首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Of over 20 nucleated cell lines we have examined to date, human H2 glioblastoma cells have turned out to be the most resistant to complement-mediated cytolysis in vitro. H2 cells expressed strongly the membrane attack complex inhibitor protectin (CD59), moderately CD46 (membrane cofactor protein) and CD55 (decay-accelerating factor), but no CD35 (complement receptor 1). When treated with a polyclonal anti-H2 Ab, anti-CD59 mAb, and normal human serum, only 5% of H2 cells became killed. Under the same conditions, 70% of endothelial-like EA.hy 926 cells and 40% of U251 control glioma cells were killed. A combined neutralization of CD46, CD55, and CD59 increased H2 lysis only minimally, demonstrating that these complement regulators are not enough to account for the resistance of H2 cells. After treatment with Abs and serum, less C5b-9 was deposited on H2 than on U251 and EA.hy 926 cell lines. A reason for the exceptional resistance of H2 cells was revealed when RT-PCR and protein biochemical methods showed that the H2 cells, unlike the other cell lines tested, actively produced the soluble complement inhibitors factor H and factor H-like protein 1. H2 cells were also capable of binding human factor H from the fluid phase to their cell surface and promoted the cleavage of C3b to its inactive form iC3b more efficiently than U251 and EA.hy 926 cells. In accordance, anti-factor H mAbs enhanced killing of H2 glioblastoma cells. Taken together, our results show that production and binding of factor H and factor H-like protein 1 is a novel mechanism that these malignant cells utilize to escape complement-mediated killing.  相似文献   

2.
The C3b/C4b receptor, also known as complement receptor type 1 (CR1, CD35), is a single chain glycoprotein consisting of 30 repeating homologous protein domains known as short consensus repeats (SCR) followed by transmembrane and cytoplasmic domains. A series of recombinant proteins derived from CR1 has been prepared and assessed for the capacity to inhibit complement lysis of the host Chinese hamster ovary (CHO) cells. The full-length recombinant CR1 inhibited human complement-mediated CHO cell lysis, and the efficiency of inhibition was directly proportional to the number of receptors/cell. The SCR 15-18 of CR1, but not SCR 15-16, inhibited complement lysis of the host CHO cell, bound monomeric C3b (Kd,app = 6.5 x 10(-7) M), and dimeric C3b (Kd = 1.8 x 10(-8) M), and served as a cofactor in the proteolysis of C3b by factor I, confirming and extending the observations of Fearon and colleagues (Kalli, K. R., Hsu, P., Bartow, T. J., Ahearn, J. M., Matsumoto, A. K., Klickstein, L. B., and Fearon, D. T. (1991) J. Exp. Med. 174, 1451-1460). The SCR 1-4 of CR1, but not SCR 1-2, also inhibited complement lysis of the host CHO cell, indicating that more than two SCR are necessary and that four SCR are sufficient for optimal C4b binding to CR1. Thus, the structural requirements for C4b binding are analogous to those for C3b binding, namely, four SCR of CR1 form the binding sites for each of these proteins. CR1 has long been recognized to regulate extrinsic complement activation, that is, to bind to and promote the degradation of fluid phase C3b and of C3b attached to immune complex. These results demonstrate that CR1 is also an intrinsic regulator of complement activation in that, under appropriate conditions, CR1 inhibits complement-mediated lysis of the cell on which it is expressed.  相似文献   

3.
Evasion of the complement system by microorganisms is an essential event in the establishment of infection. In the case of Trypanosoma cruzi, the causative agent of Chagas disease, resistance to complement-mediated lysis is a developmentally regulated characteristic. Infectious trypomastigotes are resistant to complement-mediated lysis in the absence of immune antibodies, whereas the insect forms (epimastigotes) are sensitive to lysis via the alternative complement pathway. We have purified a developmentally regulated, trypomastigote glycoprotein, gp160, and shown that it has complement regulatory activity. The T. cruzi gp160 restricts complement activation by binding the complement component C3b and inhibiting C3 convertase formation. The protein is anchored in the parasite membrane via a glycosyl phosphatidylinositol linkage, similar to the human complement regulatory protein, decay-accelerating factor. Using anti-gp160 antibodies we have isolated a bacteriophage lgt11 clone expressing a portion of the gp160 gene that shares significant DNA sequence homology with the human DAF gene. These results provide functional, biochemical, and genetic evidence that the T. cruzi gp160 is a member of the C3/C4 binding family of complement regulatory proteins, and that gp160 may provide the infectious trypomastigotes with a means of evading the destructive effects of complement.  相似文献   

