首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Using the set of Saccharomyces cerevisiae mutants individually deleted for 5718 yeast genes, we screened for altered sensitivity to the antifungal protein, K1 killer toxin, that binds to a cell wall beta-glucan receptor and subsequently forms lethal pores in the plasma membrane. Mutations in 268 genes, including 42 in genes of unknown function, had a phenotype, often mild, with 186 showing resistance and 82 hypersensitivity compared to wild type. Only 15 of these genes were previously known to cause a toxin phenotype when mutated. Mutants for 144 genes were analyzed for alkali-soluble beta-glucan levels; 63 showed alterations. Further, mutants for 118 genes with altered toxin sensitivity were screened for SDS, hygromycin B, and calcofluor white sensitivity as indicators of cell surface defects; 88 showed some additional defect. There is a markedly nonrandom functional distribution of the mutants. Many genes affect specific areas of cellular activity, including cell wall glucan and mannoprotein synthesis, secretory pathway trafficking, lipid and sterol biosynthesis, and cell surface signal transduction, and offer new insights into these processes and their integration.  相似文献   

2.
3.
Optimum conditions for action of the killer toxin K1 on sensitive strainS. cerevisiae S6 were established. Maximum killing was reached in a very narrow pH range of 4.5–4.6. Maximum susceptibility to toxin was displayed by highly energized fresh cells from the early exponential phase in the presence of an external energy source (at least 200 mmol/L glucose). Further, maintenance of maximum membrane potential was necessary for killer action, as documented by decreasing toxin activity in the presence of increasing concentrations of KCl. The killing was strongly stimulated in the presence of millimolar concentrations of Ca2+ and Mg2+.  相似文献   

4.
By the kar1-mediated cytoduction, linear double-stranded DNA plasmids pGKL1 and pGKL2, encoding killer toxin complex, have been successfully transferred to the recipient strains with about 30% frequency. The killer toxin was found to be secreted through the normal yeast secretory pathway by introducing pGKL plasmids into the several Saccharomyces cerevisiae sec mutants and examining the secretion of killer toxin. S. cerevisiae cells, harboring newly isolated deletion plasmid pGKL1D, expressed only the 28K protein among three killer subunits, and secreted the 28K subunit at a level of zero to 20% efficiency of the cells containing intact pGKL1 plasmid. These data indicated that subunit interaction (cosecretion) of killer proteins is required for the efficient secretion of 28K subunit. The 28K precursor protein was found to translocate across the canine pancreatic endoplasmic reticulum membrane under the direction of its own signal peptide in vitro without any other subunits. From kex2 mutant cells harboring pGKL1 plasmid, the 97K subunit, and its precursor 128K protein were not secreted, however, the 28K subunit was secreted in the same amount as that secreted from KEX2 cells. These lines of evidence suggest that the final assembly of killer toxin complex after KEX2 site of Golgi apparatus is not essential for the secretion of 28K subunit, and therefore, that putative interaction between 128K protein and 28K subunit for the transport between endoplasmic reticulum and Golgi apparatus may be required for the efficient secretion of 28K subunit.  相似文献   

5.
Killer toxin from killer strains of Saccharomyces cerevisiae was isolated from concentrates of extracellular medium by precipitation in poly(ethylene glycol) and chromatography through glyceryl-controlled-pore glass. The toxin migrated as a single protein band on sodium dodecyl sulfate/polyacrylamide gel electrophoresis. A molecular weight of 11470 was determined for the toxin protein from its electrophoretic mobility and amino acid composition. Gel filtration of the active toxin indicated that the 11,470-Mr monomer was the active unit. Electrophoretic comparison of extracellular concentrates from a killer strain and an isogenic non-killer showed the presence of the toxin protein only in the killer-derived material. The activity of the toxin was most stable between pH 4.2 and 4.6. At 30 degrees C toxin from a superkiller strain was more stable than that from a normal killer.  相似文献   

6.
7.
8.
9.
35S-labeled killer toxin protein bound to cells of sensitive Saccharomyces cerevisiae S14a. Strains that were resistant to toxin through mutation in the nuclear genes kre1 kre2 bound toxin only weakly. Non-radioactive toxin competed effectively with 35S-labeled toxin for binding to S14a, but did not compete significantly in the binding to mutant kre1-1. This implied that binding to kre1-1 was nonspecific. A Scatchard analysis of the specific binding to S14a gave a linear plot, with an association constant of 2.9 x 10(6) M-1 and a receptor number of 1.1 x 10(7) per cell. Killer toxin receptors were solubilized from the cell wall by zymolyase digestion. Soluble, non-dialyzable cell wall digest from S14a competed with sensitive yeast cells for 35S-labeled toxin binding and reduced toxin-dependent killing of a sensitive strain. Wall digest from kre1-1 competed only weakly for toxin binding with sensitive cells and caused little reduction of toxin-dependent killing. Although the abundant (1.1 x 10(7) per cell) receptor appeared necessary for toxin action, as few as 2.8 x 10(4) toxin molecules were necessary to kill a sensitive cell of S14a. The kinetics killing of S14a suggested that some component was saturated with toxin at a concentration 50-fold lower than that needed to saturate the wall receptor.  相似文献   

