and reaches south-eastern Azerbaijan has appeared more recently (0.24 Ma [1.41–0 Ma HPD]). This diversification pattern of Colchic haplotypes from ancient Hyrcanian haplotypes suggests a colonization of the region from south-east to north-west that predates the last glacial maximum (LGM). Natural populations of P. fraxinifolia show low-to-intermediate levels of genetic diversity and a significant decrease of diversity from Hyrcan to Colchis. However, the genetic differentiation between Colchic-Caucasian and Hyrcanian populations for nuclear markers suggests that independent gene pools existed in both areas at least since the LGM. Particular attention to conservation seems justified for the more diverse Hyrcanian populations.  相似文献   

2.
The analysis of geographical patterns in population divergence has always been a powerful way to infer microevolutionary processes involved in population differentiation, and several approaches have been used to investigate such patterns. Most frequently, multivariate spatial patterns of population differentiation are analyzed by computing pairwise genetic distances or FST (or related statistics, such as ?ST from AMOVA), which are then correlated with geographical distances or landscape features. However, when calculating distances, especially based on presence-absence of alleles in local populations, there would be a confounding effect of allelic richness differences in the population differentiation. Moreover, the relative magnitude of these components and their spatial patterns can help identifying microevolutionary processes driving population differentiation. Here we show how recent methodological advances in ecological community analyses that allows partitioning dissimilarity into turnover (turnover) and richness differences, or nestedness-resultant dissimilarity, can be applied to allelic variation data, using an endemic Cerrado tree (Dipteryx alata) as a case study. Individuals from 15 local populations were genotyped for eight microsatellite loci, and pairwise dissimilarities were computed based on presence-absence of alleles. The turnover of alleles among populations represented 69?% of variation in dissimilarity, but only the richness difference component shows a clear spatial structure, appearing as a westward decrease of allelic richness. We show that decoupling richness difference and turnover components of allelic variation reveals more clearly how similarity among populations reflects geographical patterns in allelic diversity that can be interpreted in respect to historical range expansion in the species.  相似文献   

3.
Two recently diverged northeastern Pacific sibling snail species, Nucella ostrina and N. emarginata, currently inhabit adjacent zoogeographic provinces. Their distributions overlap in central California to the north of a major faunal boundary at Point Conception, California (PC). To test the hypothesis that modern sympatry is due to a recent northward range expansion by N. emarginata, I analyzed the population structures of both species with nuclear (allozyme) and mitochondrial DNA (mtDNA) markers. Populations of N. emarginata in the region of overlap exhibit significantly lower heterozygosity and allelic diversity than either populations to the south of PC or populations of N. ostrina. A single mtDNA haplotype characterizes all but one population of N. emarginata sampled in this region, but no haplotype to the south of PC is found at more than one locality. MtDNA haplotypes and allozyme allele frequencies also indicate monophyly of central California populations of N. emarginata. Sharp differences in allelic diversity over small geographic distances may reflect the action of natural selection, but because both nuclear and mtDNA markers display concordant patterns, a range expansion across PC best explains patterns of genetic variation in N. emarginata. Allozymes and mtDNA also reveal that the geologically older N. ostrina is paraphyletic with respect to N. emarginata. This pattern is consistent with, but not indicative of, a peripheral isolation model of speciation. Low genetic diversity is also expected if a significant bottleneck occurred at speciation. However, low allelic diversity is not universal throughout the geographic range of N. emarginata; high allelic diversity at the southern end of the distribution of N. emarginata suggests that in the past N. emarginata has been geographically restricted much further south than PC. A northward range expansion across PC by N. emarginata may thus represent only the most recent postglacial movement by the species. The thermal and oceanographic discontinuities found at PC may not have been directly involved in geographic isolation if N. emarginata originated much further south of this modern boundary. Despite uncertainty regarding the exact spatial distribution of populations at speciation, genetic data indicate that even though N. ostrina and N. emarginata currently exhibit a broad range of geographic overlap, speciation was likely allopatric and was initiated by physical isolation of populations in different zoogeographic provinces.  相似文献   