4.
The bacterium Francisella tularensis (Ft) is a potential weapon of bioterrorism when aerosolized. Macrophage infection is necessary for disease progression and efficient phagocytosis by human macrophages requires serum opsonization by complement. Microbial complement activation leads to surface deposition of a highly regulated protein complex resulting in opsonization or membrane lysis. The nature of complement component C3 deposition, i.e., C3b (opsonization and lysis) or C3bi (opsonization only) fragment deposition, is central to the outcome of activation. In this study, we examine the mechanisms of Ft resistance to complement-mediated lysis, C3 component deposition on the Ft surface, and complement activation. Upon incubation in fresh nonimmune human serum, Schu S4 (Ft subsp. tularensis), Fn (Ft subsp. novicida), and LVS (Ft subsp. holarctica live vaccine strain) were resistant to complement-mediated lysis, but LVSG and LVSR (LVS strains altered in surface carbohydrate structures) were susceptible. C3 deposition, however, occurred on all strains. Complement-susceptible strains had markedly increased C3 fragment deposition, including the persistent presence of C3b compared with C3bi, which indicates that C3b inactivation results in survival of complement-resistant strains. C1q, an essential component of the classical activation pathway, was necessary for lysis of complement-susceptible strains and optimal C3 deposition on all strains. Finally, use of Francisella LPS mutants confirmed O Ag as a major regulator of complement resistance. These data provide evidence that pathogenic Francisella activate complement, but are resistant to complement-mediated lysis in part due to limited C3 deposition, rapid conversion of surface-bound C3b to C3bi, and the presence of LPS O Ag.  相似文献   

5.
Recombinant soluble complement inhibitors hold promise for the treatment of inflammatory disease and disease states associated with transplantation. Targeting complement inhibitors to the site of complement activation and disease may enhance their efficacy and safety. Data presented show that targeting of decay-accelerating factor (DAF, an inhibitor of complement activation) to a cell surface by means of antibody fragments is feasible and that cell-targeted DAF provides significantly enhanced protection from complement deposition and lysis compared with soluble untargeted DAF. An extracellular region of DAF was joined to an antibody combining site with specificity for the hapten dansyl, at the end of either C(H)1 or C(H)3 Ig regions. The recombinant IgG-DAF chimeric proteins retained antigen specificity and bound to dansylated Chinese hamster ovary cells. Both soluble C(H)1-DAF and C(H)3-DAF were effective at inhibiting complement-mediated lysis of untargeted Chinese hamster ovary cells at molar concentrations within the range reported by others for soluble DAF. However, when targeted to a dansyl-labeled cell membrane, C(H)1-DAF was significantly more potent at inhibiting complement deposition and complement-mediated lysis. Cell-bound C(H)1-DAF also provided cells with protection from complement lysis after removal of unbound C(H)1-DAF. Of further importance, the insertion of a nonfunctional protein domain of DAF (the N-terminal short consensus repeat) between C(H)1 and the functional DAF domain increased activity of the fusion protein. In contrast to C(H)1-DAF, C(H)3-DAF was not significantly better at protecting targeted versus untargeted cells from complement, indicating that a small targeting vehicle is preferable to a large one. We have previously shown that for effective functioning of soluble complement inhibitor CD59, binding of CD59 to the cell surface close to the site of complement activation is required. Significantly, such a constraint did not apply for effective DAF function.  相似文献   

6.
Malignant cells are often resistant to complement activation through the enhanced expression of complement inhibitors. In this work, we examined the protective role of factor H, CD46, CD55, and CD59 in two non-small cell lung cancer cell lines, H1264 and A549, upon activation of the classical pathway of complement. Complement was activated with polyclonal Abs raised against each cell line. After blocking factor H activity with a neutralizing Ab, C3 deposition and C5a release were more efficient. Besides, a combined inhibition of factor H and CD59 significantly increased complement-mediated lysis. CD46 and CD55 did not show any effect in the control of complement activation. Factor H expression was knockdown on A549 cells using small interfering RNA. In vivo growth of factor H-deficient cells in athymic mice was significantly reduced. C3 immunocytochemistry on explanted xenografts showed an enhanced activation of complement in these cells. Besides, when mice were depleted of complement with cobra venom factor, growth was recovered, providing further evidence that complement was important in the reduction of in vivo growth. In conclusion, we show that expression of the complement inhibitor factor H by lung cancer cells can prevent complement activation and improve tumor development in vivo. This may have important consequences in the efficiency of complement-mediated immunotherapies.  相似文献   

