首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The interaction of partially purified calf uterine estradiol-charged estrogen receptor ([3H]ER) with rat nuclei was studied in vitro. We previously observed a significantly greater number of [3H]ER binding sites (at saturation) in nuclei of R3230AC mammary tumors from intact vs ovariectomized (ovex) rats with no difference in the affinity of [3H]ER binding for these nuclei. We now report on the nuclease sensitivity of [3H]ER binding sites in nuclei from these tumors and from normal rat tissues. Digestion of tumor nuclei with deoxyribonuclease I (DNase I) prior to incubation with [3H]ER in vitro resulted in a progressive loss of [3H]ER binding capacity, which was not accompanied by alterations in the affinity of [3H]ER for the nuclei (Kd = 1-3 nM). A significantly lower concentration (P less than 0.005) of DNase I eliminated 50% of the [3H]ER binding sites in nuclei of tumors from intact hosts (8 unit.min/ml) compared to tumors from ovex hosts (22 unit.min/ml). These results indicate that DNA regions capable of binding ER are more susceptible to DNase I digestion in tumors from intact rats than those from ovex hosts, suggesting that the endogenous hormonal milieu is responsible, at least in part, for maintenance of nuclease-sensitive DNA conformations in this hormone-responsive mammary tumor. The amount of DNase I required to eliminate 50% of [3H]ER binding to nuclei from lactating mammary gland, liver, and kidney ranged from 14 to 56 unit.min/ml. Therefore, accessibility of [3H]ER binding sites to nuclease digestion in normal rat tissue is generally less than that of R3230AC tumors.  相似文献   

2.
The steroid and the DNA bindings of the estrogen receptor of the MtTF4 tumor whose growth is inhibited by estradiol where characterized and compared to those of uterine estrogen receptors. In the tumor cytosol: E protects its binding sites against thermal denaturation, depending on the effects of sodium molybdate upon the dissociation rate of [3H]E at 20 degrees C and the ability of receptor to bind to DNA, the activation (or transformation) process, supposed to be necessary for the full action of estrogen ligand, occurs on estrogen receptor complexes and the calf thymus DNA interacts with estrogen receptor with an affinity similar to that of uterine estrogen receptor. Kinetic and equilibrium studies with 17 alpha-[3H]E both in uterus and tumor indicate that this ligand is fast-associating, fast-dissociating and that its affinity for ER is 2- to 4-fold lower than that of 17 beta-[3H]estradiol one. Competition experiments between 17 beta-[3H]estradiol and the unlabelled 17 alpha epimer reveal, in both uterus and tumor, a time-dependent decrease of the apparent potency of 17 alpha-E to inhibit the binding of [3H]E. It is concluded that the estrogen receptors are very similar in MtTF4 tumor and uterus and the diversity of the response of cell growth to E is due rather to differences at the post-receptor level.  相似文献   

3.
Binding of glucocorticoid receptors to mammary chromatin acceptor sites   总被引:1,自引:0,他引:1  
We have recently characterized the interaction of mouse mammary estrogen receptors (ER) with mammary chromatin acceptor sites and demonstrated that ER from estrogen resistant lactating mammary glands do not bind to chromatin. In this study we have characterized the chromatin binding of the glucocorticoid receptor from mouse mammary glands isolated from nulliparous and lactating mice in order to better understand the relationship between receptor binding to chromatin and steroidogenic sensitivity of the tissue. Mammary chromatin was linked covalently to cellulose and deproteinized sequentially by 0-8 M Gdn-HCl. Binding to intact chromatin as well as to chromatin deproteinized by Gdn-HCl was determined using partially purified [3H]dexamethasone labelled glucocorticoid-receptor complexes (GR) obtained by fractionation on DEAE-cellulose columns. The binding of [3H]GR from mammary glands of nulliparous mice to chromatin fractions from the same tissue revealed maximal binding activity (acceptor sites) on chromatin previously extracted with 5-6 M Gdn-HCl. Binding of [3H]GR was of high affinity (Kd = 0.2 nM) and saturable. A simultaneous comparison of the chromatin binding patterns for [3H]ER and [3H]GR isolated from mammary glands of nulliparous mice revealed that the chromatin subfractions obtained with 4-6 M Gdn-HCl extraction contained acceptor sites for both [3H]ER and [3H]GR; however, while the [3H]ER bound to a 4.5 M and a 5.5 M site, the [3]GR bound a 5 M and a 6 M site. Competition experiments supported the steroid receptor specificity of the chromatin acceptor sites. Thus, the 4-6 M chromatin fractions contain distinct acceptor sites for the glucocorticoid receptor and for the estrogen receptor. In addition our studies reveal that the binding patterns of [3H]GR isolated from mammary glands of nulliparous and lactating mice to their homologous chromatin is essentially similar. Thus, in contrast to estrogen receptors, glucocorticoid receptors from lactating mammary glands are able to effectively bind to chromatin acceptor sites which supports our previous suggestion that the estrogenic insensitivity of lactating mouse mammary glands may at least be in part due to the impeded interaction of ER with chromatin acceptor sites.  相似文献   