4.
Theory predicts that genetic variation should be reduced at range margins, but empirical support is equivocal. Here, we used genotyping‐by‐sequencing technology to investigate genetic variation in central and marginal populations of two species in the marine gastropod genus Crepidula. These two species have different development and dispersal types and might therefore show different spatial patterns of genetic variation. Both allelic richness and the proportion of private alleles were highest in the most central populations of both species, and lower at the margin. The species with low dispersal, Crepidula convexa, showed high degrees of structure throughout the range that conform to the pattern found in previous studies using other molecular markers. The northernmost populations of the high‐dispersing species, Crepidula fornicata, are distinct from more central populations, although this species has been previously observed to have little genetic structure over much of its range. Although genetic diversity was significantly lower at the range margin, the absolute reduction in diversity observed with these genomewide markers was slight, and it is not yet known whether there are functional consequences for the marginal populations.  相似文献   

5.
Seagrasses structure some of the world’s key coastal ecosystems presently in decline due to human activities and global change. The ability to cope with environmental changes and the possibilities for shifts in distribution range depend largely on their evolvability and dispersal potential. As large‐scale data usually show strong genetic structure for seagrasses, finer‐grained work is needed to understand the local processes of dispersal, recruitment and colonization that could explain the apparent lack of exchange across large distances. We aimed to assess the fine‐grained genetic structure of one of the most important and widely distributed seagrasses, Zostera marina, from seven meadows in Brittany, France. Both classic population genetics and network analysis confirmed a pattern of spatial segregation of polymorphism at both regional and local scales. One location exhibiting exclusively the variety ‘angustifolia’ did not appear more differentiated than the others, but instead showed a central position in the network analysis, confirming the status of this variety as an ecotype. This phenotypic diversity and the high allelic richness at nine microsatellites (2.33–9.67 alleles/locus) compared to levels previously reported across the distribution range, points to Brittany as a centre of diversity for Z. marina at both genetic and phenotypic levels. Despite dispersal potential of several 100 m, a significant pattern of genetic differentiation, even at fine‐grained scale, revealed ‘genetic patchiness’. Meadows seem to be composed of a mosaic of clones with distinct origins in space and time, a result that calls into question the accuracy of the concept of populations for such partially clonal species.  相似文献   

6.
Tuatara (Sphenodon spp) populations are restricted to 35 offshore islands in the Hauraki Gulf, Bay of Plenty and Cook Strait of New Zealand. Low levels of genetic variation have previously been revealed by allozyme and mtDNA analyses. In this new study, we show that six polymorphic microsatellite loci display high levels of genetic variation in 14 populations across the geographic range of tuatara. These populations are characterised by disjunct allele frequency spectra with high numbers of private alleles. High F ST (0.26) values indicate marked population structure and assignment tests allocate 96% of all individuals to their source populations. These genetic data confirm that islands support genetically distinct populations. Principal component analysis and allelic sequence data supplied information about genetic relationships between populations. Low numbers of rare alleles and low allelic richness identified populations with reduced genetic diversity. Little Barrier Island has very low numbers of old tuatara which have retained some relictual diversity. North Brother Island’s tuatara population is inbred with fixed alleles at 5 of the 6 loci.  相似文献   

7.
Endangered species worldwide exist in remnant populations, often within fragmented landscapes. Although assessment of genetic diversity in fragmented habitats is very important for conservation purposes, it is usually impossible to evaluate the amount of diversity that has actually been lost. Here, we compared population structure and levels of genetic diversity within populations of spotted suslik Spermophilus suslicus, inhabiting two different parts of the species range characterized by different levels of habitat connectivity. We used microsatellites to analyze 10 critically endangered populations located at the western part of the range, where suslik habitat have been severely devastated due to agriculture industrialization. Their genetic composition was compared with four populations from the eastern part of the range where the species still occupies habitat with reasonable levels of connectivity. In the western region, we detected extreme population structure (F ST = 0.20) and levels of genetic diversity (Allelic richness ranged from 1.45 to 3.07) characteristic for highly endangered populations. Alternatively, in the eastern region we found significantly higher allelic richness (from 5.09 to 5.81) and insignificant population structure (F ST = 0.03). As we identified a strong correlation between genetic and geographic distance and a lack of private alleles in the western region, we conclude that extreme population structure and lower genetic diversity is due to recent habitat loss. Results from this study provide guidelines for conservation and management of this highly endangered species.  相似文献   