7.
The plasma protein factor H primarily controls the activation of the alternative pathway of complement. The C-terminal of factor H is known to be involved in protection of host cells from complement attack. In the present study, we show that domains 19-20 alone are capable of discriminating between host-like and complement-activating cells. Furthermore, although factor H possesses three binding sites for C3b, binding to cell-bound C3b can be almost completely inhibited by the single site located in domains 19-20. All of the regulatory activities of factor H are expressed by the N-terminal four domains, but these activities toward cell-bound C3b are inhibited by isolated recombinant domains 19-20 (rH 19-20). Direct competition with the N-terminal site is unlikely to explain this because regulation of fluid phase C3b is unaffected by domains 19-20. Finally, we show that addition of isolated rH 19-20 to normal human serum leads to aggressive complement-mediated lysis of normally nonactivating sheep erythrocytes and moderate lysis of human erythrocytes, which possess membrane-bound regulators of complement. Taken together, the results highlight the importance of the cell surface protective functions exhibited by factor H compared with other complement regulatory proteins. The results may also explain why atypical hemolytic uremic syndrome patients with mutations affecting domains 19-20 can maintain complement homeostasis in plasma while their complement system attacks erythrocytes, platelets, endothelial cells, and kidney tissue.  相似文献   

8.
Two mouse monoclonal antibodies against the human complement control protein, Factor H (beta 1H), are described. The antibodies are both IgG - gamma 1 - subclass and are directed against different epitopes on the human Factor H molecule. One of the antibodies, MRC OX 24, increases the cofactor activity of Factor H in Factor I-mediated cleavage of soluble C3b. The second antibody, MRC OX 23, which has no effect alone, reduces the increase in cofactor activity observed in the presence of the first antibody. However, MRC OX 24 inhibits the binding of 125I-labelled Factor H to surface-bound C3b (EAC3b). Again MRC OX 23 alone does not have an effect but decreases the inhibition in 125I-labelled Factor H binding to EAC3b observed with MRC OX 24. These studies show clearly that the interaction of Factor H with soluble C3b is different to its interaction with surface-bound C3b. In an indirect immunoprecipitation system using these monoclonal antibodies, single-chain molecules of 150 000 mol.wt. are specifically precipitated from human serum and also from the sera of other primates - rhesus monkey, cynomolgus monkey, and African green monkey. There was no precipitation from sera of cow, pig, sheep, chick, or rabbit. Using a radioimmunoassay with radiolabelled monoclonal MRC OX 23, the concentration of Factor H in human plasma was determined.  相似文献   

9.
Metastatic cancer cells, like trophoblasts of the developing placenta, are invasive and must escape immune surveillance to survive. Complement has long been thought to play a significant role in the tumor surveillance mechanism. Bone sialoprotein (BSP) and osteopontin (OPN, ETA-1) are expressed by trophoblasts and are strongly up-regulated by many tumors. Indeed, BSP has been shown to be a positive indicator of the invasive potential of some tumors. In this report, we show that BSP and OPN form rapid and tight complexes with complement Factor H. Besides its key role in regulating complement-mediated cell lysis, Factor H also appears to play a role when "hijacked" by invading organisms in enabling cellular evasion of complement. We have investigated whether BSP and OPN may play a similar role in tumor cell complement evasion by testing to see whether these glycoproteins could promote tumor cell survival. Recombinant OPN and BSP can protect murine erythroleukemia cells from attack by human complement as well as human MCF-7 breast cancer cells and U-266 myeloma cells from attack by guinea pig complement. The mechanism of this gain of function by tumor cell expression of BSP or OPN has been defined using specific peptides and antibodies to block BSP and OPN protective activity. The expression of BSP and OPN in tumor cells provides a selective advantage for survival via initial binding to alpha(V)beta(3) integrin (both) or CD44 (OPN) on the cell surface, followed by sequestration of Factor H to the cell surface and inhibition of complement-mediated cell lysis.  相似文献   