4.
Radiosequence analysis of peptide fragments of the estrogen receptor (ER) from MCF-7 human breast cancer cells has been used to identify cysteine 530 as the site of covalent attachment of an estrogenic affinity label, ketononestrol aziridine (KNA), and an antiestrogenic affinity label, tamoxifen aziridine (TAZ). ER from MCF-7 cells was covalently labeled with [3H]TAZ or [3H]KNA and purified to greater than 95% homogeneity by immunoadsorbent chromatography. Limit digest peptide fragments, generated by prolonged exposure of the labeled receptor to trypsin, cyanogen bromide, or Staphylococcus aureus V8 protease, were purified to homogeneity by high performance liquid chromatography (HPLC), and the position of the labeled residue was determined by sequential Edman degradation. With both aziridines, the labeled residue was at position 1 in the tryptic peptide, position 2 in the cyanogen bromide peptide, and position 7 in the V8 protease peptide. This localizes the site of labeling to a single cysteine at position 530 in the receptor sequence. The identity of cysteine as the site of labeling was confirmed by HPLC comparison of the TAZ-labeled amino acid (as the phenylthiohydantoin and phenylthiocarbamyl derivatives) and the KNA-labeled amino acid (as the phenylthiocarbamyl derivative) with authentic standards prepared by total synthesis. Cysteine 530 is located in the hormone binding domain of the receptor, near its carboxyl terminus. This location is consistent with earlier studies using sodium dodecyl sulfate-polyacrylamide gel electrophoresis to analyze the size of the proteolytic fragments containing the covalent labeling sites for TAZ and KNA and the antigen recognition sites for monoclonal antibodies. The fact that both the estrogenic and antiestrogenic affinity labeling agents react covalently with the same cysteine indicates that differences in receptor-agonist and receptor-antagonist complexes do not result in differential covalent labeling of amino acid residues in the hormone binding domain.  相似文献   

5.
Estrogen receptors covalently labeled with the estrogen affinity label [3H]ketononestrol aziridine (KNA) or with the antiestrogen affinity label [3H]tamoxifen aziridine (TAZ) were subjected to limited proteolysis with trypsin, alpha-chymotrypsin, and Staphylococcus aureus V8 protease and then analyzed on 10-20% sodium dodecyl sulfate-polyacrylamide gradient gels followed by fluorography. The similar molecular weights of intact receptors (Mr 66,000 daltons) and the proteolytic digest patterns indicate extensive homology among estrogen receptors from MCF-7 human breast cancer cells, GH4 rat pituitary cells and rat uterus when liganded with estrogen or antiestrogen. Each protease generated a distinctive ladder of estrogen receptor fragments, and the fragmentation patterns were virtually identical for estrogen receptors labeled with estrogen (KNA) or antiestrogen (TAZ). Each protease yielded a relatively "resistant" receptor fragment of about 28,000-35,000 daltons. Trypsin and chymotrypsin at higher concentrations generated a much smaller 6,000-8,000 dalton digest product that still contained the [3H]KNA- or [3H]TAZ-labeled receptor binding site. Moreover, the receptor digest patterns were similar for estrogen receptors from the three different target cells. Our studies suggest considerable structural relatedness among these three estrogen receptors and also indicate that these two affinity labels bind to a similar, perhaps identical, region of the receptor molecule.  相似文献   