8.
In previous studies we reported that while core populations of Sitka spruce [Picea sitchensis (Bong.) Carr] have little within-population genetic structure, peripheral populations are strongly spatially structured at distances up to 500 m. Here we explore the implications of this difference in structure on ex situ gene conservation collections and estimates of genetic diversity from research collections. We test the effects of varying the number of individuals sampled and the total area they are sampled across on capture of neutral genetic variation in collections from core, continuous versus peripheral, disjunct populations. Bivariate response surface analysis of genetic marker data for eight sequence tagged site loci from core and peripheral populations suggest that a population sample from 150 trees covering at least 225 ha would be adequate for capturing 95% of the genetic diversity (as measured by allelic richness or expected heterozygosity) in core populations. However, a larger sample of 180 individuals from an area of at least 324 ha is needed in peripheral populations to capture the same proportion of standing variation because of stronger within-population spatial genetic structure. Standard population sampling protocols for estimating among and within-population genetic diversity would significantly underestimate the within-population allelic richness and expected heterozygosity of peripheral but not core populations, potentially leading to poor representation of genetic variation in peripheral populations as well as erroneous conclusions about their genetic impoverishment.  相似文献   

9.
We studied microsatellite genetic variation in 14 different geographic populations of black grouse (Tetrao tetrix) across the European range. Populations were grouped in three different fragmentation categories: isolated, contiguous and continuous, respectively. Genetic diversity, measured as observed heterozygosity (H O), expected heterozygosity (H E) and allelic richness, were lower in isolated populations as compared to the other two categories that did not differ amongst one another. These results imply that lowered genetic variability in black grouse populations is negatively affected by population isolation. Our results suggest that the connectivity of small and isolated populations in Western Europe should be improved or else these face an increased risk of extinction due to genetic and demographic stochasticity.  相似文献   

10.
Analyzing genetic variation through time and space is important to identify key evolutionary and ecological processes in populations. However, using contemporary genetic data to infer the dynamics of genetic diversity may be at risk of a bias, as inferences are performed from a set of extant populations, setting aside unavailable, rare, or now extinct lineages. Here, we took advantage of new developments in next‐generation sequencing to analyze the spatial and temporal genetic dynamics of the grasshopper Oedaleus decorus, a steppic Southwestern‐Palearctic species. We applied a recently developed hybridization capture (hyRAD) protocol that allows retrieving orthologous sequences even from degraded DNA characteristic of museum specimens. We identified single nucleotide polymorphisms in 68 historical and 51 modern samples in order to (i) unravel the spatial genetic structure across part of the species distribution and (ii) assess the loss of genetic diversity over the past century in Swiss populations. Our results revealed (i) the presence of three potential glacial refugia spread across the European continent and converging spatially in the Alpine area. In addition, and despite a limited population sample size, our results indicate (ii) a loss of allelic richness in contemporary Swiss populations compared to historical populations, whereas levels of expected heterozygosities were not significantly different. This observation is compatible with an increase in the bottleneck magnitude experienced by central European populations of O. decorus following human‐mediated land‐use change impacting steppic habitats. Our results confirm that application of hyRAD to museum samples produces valuable information to study genetic processes across time and space.  相似文献   

11.
Saline inland waters are globally threatened habitats harbouring many specialised endemic species, which often have restricted geographic ranges, and occur as highly isolated populations. We studied the genetic variation and phylogeography of Ochthebius glaber Montes and Soler, a rare and endangered water beetle endemic to hypersaline streams in the South and Southeast of the Iberian Peninsula. We used a 633 bp fragment of cytochrome oxidase subunit 1 gene to determine the genetic diversity and phylogeographic structure within this species, and interpret this in the light of the speciesȁ9 conservation requirements. Thirteen populations were sampled across the speciesȁ9 geographic range, and genetic diversity found to be very high, with 37 haplotypes across the 71 specimens examined (p-distance 0.2–7.3%, average 3.1±0.4). Phylogeographic analyses revealed a surprisingly high degree of geographical structure, detectable among populations separated by relatively short geographical distances, with three main groups of haplotypes which have apparently been isolated for significant periods of time. Past fragmentation and contiguous range expansion events were inferred as the main causes of the detected geographical associations of haplotypes. The establishment of independent evolutionary lineages as conservation units is particularly important for species inhabiting saline habitats such as O. glaber, which is endangered by habitat loss across most of its distribution. However, given the natural instability of hypersaline environments, the conservation of a network of populations and potential habitats would be necessary to enable the preservation of the process generating and maintaining the diversity of the species.  相似文献   