10.
Complement, which bridges innate and adaptive immune responses as well as humoral and cell-mediated immunity, is antiviral. Kaposi's sarcoma-associated herpesvirus (KSHV) encodes a lytic cycle protein called KSHV complement control protein (KCP) that inhibits activation of the complement cascade. It does so by regulating C3 convertases, accelerating their decay, and acting as a cofactor for factor I degradation of C4b and C3b, two components of the C3 and C5 convertases. These complement regulatory activities require the short consensus repeat (SCR) motifs, of which KCP has four (SCRs 1 to 4). We found that in addition to KCP being expressed on the surfaces of experimentally infected endothelial cells, it is associated with the envelope of purified KSHV virions, potentially protecting them from complement-mediated immunity. Furthermore, recombinant KCP binds heparin, an analogue of the known KSHV cell attachment receptor heparan sulfate, facilitating infection. Treating virus with an anti-KCP monoclonal antibody (MAb), BSF8, inhibited KSHV infection of cells by 35%. Epitope mapping of MAb BSF8 revealed that it binds within SCR domains 1 and 2, also the region of the protein involved in heparin binding. This MAb strongly inhibited classical C3 convertase decay acceleration by KCP and cofactor activity for C4b cleavage but not C3b cleavage. Our data suggest similar topological requirements for cell binding by KSHV, heparin binding, and regulation of C4b-containing C3 convertases but not for factor I-mediated cleavage of C3b. Importantly, they suggest KCP confers at least two functions on the virion: cell binding with concomitant infection and immune evasion.  相似文献   

11.
Borrelia burgdorferi, the aetiological agent of Lyme disease, employs sophisticated means to survive in diverse mammalian hosts. Recent studies demonstrated that acquisition of complement regulators factor H and factor H-like protein-1 (FHL-1) allows spirochetes to resist complement-mediated killing. Serum-resistant B. burgdorferi express up to five distinct complement regulator-acquiring surface proteins (CRASPs) that bind factor H and/or FHL-1. In this study we have identified and characterized one of those B. burgdorferi proteins, named BbCRASP-2. BbCRASP-2 is distinct from the four previously identified factor H/FHL-1-binding CRASPs of B. burgdorferi strains. The single copy of the gene encoding BbCRASP-2, cspZ, is located on the linear plasmid lp28-3. BbCRASP-2 is highly divergent from the factor H/FHL-1-binding protein BbCRASP-1 and from members of the factor H-binding Erp (OspE/F-related) protein family. Peptide mapping analysis revealed that the factor H/FHL-1 binding site is discontinuous and it was found that C-terminal truncations abrogate factor H and FHL-1 binding. The predominant BbCRASP-2 binding site of both host complement regulators was mapped to the short consensus repeat 7 (SCR 7). Factor H and FHL-1 bound to BbCRASP-2 maintain cofactor activity for factor I-mediated C3b inactivation and accelerate the decay of the C3 convertase. Expression of BbCRASP-2 in serum-sensitive B. burgdorferi mutant B313 increased resistance to complement-mediated lysis. The characterization of BbCRASP-2 now provides a complete picture of the three diverse complement regulator-binding protein families of B. burgdorferi yielding new insights into the pathogenesis of Lyme disease.  相似文献   

12.
The complement system presents a powerful defense against infection and is tightly regulated to prevent damage to self by functionally equivalent soluble and membrane regulators. We describe complement C2 receptor inhibitor trispanning (CRIT), a novel human complement regulatory receptor, expressed on hemopoietic cells and a wide range of tissues throughout the body. CRIT is present in human parasites through horizontal transmission. Serum complement component C2 binds to the N-terminal extracellular domain 1 of CRIT, which, in peptide form, blocks C3 convertase formation and complement-mediated inflammation. Unlike C1 inhibitor, which inhibits the cleavage of C4 and C2, CRIT only blocks C2 cleavage but, in so doing, shares with C1 inhibitor the same functional effect, of preventing classical pathway C3 convertase formation. Ab blockage of cellular CRIT reduces inhibition of cytolysis, indicating that CRIT is a novel complement regulator protecting autologous cells.  相似文献   