10.
Sesti F  Shih TM  Nikolaeva N  Goldstein SA 《Cell》2001,105(5):637-644
K1 killer strains of Saccharomyces cerevisiae harbor RNA viruses that mediate secretion of K1, a protein toxin that kills virus-free cells. Recently, external K1 toxin was shown to directly activate TOK1 channels in the plasma membranes of sensitive yeast cells, leading to excess potassium flux and cell death. Here, a mechanism by which killer cells resist their own toxin is shown: internal toxin inhibits TOK1 channels and suppresses activation by external toxin.  相似文献   

11.
The interaction between the killer toxin of Pichia kluyveri 1002 and cells of Saccharomyces cerevisiae SCF 1717 is strongly affected by the physiological state of sensitive cells. The killing effect is maximal for cells in the lag and early exponential phase of growth, whereas stationary cells are completely resistant. Furthermore, sensitivity is markedly enhanced by a rise of the pH (from 3.2 to 6.8) at which cells are cultured.Three successive stages can be distinguished in the killing process: (I) binding of the toxin to the primary binding site; (II) transmission of the toxin to its reactive site in the plasma membrane; (III) occurrence of functional damage (K+-leakage; decrease of intracellular pH). The transition from stage I to II is prevented in the absence of metabolic energy or at low temperature (below 10°C). Sensitive cells in stage I can be rescued from toxin-induced killing by a short incubation at pH 7.0, which treatment is not effective for cells in stage II. Cells in stage II are able to resume growth when plated in a rich medium containing suitable concentrations of potassium and hydrogen ions. Rescue was not observed for cells in stage III of the killing process.  相似文献   

12.
Killer toxin K1 of Saccharomyces cerevisiae kills sensitive cells of the same species by disturbing the ion gradient across the plasma membrane after binding to the receptor at cell wall beta-1,6-glucan. Killer protein K2 is assumed to act by a similar mechanism. To identify the putative plasma membrane receptors for both toxins we mutagenized three sensitive S. cerevisiae strains and searched for clones with killer-resistant spheroplasts. The well diffusion assay identified three phenotypically different groups of clones: clones resistant simultaneously to both toxins, clones with lowered sensitivity to only K1 toxin and those with strongly lowered sensitivity to K2 and partially lowered sensitivity to K1 toxin. These phenotypes are controlled by recessive mutations that belong to at least four different complementation groups. This indicates certain differences at the level of interaction of K1 and K2 toxin with sensitive cells.  相似文献   

13.
A recently described new method for determination of killer toxin activity was used for kinetic measurenments of K1 toxin binding. The cells of the killer sensitive strain Saccharomyces cerevisiae S6 were shown to carry two classes of toxin binding sites differing widely in their half-saturation constants and maximum binding rates. The low-affinity and high-velocity binding component (K T1=2.6x109 L.U./ml, V max1=0.19 s-1) probably reflects diffusion-limited binding to cell wall receptors; the high-affinity and low-velocity component (K T2=3.2x107 L.U./ml, V max2=0.03 s-1) presumably indicates the binding of the toxin to plasma membrane receptors. Adsorption of most of the killer toxin K1 to the surface of sensitive cells occured within 1 min and was virtually complete within 5 min. The amount of toxin that saturated practically all cell receptors was about 600 lethal units (L.U.) per cell of S. cerevisiae S6.  相似文献   

14.
Mutually antagonistic K1 and K2 killer strains compete when mixed and serially subcultured. At pH 4.6, where the K1 killer toxin is more stable in vitro, the K1 strain outcompeted the K2 strains at both 18 and 30 degrees C. At pH 4.0, closer to the in vitro pH optimum of the K2 killer toxin, the K1 strain again predominated at 18 degrees C, but at 30 degrees C the K2 strains became the sole cell type on subculture. To show more clearly that these results were dependent upon the respective killer toxins, control experiments were conducted with isogenic, nonkiller strains cured of the dsRNA-based killer virions. Such nonkiller strains were unable to compete with antagonistic killers under conditions where their isogenic killer parents could, strongly suggesting that the killer phenotype was important in these competitions. Double K1-K2 killer strains cannot stably exist, as their dsRNA genomes compete at a replicative level. Using recombinant DNA methodology, a stable K1-K2 killer strain was constructed. This strain outcompeted both K1 and K2 killers when serially subcultured under conditions where either the K1 or the K2 strains would normally predominate in mixed cultures. Such a double killer may be useful in commercial fermentations, where there is a risk of contamination by killer yeasts.  相似文献   

15.
Recessive mutations in two chromosomal unlinked genes kir1 and kir2 of Saccharomyces cerevisiae K2 result in weak killer activity or in complete loss of killer capacity. Kir1 is located on chromosome 7 and is linked to ade7 and ski6. The kir1 and kir2 mutants reveal no alteration of cell membrane. They normally excrete acid phosphatase and have a normal level of mating and sporulation. The analysis of the plasmid nucleic acid in two strains containing the mutant alleles kir1-12 and kir2-23 shows the increased content of L double-stranded DNA, the content of M double-stranded RNA being increased.  相似文献   