12.
Aim Species diversity and genetic diversity within a taxon are intrinsic parts of global biodiversity. These two levels of biodiversity can show strong correlation due to a variety of reasons (i.e. parallel processes affecting both communities and populations, genotypes of a numerically or functionally dominant species affecting community composition, a species assemblage selecting for a particular genotype by affecting its selection regime). We examined correlations between species and genetic biodiversity in four isolated endemic‐rich spring systems in a hot desert and their potential link to environmental variables and physical isolation. Location Chihuahuan Desert spring systems in the Pecos River basin of New Mexico and Texas, USA. Methods We compared species richness of fish and benthic macroinvertebrate communities to within‐population allelic richness of amphipods (monophyletic Gammarus spp.) and Pecos gambusia (Gambusia nobilis) using Mantel tests. We also compared pairwise community similarities with pairwise genetic identities of populations among the same groups. We tested correlations among diversity, similarity and environmental variables after controlling for the effects of spatial distances using partial Mantel tests. We partitioned genetic and species diversity into three spatial scales (i.e. individual springs, individual spring systems, the entire region) using AMOVA and partition . Results We found strong correlations between invertebrate species richness and mosquitofish allelic richness. We found even stronger correlations of amphipod and gambusia genetic identities with fish and invertebrate community similarities; these were best explained by geographic distance rather than abiotic environmental factors. Most of the taxa and communities exhibited the largest proportion of diversity at the regional level. Main conclusions Our results suggest that drift and migration are the mechanisms that best explain our observations, and although α‐diversity among genes and species may not be strongly correlated, the pattern of species and allelic complementarity among these groups seems to be concordant at the regional level.  相似文献   

13.
Mitochondrial DNA analysis of 13 populations of S. salamandra along a transect across the North of the Iberian Peninsula showed values of divergence between haplotypes ranging from d = 0.41% to 5.91%. Phenetic and cladistic analysis grouped the isofemale lineages into two main clusters with contrasting phylogeographic patterns. The first group encompasses populations located at each extreme of the Iberian Peninsula. Despite the large geographic distance separating these populations, they exhibit only a minor degree of divergence among haplotypes. In contrast, much higher diversification, in both number of distinct haplotypes, and overall genetic divergence, was observed in the second group of phylogenetically related populations. Surprisingly, this process of radiation and divergence in mtDNA haplotypes occurred in populations in close geographic proximity. All populations sampled in this group are located within a 300 km range, in the central part of our transect across the Northern edge of the Peninsula. Most populations in the central range of our transect exhibit viviparous reproduction — which is derived and highly unusual among urodeles. The genetic distances measured among Asturian (central portion of our transect), viviparous populations are higher than the distances measured between the two main taxonomic clusters. A viviparous population showing an unusual level of mtDNA heterogenetiy is reported and the potential implications of this focus of localized variability are discussed. The dynamics of isofemale lineages among the two reproductive modes was further explored in combination with the previous allozyme data. Several nuclear markers suggest that major mtDNA divergences could be explained by long-term extrinsic barriers to gene flow. Isofemale lineages indicate a narrow secondary contact zone among populations with different reproductive patterns. The existence of viviparous and ovovivparous populations sharing a common haplotype suggests that reproductive transition in S. salamandra could have arisen in absence of genetic mtDNA differentiation. We finally outline a genetic model system where the acquisition of water independence from a primitively aquatic dependent amphibian life cycle can be analyzed from a microevolutionary perspective.  相似文献   