13.
CR1, CR2, DAF, MCP, factor H, C4bp, factor B, and C3 are members of a family of structurally related molecules, the majority of which belong to the complement system. Several of these molecules also share functional features such as cofactor and decay/dissociation activity and compete with one another in binding to C3b. Since factor H appears to bind to multiple sites in C3, we investigated the relationship between the factor H- and CR1-binding sites in C3b. Factor H binding to C3b is inhibited by either the C3c or C3d fragments, and addition of both fragments together augments this inhibition. One monoclonal anti-C3c antibody, anti-C3-9, which recognizes a neoantigenic epitope expressed upon cleavage to C3 to C3b, inhibited both factor H and CR1 binding to EC3b cells. This monoclonal antibody (MoAb) also inhibited factor B binding to EC3b. Two observations further supported our hypothesis that these molecules bind to proximal sites in C3b. First, a synthetic peptide spanning this region of C3b (C3(727-768)) inhibited factor H binding. Second, antibodies raised against this peptide inhibited binding to CR1, factor H, and factor B to C3b. These data show that H binds to at least two sites in C3b: the site in the C3c fragment is within the identified CR1-binding domain while the site in the C3d fragment surrounds the CR2-binding site.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
The complement system rapidly detects and kills Gram-negative bacteria and supports bacterial killing by phagocytes. However, bacterial pathogens exploit several strategies to evade detection by the complement system. The alkaline protease (AprA) of Pseudomonas aeruginosa has been associated with bacterial virulence and is known to interfere with complement-mediated lysis of erythrocytes, but its exact role in bacterial complement escape is unknown. In this study, we analyzed how AprA interferes with complement activation and whether it could block complement-dependent neutrophil functions. We found that AprA potently blocked phagocytosis and killing of Pseudomonas by human neutrophils. Furthermore, AprA inhibited opsonization of bacteria with C3b and the formation of the chemotactic agent C5a. AprA specifically blocked C3b deposition via the classical and lectin pathways, whereas the alternative pathway was not affected. Serum degradation assays revealed that AprA degrades both human C1s and C2. However, repletion assays demonstrated that the mechanism of action for complement inhibition is cleavage of C2. In summary, we showed that P. aeruginosa AprA interferes with classical and lectin pathway-mediated complement activation via cleavage of C2.  相似文献   

15.
Escherichia coli K12 strain W3110/SM bearing a plasmid containing the traT gene (traT+ strain) was more resistant to the bactericidal activity of guinea pig serum than the same strain bearing this plasmid without the traT gene (traT- strain). A murine mAb was generated against synthetic TraT peptide (86-99). This antibody reacted only with denatured TraT protein, but it was used for monitoring TraT protein by immunoblotting during purification of the protein. Six mAb were then generated against partially purified traT protein from the solubilized membrane fraction of the traT+ strain. These mAb reacted with the native protein even on living cells, and their F(ab) fragments were found to suppress the inhibitory effect of the TraT protein on the bactericidal activity of serum. TraT protein was purified from solubilized membranes of the traT+ strain by ion exchange and gel filtration chromatographies. The purified TraT protein inhibited the lysis of sensitized erythrocytes by serum complement. Its inhibitory action was mainly on the C6 step. It strongly inhibited the reaction of C6 with EAC14b2a3b and excess C5, C7, C8, and C9. TraT protein also inhibited the reaction of C7-deficient human serum with guinea pig erythrocytes when it was activated by cobra venom factor. It did not inhibit the reaction of preformed C5b6 complexes. However, TraT did not have any effect on the cleavage of 125I[C5] to 125I[C5b] in similar conditions. It also partially inhibited the reaction steps of C4, C5, and factor B and limited guinea pig complement serum in 0.1% gelatin veronal buffered saline, pH 7.4, containing 10 mM EDTA with their respective preceding intermediate cells. It had no effect on either the binding of C3 to EAC14b2a or the cleavage of C3b by factors H and I. TraT protein probably inhibits the formation of C5b6 complex or causes structural alteration of the complex to a nonfunctional form.  相似文献   

16.
Mutations and deletions within the human CFHR gene cluster on chromosome 1 are associated with diseases, such as dense deposit disease, CFHR nephropathy or age-related macular degeneration. Resulting mutant CFHR proteins can affect complement regulation. Here we identify human CFHR2 as a novel alternative pathway complement regulator that inhibits the C3 alternative pathway convertase and terminal pathway assembly. CFHR2 is composed of four short consensus repeat domains (SCRs). Two CFHR2 molecules form a dimer through their N-terminal SCRs, and each of the two C-terminal ends can bind C3b. C3b bound CFHR2 still allows C3 convertase formation but the CFHR2 bound convertases do not cleave the substrate C3. Interestingly CFHR2 hardly competes off factor H from C3b. Thus CFHR2 likely acts in concert with factor H, as CFHR2 inhibits convertases while simultaneously allowing factor H assisted degradation by factor I.  相似文献   