6.
Calf uterine estrogen receptor was covalently labeled with [3H]tamoxifen aziridine during affinity chromatography purification. After carboxymethylation, affinity labeled receptor was digested with trypsin under limit conditions and the labeled peptides were fractionated by reversed-phase high performance liquid chromatography into one major and two minor components. Sequence analysis of the dominant labeled fragment indicated the facile cleavage of label during Edman degradation but identified two peptides, both derived from the extreme carboxyl terminus of the steroid-binding domain. The 17 residues of one peptide were fully conserved in all estrogen receptors. This fragment contained five nucleophilic amino acids and was considered as the more favored interaction site for tamoxifen aziridine. A corresponding region of the glucocorticoid receptor has recently been identified as one of three major contact sites for glucocorticoids (Carlstedt-Duke, J., Str?mstedt, P.-E., Persson, B., Cederlund, E., Gustafsson, J.-A., and J?rnvall, H. (1988) J. Biol. Chem. 263, 6842-6846). A comparison of amino acid physical characteristics in the hormone-binding domains of human estrogen and glucocorticoid receptors demonstrated an excellent structural correlation between the two regions and delineated elements in the estrogen receptor which may be directly involved in estradiol binding.  相似文献   

7.
The classical view of the molecular actions of estrogen is described by its interaction with the intracellular estrogen receptor (ER), the binding of hormone receptor complex to the estrogen response element (ERE) on the DNA and followed by the alterations of gene expressions. Recently it has been reported that membrane estrogen receptor (mER) exist and it is suggested to be G protein linked receptor. In this report we show that under steroid-free culture conditions supplemented with low percentage of charcoal-stripped serum, differential estrogen treatments of human breast cancer MCF7 cells induce different responses of cyclic AMP (cAMP) productions. Treating [2-(3)H]adenine-labeled MCF7 cells with 1 nM estrogen for 30 min stimulates cAMP production by measuring the ratio of [3H]cAMP:Total [3H]adenine nucleotides (ATP+ADP+cAMP), as determined by column chromatography, when compared with the control. This short-term estrogen treatment also significantly enhanced forskolin stimulated cAMP production when compared with the ratio of cAMP/Total measured in cells stimulated with forskolin alone. Pre-treating MCF7 cells with the same concentration of estrogen for 24h before the assay, on the contrary, significantly decreased the basal cAMP level and it also suppressed cAMP production stimulated with forskolin when compared with its respective value under short-term estrogen treatment. Estrogen receptor antagonist ICI 182780 abolished both the stimulatory and suppressive effect of estrogen on cAMP synthesis indicating both effects were mediated through ER. Pre-treating cells with pertussis toxin relieved the suppression of cAMP synthesis by chronic estrogen treatment. Our data suggest that estrogen exerts differential effects on the cAMP production in MCF7 cells, involving the activations Galpha(i) and Galpha(s) family of G proteins, depending on the length of time of hormone treatment.  相似文献   

8.
Estrogen receptor (ER) from chicken liver and calf uterus were used to study the capacity and the characteristics of the receptor binding sites (acceptor sites) in chicken target cell nuclei. Binding studies were performed at a physiological salt concentration of 0.15 M KCl. Binding of liver ER to liver nuclei was temperature-dependent, showing a 9-fold increase between 0 and 28 degrees C. The maximal number of acceptor sites measured in this cell-free system (280 sites/nucleus) was considerably lower than measured in nuclei after in vivo administration of estrogen (820 sites/nucleus). Moreover incubation of nuclei with the liver ER preparation resulted in a substantial breakdown of nuclear DNA, making this ER less suitable for DNA binding studies. The temperature-activated calf uterine receptor bound to liver nuclei at 0 degrees C, at which temperature no DNA degradation was measured. To all chicken cell nuclei tested, the receptor bound with a high affinity (Kd = 0.4-1.0 nM). Nuclear binding displayed tissue specificity: oviduct greater than heart, liver greater than spleen greater than erythrocytes and was salt dependent. Calf uterine ER binding in liver nuclei ranged from 3000-6000 acceptor sites per nucleus when assayed under conditions of a constant protein or a constant DNA concentration. Nuclei isolated from estrogen-treated cockerels bound a 2-fold lower number of calf uterine ER complexes when compared to control nuclei. Incubation of nuclei with a fixed concentration of [3H]ER from liver and increasing concentrations of uterine non-radioactive-ER also resulted in a reduced binding of the liver receptor. Both types of experiments suggest that liver and uterine ER compete for a common nuclear acceptor site. Our data demonstrate that the ER from calf uterus is very useful as a probe to examine the nature of the acceptor sites in heterologous chicken target cell nuclei. The assay system functions at 0 degrees C, a temperature at which no DNA degradation occurs.  相似文献   