14.
15.
This paper illustrates the phylogeographical structure of Saxifraga callosa in order to describe its genetic richness in refugial areas and to reconstruct its glacial history. S. callosa is a species spread throughout south-east France and Italy with a high distribution in the Maritime Alps. Four chloroplast microsatellite and AFLP markers were analyzed in populations of S. callosa. The size variants of all tested loci amount to 11 different haplotypes. Intrapopulational haplotype variation was found in two of the populations analyzed: on the Mt. Toraggio in the Maritime Alps, and in the Apuan Alps. On the other hand, no intrapopulational variation was found in 25 populations, most of which were sampled from isolated areas. Analysis of the haplotype distribution showed that population subdivision across all populations was high (G ST = 0.899). Moreover, its genetic structure was studied using AMOVA and STRUCTURE analysis. The study legitimated inferred conclusions about the phylogeographical structure of the species and identified centers of diversity. Considerations concerning genetic structure and divergence among three major clades (Maritime Alps, Apuan Alps and Apennines), the patchy distribution of haplotypes, and the high number of private haplotypes support the proposal that S. callosa survived in some refugia within the Italian Peninsula refugium, and that mainly northern populations of refugia were involved in postglacial recolonization.  相似文献   

16.
Aim Japanese red maple (Acer pycnanthum K. Koch) is an endangered species which grows in discrete wetland ecosystems within a limited geographical range. It is an important relic of geologic time, an endemic of unique wetland ecosystems and an indicator of hotspots of plant species diversity. However, information on its genetic characteristics across its range is lacking. Our aim was to determine the genetic structure and diversity of the species and make recommendations for conservation. Location Wetlands in central Honshu Island, Japan. Methods We collected leaf samples from 400 individuals of A. pycnanthum in 30 populations, extracted total DNA from each and sequenced three non‐coding regions of chloroplast DNA. Results We identified nine haplotypes. High haplotype diversity (0.81) and the occurrence of rare haplotypes in eight distant populations suggest that wetlands provided multiple, adequate‐size refuges during the Last Glacial Maximum. We found only one to four haplotypes within populations. The high degree of differentiation (GST = 0.83) implies that gene flow by seeds among populations is restricted. Eight populations demonstrated a positive contribution to the total genetic diversity owing to occurrence of rare and private haplotypes. Such populations are concentrated in the south‐western part of the species distribution. According to the spatial autocorrelation analysis, there were significant spatial clusters of populations, which were characterized by similar haplotype composition. Using the haplotype distribution, samova and barrier detected nearly identical genetic boundaries. Main conclusion In spite of the species’ limited geographical range, we identified a relatively high number of haplotypes and a clear geographical structure. We propose six management units, which can be used for future conservation activities, such as introduction of new individuals for on‐site conservation projects and seed collection for ex situ conservation.  相似文献   

17.
Asymmetry patterns across the distribution range: does the species matter?   总被引:1,自引:0,他引:1  
An important question in evolutionary ecology is whether different populations across a species range, from core to periphery, experience different levels of stress. The estimation of developmental instability has been proposed as a useful tool for quantifying the degree of environmental and genetic stress that individuals experience during their development. Fluctuating asymmetry, the unsigned difference between the two sides of a bilaterally symmetrical trait, has been suggested to reflect the levels of developmental instability in a population. As such, it has been proposed as a useful tool for estimating changes in developmental instability and in stress response in populations across a range of environmental conditions. Recent studies focusing mostly on birds have detected increasing fluctuating asymmetry from core to periphery across the distribution range, suggesting that peripheral populations may experience higher levels of environmental and/or genetic stress. Most of these comparisons were done for single taxa across a single gradient. However, different species are predicted to respond differently to environmental shifts across the range. We compared asymmetry patterns in wing morphology in populations of two Euchloe butterfly species across their opposing ranges in Israel. Contrary to the patterns observed in birds across the same gradient, bilateral asymmetry did not increase or shift towards the periphery in either of the butterfly species. If fluctuating asymmetry in these traits reflects levels of stress, these results may partly reflect the fact that the range of these two butterfly species is limited by the distribution of their host plant, rather than by abiotic environmental variables. In addition, developing pierids can diapause during harsh seasons and can persist in resource‐rich patches, thus minimizing the environmental stress perceived by developing individuals. We conclude that accounting for differences in species’ life histories and range‐limiting factors is necessary in order to better predict patterns of developmental instability across spatial and environmental gradients. © 2004 The Linnean Society of London, Biological Journal of the Linnean Society, 2004, 81 , 313–324.  相似文献   