17.
Enveloped viruses can incorporate host cell membrane proteins during the budding process. Here we demonstrate that mumps virus (MuV) and vesicular stomatitis virus (VSV) assemble to include CD46 and CD55, two host cell regulators which inhibit propagation of complement pathways through distinct mechanisms. Using viruses which incorporated CD46 alone, CD55 alone, or both CD46 and CD55, we have tested the relative contribution of these regulators in resistance to complement-mediated neutralization. Virion-associated CD46 and CD55 were biologically active, with VSV showing higher levels of activity of both cofactors, which promoted factor I-mediated cleavage of C3b into iC3b as well as decay-accelerating factor (DAF) activity against the C3 convertase, than MuV. Time courses of in vitro neutralization with normal human serum (NHS) showed that both regulators could delay neutralization, but viruses containing CD46 alone were neutralized faster and more completely than viruses containing CD55 alone. A dominant inhibitory role for CD55 was most evident for VSV, where virus containing CD55 alone was not substantially different in neutralization kinetics from virus harboring both regulators. Electron microscopy showed that VSV neutralization proceeded through virion aggregation followed by lysis, with virion-associated CD55 providing a delay in both aggregation and lysis more substantial than that conferred by CD46. Our results demonstrate the functional significance of incorporation of host cell factors during virion envelope assembly. They also define pathways of virus complement-mediated neutralization and suggest the design of more effective viral vectors.  相似文献   

18.
Trypanosoma cruzi G strain epimastigotes were lysed by normal human serum (NHS) through activation of the alternative complement pathway (ACP), whereas metacyclic trypomastigotes were resistant to lysis. Epimastigotes and metacyclics with equivalent amounts of C3b deposited on their surface bound factor B with similar affinities. In contrast, factor H bound with higher affinity to metacyclics than to epimastigotes. Both T. cruzi forms with bound C3b were extensively (60 to 80%) lysed after formation of surface C3-convertase and the addition of a C3-C9 complement source. In the presence of factors H and I, or incubation with NHS with EDTA, the percentage of lysis of metacyclics decreased faster than that of epimastigotes with increasing incubation times. These data suggest, as a possible mechanism of resistance to lysis in metacyclic trypomastigotes, the higher binding affinity of factor H to C3b and the inactivation of the latter by serum regulatory proteins. Metacyclics were lysed by NHS, through ACP, in the presence of human immune serum to T. cruzi or anti-T. cruzi monoclonal antibody, but not with the Fab fragment of the latter, which recognizes a 90,000 m.w. antigen from T. cruzi metacyclics. Protection of parasite-bound C3b from serum control proteins was observed when parasites were incubated, before C3 deposition, with the lytic monoclonal antibody but not with its Fab fragment or a nonrelated IgG control. When C3b was deposited on metacyclics before antibody binding, C3b inactivation occurred. In the lysis of metacyclics, through ACP activation, binding of antibody apparently creates new acceptor sites which prevent the activity of serum regulatory proteins.  相似文献   

19.
The cell membrane-bound forms of mini-factor H with 1-4 short consensus repeats (fH-PI) and factor I (fI-PI) were constructed. Swine endothelial cell (SEC) lines and Chinese hamster ovary (CHO) cell expressing fH-PI or fI-PI were established and confirmed by flow cytometry. The cell lysate of the SEC line expressing fH-PI showed strong cofactor activity for the cleavage of C3b, and fI-PI demonstrated the protease activity for C4b and C3b not only in the fluid phase but also on the cell membrane. In addition, fH-PI blocked human complement-mediated cell lysis by approximately 30-40%. An SEC line with a low expression of fI-PI showed a weak inhibition of cell lysis in human serum, whereas a CHO cell transfectant with a high expression of fI-PI showed over a 60% inhibition of cell lysis. The results suggest that fH-PI and fI-PI have potential for use in clinical xenotransplantation.  相似文献   

20.
The genome analysis of Kaposi's sarcoma-associated herpesvirus (KSHV) has revealed the presence of an open reading frame (ORF 4) with sequence homology to complement control proteins. To assign a function to this protein, we have now expressed this ORF using the Pichia expression system and shown that the purified protein inhibited human complement-mediated lysis of erythrocytes, blocked cell surface deposition of C3b (the proteolytically activated form of C3), and served as a cofactor for factor I-mediated inactivation of complement proteins C3b and C4b (the subunits of C3 convertases). Thus, our data indicate that this KSHV inhibitor of complement activation (kaposica) provides a mechanism by which KSHV can subvert complement attack by the host.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号