9.
Y J Abul-Hajj 《Steroids》1979,33(1):115-124
Steroid delta 4-5 alpha- and delta 4-5 beta-reductase activity was determined in 16 human mammary tumors and 8 DMBA-induced rat mammary tumors using a spectrophotometric assay. Steroid delta 4-5 alpha-reductase was present in all tumors investigated while delta 4-5 beta-reductase was detected in only 6 estrogen receptor negative human breast tumors and absent in all estrogen receptor positive human breast tumors as well as in all rat mammary tumors. Further support for the presence of delta 4-5 beta-reductase was established by using a dual-labelling technique consisting of incubating tumor slices with [14C] testosterone and adding [3H] etiocholanolone, [3H] testosterone and [3H]-5 alpha-dihydrotestosterone at the end of the reaction. Following extraction and chromic acid oxidation, 4-androstenedione, 5 beta-androstanedione and 5 alpha-androstanedione were isolated and purified, and the constancy of the 14C/3H ratio was used as proof of 5 alpha-reductase and 5 beta-reductase. These results were shown to be consistent with the data obtained using the spectrophotometric assay.  相似文献   

10.
Female rabbit liver cytosol contains a receptor-modifying activity that converts the 250,000 estrogen receptor of liver and uterine cytosol to a 37,000 form. There is an age-dependent increase in this receptor-active protease and in the general protease activity of rabbit liver cytosol, measured with [14C]casein. Sephacryl S-200 chromatography of liver cytosol shows that in the young animal (5 weeks old) the major receptor-modifying activity elutes near the void volume, while in the older animal (13 weeks old) activities having lower molecular weights are present. The general protease activity elution profile is similar to the receptor-active protease profile for the 5-week-old rabbit but not the 13-week-old rabbit. The liver cytosol of the older animal has a high molecular weight protease active toward [14C]casein but not toward the estrogen receptor. The changes in the estrogen receptor forms and the receptor-modifying activity profiles of liver cytosol that occur during development in the rabbit suggest that receptor-modifying activity may initially be associated with the estrogen receptor to form a high molecular weight complex.  相似文献   

11.
F E Murdoch  K A Grunwald  J Gorski 《Biochemistry》1991,30(45):10838-10844
Avidin-biotin complexed with DNA (ABCD) assays were employed to determine the binding affinity of estrogen receptor (ER) to DNA under various salt conditions. Type and concentration of salt in the reaction buffer dramatically affected the ability of the ER to discriminate between DNA sequences. Under appropriate salt conditions, ER was able to bind to the estrogen response element from the Xenopus vitellogenin A2 gene with at least 3 orders of magnitude greater affinity than a two base pair mutant sequence, and 5 orders of magnitude greater affinity than plasmid DNA. In these studies, the best discrimination was observed under conditions of salt type and concentration that more closely approximated intracellular conditions, i.e., 100-150 mM potassium salts. Analysis of the binding affinities for ER to all three types of DNA over a range of KCl concentrations indicated that the ionic interactions upon ER binding were the same for the three DNA molecules tested. Therefore, the additional stability of ER binding to target DNA sequences was contributed by nonionic interactions.  相似文献   

12.
The expression of high levels of full-length human estrogen receptor alpha (hERalpha) in Escherichia coli has proven difficult. We found that expression of the ER DNA binding domain is highly toxic to E. coli, resulting in rapid loss of the expression plasmid. Using a tightly regulated arabinose expression system and the antibiotic Timentin, we were able to overcome ER toxicity and express substantial levels of ER. The expressed ER exhibited protease cleavage at a single site near the N-terminus of the hinge region. Of the many measures we tested to eliminate ER cleavage, only addition of carbonyl cyanide m-chlorophenyl-hydrazone (CCCP), an uncoupler of oxidative phosphorylation, completely blocked intracellular proteolysis of the ER. Using CCCP and our expression methods, full-length FLAG epitope-tagged hERalpha (fER) was expressed in E. coli at approximately 1 mg/l. The fER was purified to homogeneity in a single step by immunoaffinity chromatography with anti-FLAG monoclonal antibody. Purified full-length bacterial fER binds 17beta-estradiol with the same affinity as hER expressed in human cells (K(D) approximately 0.5 nM). At high concentrations of fER (20 nM), a bell-shaped estrogen binding curve with a Hill coefficient of 1.7 was seen. Bacterially-expressed fER exhibits a reduced affinity for the estrogen response element (ERE). Anti-FLAG antibody restores high affinity binding of the fER to the ERE, suggesting that impaired dimerization may be responsible for the reduced affinity of bacterially-expressed fER for the ERE. The use of Timentin and CCCP may provide a general method for high level bacterial expression of steroid/nuclear receptors and other proteins important in hormone action.  相似文献   