18.
 The geographic distribution of allozyme variation within the Eurasian boreo-nemoreal woodland grass Melica nutans L. has been investigated together with a minor subset of other Melica species. Twenty alleles were found at nine polymorphic loci in M. nutans. Allelic richness was highest in areas central in the species' European distribution, i.e. in southern Fennoscandia. High population densities, reducing the effects of genetic drift, as well as accumulation of variation through long-distance gene-flow from different marginal populations, is proposed to explain high allelic richness in this area. Several alleles showed geographic patterns in distribution and frequency variation. However, these patterns were not congruent, e.g. some alleles appear to have migrated to northern Europe from the south-west whereas others may have spread from the east. Genetic distances between geographic regions, each consisting of 2–6 populations, were generally low between all Fennoscandian, Russian and Siberian regions, but much higher between western and continental European regions. On the population level, cluster analysis grouped populations from Siberia, Russia, coastal and lowland areas in Fennoscandia and British Cumbria into one subcluster whereas other subclusters contained mainly south-west European populations or populations from almost throughout the distribution range. A scenario with several independent glacial refugia in central Europe, south-western Siberia and possibly western Norway, and subsequent colonisation of Fennoscandia mainly from the east, but with some long-distance gene-flow from central Europe, is proposed. Received April 3, 2002; accepted September 17, 2002 Published online: December 11, 2002  相似文献   

19.
While population declines can drive the loss of genetic diversity under some circumstances, it has been unclear whether this loss is a general consequence of overharvest in highly abundant marine fishes. We compiled data from 11 049 loci across 140 species and found that allelic richness was lower in overfished populations within 9 of 12 genera and families. A multiple linear regression showed that allelic richness was on average 12% lower (< 0.0001) in overharvested populations after accounting for the effects of body size, latitude and other factors. Heterozygosity was on average 2% lower (= 0.030). Simulations confirmed that these patterns are consistent with a recent bottleneck in abundant species and also showed that our analysis likely underestimates the loss of rare alleles by a factor of two or three. This evidence suggests that overharvest drives the decay of genetic diversity across a wide range of marine fishes. Such reductions of genetic diversity in some of the world's most abundant species may lead to a long‐term impact of fishing on their evolutionary potential, particularly if abundance remains low and diversity continues to decay.  相似文献   

20.
Climatic oscillations during the Quaternary strongly affected the distribution of warm-temperate tree species, which experienced local restrictions into ice-free areas and posterior expansions. To evaluate the impact of these range movements on the genetic structure of populations, we performed a phylogeographical analysis of the species Nothofagus obliqua with chloroplast DNA markers. A total of 27 populations covering the whole natural distribution range were analyzed using polymerase chain reaction-restriction fragment length polymorphism. Diversity (h T, h S), allelic richness (r g), and differentiation among populations for unordered (G ST) and ordered alleles (N ST) were calculated. The relationships among haplotypes were evaluated by the construction of a minimum spanning network. The spatial distribution of the genetic variation was analyzed through a Mantel test and with a nested analysis of molecular variance to differentiate between geographic regions. The screening of 11 non-coding regions allowed the identification of 14 haplotypes. A high genetic differentiation was detected (N ST = 0.875 and G ST = 0.824) with the existence of phylogeographic structure (p < 0.05). The distribution of the genetic variation was partially explained by the topography of the region when the populations were divided longitudinally into Coastal Mountains, Central Valley, and Andes Mountains (ϕ RT = 0.093, p = 0.001). In agreement with pollen records, our results support the hypothesis of Coastal refuges since the region harbors high diversity together with older and private haplotypes. Long-lasting persistence of some Coastal populations without contribution to re-colonization is proposed. Additional refuges are also postulated along the Andes and Longitudinal Valley. Survival in multiple glacial refuges is discussed together with the possible migratory routes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号