16.
Study of Saccharomyces cerevisiae killer toxin-sensitive strains with the deltakre2 phenotype (resistant to toxin K1, sensitive to toxin K2) showed that the phenotype is complemented by the KRE2 gene not only in intact cells but also in spheroplasts, and resistance to K1 thus resides very probably in the plasma membrane. deltakre1 deletant displays a faulty interaction with both K1 and K2 toxin. Hence, Kre1p probably serves as plasma membrane receptor for both toxins. Deletants in seven other genes (GDA1, SAC1, LUV1, KRE23, SAC2, KRE21, ERG4) exhibit different degrees of the deltakre2-like resistance pattern, but the phenotype in deltagda1 and deltasac1 is not connected with a defect in K1 toxin interaction with the plasma membrane, similarly as in deltakre6 and deltakre11 strains with a higher resistance to K2 toxin. Differences between the K1 and K2 killer toxin thus occur on the level of both the plasma membrane and the cell wall.  相似文献   

17.
The cellular response of Saccharomyces cerevisiae to a linear plasmid encoded killer toxin from Pichia acaciae was analysed. As for the Kluyveromyces lactis zymocin, such toxin was recently shown to bind to the target cell's chitin and probably acts by facilitating the import of a toxin subunit. However, as distinct from zymocin, which arrests cells in G1, it provokes S-phase arrest and concomitant DNA damage checkpoint activation. Here, we report that such novel toxin type causes cell death in a two-step process. Within 4 h in toxin, viability of cells is immediately reduced to approximately 30%. Elevated mutation rates at the CAN1 locus prove DNA damaging mediated by the toxin. Cells arrested artificially in G1 or G2/M are very rapidly affected, while cells arrested in S loose their viability at a slower rate. S-phase arrest is, thus, a response of target cells to cope with DNA damage induced by the toxin. A second decline in viability requiring metabolically active target cells emerges upon toxin exposure over 10 h. During this phase, toxin treated cells develop abnormal nuclear morphology and react positive to terminal deoxynucleotidyl transferase-mediated nick end-labelling (TUNEL), indicative of DNA fragmentation. Furthermore, as judged from staining with fluorescein conjugated annexinV, cells expose phosphatidylserine at the outer membrane face and the formation of reactive oxygen species (ROS) is increased. ROS formation and concomitant cell death was heavily suppressed in a rho- derivative of the tester strain, while immediate reduction of viability was indistinguishable from the wild type. As a strain lacking the cellular target because of defects in the major chitinsynthase (Chs3) did not display such characteristic changes, the chitin binding and DNA-damaging P. acaciae toxin constitutes an apoptosis inducing protein. Both, DNA-damaging and apoptosis induction are unique features of this novel toxin type.  相似文献   

18.
Cholera toxin B-subunit (CTB) treatment of K562 erythroleukemia cells increased their sensitivity to be killed by NK-92 cells with more than 10%, compared to untreated cells. A similar treatment of non-T, non-B acute lymphoblastic REH leukemia cells, known to be unsensitive to NK cell mediated cytotoxicity, did not have any impact at all. Visualization of the cross-linked gangliosideM1 (GM1) using fluorescent labeled CTB, indicated accumulation of the fluorescence to one cap and a few smaller patches in both type of cells. Additional cross-linking using anti-CTB antibodies further accentuated capping and increased lysis in the case of K562 cells. Blocking experiments performed with anti-MICA/B, ULBP-2 and/or CD59 antibodies could not inhibit the increased sensitivity mediated by CTB.  相似文献   

19.
The minimum period between the addition of killer toxin K1 to sensitive yeast cells and the appearance of first cells stained with bromocresol purple indicating membrane damage, is approximately 20 min. The length of this lag phase depends strongly on toxin concentration, extending sharply at toxin levels lower than 60 lethal units (LU) per cell (about one-tenth of the toxin concentration necessary for saturating all surface receptors). As the binding of the toxin to the cell is virtually complete within 1 min, the rest of the lag phase reflects processes different from actual binding,e.g. combination of several toxin molecules to form a membrane ion channel or pore.  相似文献   

20.
The adsorption of the yeast killer toxin KT28 to susceptible cells of Saccharomyces cerevisiae was prevented by concanavalin A, which blocks the mannoprotein receptor. Certain mannoprotein mutants of S. cerevisiae that lack definite structures in the mannan of their cell walls were found to be resistant to KT28, whereas the wild-type yeast from which the mutants were derived was susceptible. Isolated mannoprotein from a resistant mutant was unable to adsorb killer toxin. By comparing the resistances of different mannoprotein mutants, information about the molecular structure of the receptor was obtained. At least two mannose residues have to be present in the side chains of the outer chain of the cell wall mannan, whereas the phosphodiester-linked mannose group is not essential for binding and the subsequent action of killer toxin KT28.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号