13.
A method for the determination of estrogen and progesterone receptor levels in human mammary cell lines (MCF-7, Cama-1, ZR-75-1, Evsa-T and HBL-100) is described. Cells cultured as monolayers were incubated with the tritiated steroids, [3H]-17 beta-Estradiol or [3H] ORG-2058. Binding of steroids to receptors was a function of cellular uptake. Incubation periods of 50 min were sufficient to attain maximum intracellular incorporation. The binding of 17 beta-E2 and ORG-2058 to MCF-7 cells, a phenomenon which is saturable at low concentrations for the radioactive ligand, is a linear function of the number of cells assayed (Interval: 2.5 X 10(4) to 1.5 X 10(6) cells per well). Binding data and their Scatchard plot allowed for the calculation of affinity and capacity values. Thus, for ER, Kd = 2.0 +/- 0.5 X 10(-10) M and n = 3.76 +/- 0.91 Fmol/microgram DNA, and for PgR Kd = 2.0 +/- 0.2 X 10(-10) M and n = 14.02 +/- 2.30 Fmol/microgram DNA (Mean +/- SD). Binding specificity of 17 beta-Estradiol and ORG-2058 to MCF-7 cells was analysed by means of study on the inhibitory effect of increasing concentrations of unlabelled competitors: 17 beta-Estradiol, ORG-2058, Estrone, DES, R-5020, Cortisol, Androsterone and Testosterone. Only pharmacological doses of some of the mentioned molecules produce displacement of the hormonereceptor binding. This phenomenon appears to be related to the affinity of these chemical compounds for the receptor macromolecules to which estrogens and progesterone bind.  相似文献   

14.
A new antiestrogen affinity ligand for the covalent labeling of estrogen receptors, [3H]desmethylnafoxidine aziridine, has been used to investigate the salt- and temperature-independent formation of DNA-binding estrogen receptor forms from untransformed (300 kilodaltons) receptor. Calf uterine estrogen receptor proteins labeled with [3H]estradiol or [3H]desmethylnafoxidine aziridine were quantitatively transformed (greater than 90%) to their DNA-binding configuration in low ionic strength buffers by brief exposure to 3 M urea at 0 C. The urea effect was hormone-dependent and partially reversible. The transformed receptors were purified (ca 250-fold) by affinity chromatography on single-stranded DNA-agarose in the continued presence of 3 M urea to prevent transformation reversal. Scatchard analyses revealed a single class of high affinity radioligand binding sites (Kd = 0.34 nM) unchanged by urea-induced transformation and purification. The DNA-binding receptor form labeled with [3H]desmethylnafoxidine aziridine was stable as a probable dimer in 3 M urea with 0.4 M KCl and displayed no evidence of size (Stokes radius 7.3 to 7.5 nm; 4.2 to 4.3 S; Mr = 136,800) heterogeneity. Sodium dodecyl sulfate-polyacrylamide gradient gel electrophoresis indicated the presence of an intact 67 kDa steroid-binding receptor subunit. Reverse-phase chromatography of the covalently labeled receptor on C4 and phenyl stationary phases revealed no evidence of structural heterogeneity. The surface charge of the estrogen- and antiestrogen-receptor complexes, however, was distinctly different in both the presence and absence of 3 M urea. Thus, exposure to urea was an effective salt- and temperature-independent means for achieving the complete transformation of receptor to its stable DNA-binding dimer configuration. The ligand-induced differences in receptor surface charge and the urea effects on DNA-binding (but not hormone-binding) suggest that both electrostatic and hydrophobic or hydrogen bonding receptor domains are influenced by ligand binding.  相似文献   

15.
Interaction of [3H]4-hydroxytamoxifen-charged estrogen receptor [( 3H]AER) with nuclei was compared to that of [3H]17 beta-estradiol-charged estrogen receptor [( 3H]ER) in vitro. Specificity of [3H]AER binding was demonstrated since more than 90% of [3H]AER binding was displaced by ten-fold excess estradiol-charged ER. For R3230AC tumors, the number of [3H]AER binding sites was approximately 40% lower than the number of [3H]ER binding sites. There were no differences in affinity of binding of these receptors complexes (Kd range 0.7-1.6 nM). In contrast 0.7-1.6 nM). In contrast to a reduction of [3H]ER binding after ovariectomy, no difference in the number of [3H]AER binding sites was seen among tumors from intact, ovex, or estrogen-treated ovex rats. These results suggest that [3H]AER bind to 60% of the sites that bind [3H]ER, and that neither tissue type nor host ovarian status affects the number of nuclear [3H]AER binding sites.  相似文献   

16.
We have observed that ATP induces a second type of oestradiol binding site with slightly lower affinity (Ka 3.3 x 10(8) M-1) and lower sedimentation coefficient (4 S) in cytosol from immature lamb uterus and MCF-7 cells. A factor isolated from immature lamb uterine nuclear extract was found to decrease the steroid binding activity of oestradiol receptor that had been purified by heparin Sepharose and oestradiol-Sepharose chromatography. Inhibition of this factor by known phosphatase inhibitors, indicated that this factor may be a phosphatase. Another factor isolated from immature lamb uterine cytosol was found to enhance the effect of ATP on receptor binding in cytosol from immature lamb uterus and MCF-7 cells. The ability of this factor to phosphorylate a partially purified cytosol receptor from immature lamb uterus when incubated with [gamma 32P]ATP, indicates that this factor is a phosphokinase. The phosphorylated products after labeling with [3H]tamoxifen aziridine were characterized by sodium dodecyl sulphate-polyacrylamide gel electrophoresis. Three phosphorylated proteins with molecular weights 150, 97, and 67 kDa bound [3H]tamoxifen aziridine. Ammonium sulphate precipitated cytosol oestradiol receptor from immature lamb uterus was inactivated with receptor inactivating factor and then reactivated with receptor activating factor in the presence of [gamma 32P]ATP and substantially affinity labelled with [3H]tamoxifen aziridine. The affinity labelled oestradiol receptor was immunopurified with the monoclonal antibody JS 34/32. Three proteins with molecular weights 67, 50 and 43 kDa specifically bound [3H]tamoxifen aziridine and only 43 kDa receptor fragment was phosphorylated. The relevance of inactivation/reactivation of oestradiol receptor to the dephosphorylation/phosphorylation of receptor is discussed.  相似文献   

17.
We have suggested that in the nonhuman primate endometrium, stromal cells might play a role in mediating the effects of estrogen on the epithelium, especially during the luteal-follicular transition (LFT) when target cells normally escape from the inhibitory influence of progesterone (P). We now report that like estrogen receptors (ER), endometrial progestin receptors (PR) are detectable only in stromal cells until the fifth day of the LFT. With a technique that combined immunocytochemistry and autoradiography on the same sections, we characterized the cellular distribution of ER or PR coincidentally with the localization of [3H]thymidine taken up in vitro by endometria from monkeys undergoing an LFT. DNA synthesis in the glands of the upper endometrium was E2-dependent, but the distribution of [3H]thymidine was not positively correlated with the presence of ER or PR. Readministration of P to animals on days 3 or 4 of the LFT significantly reduced the [3H]thymidine labeling index of the glandular epithelium and caused stromal ER to decline, but P did not block the eventual appearance of ER in epithelial cells on day 5 of the LFT. Thus, E2 stimulated DNA synthesis in epithelial cells that lacked ER, and P suppressed DNA synthesis in these cells even though PR was only detected in the stroma when P treatment began. These data are consistent with a role for endometrial stromal cells in mediating the effects of E2 and P on the epithelium during the LFT.  相似文献   

18.
Rapid purification of calf uterine estrogen receptor (ER) to near homogeneity has been accomplished by use of sequence-specific DNA affinity resin. Very high selectivity for the estrogen receptor is achieved through the use of DNA-Sepharose containing eight tandem copies of a consensus estrogen response element (ERE) DNA sequence. The highly purified ER prepared by this new scheme may be labeled economically with ligands of high specific activity. This purification scheme selects for intact receptors retaining function in both estrogen-binding and DNA-binding domains. Purified receptor has an electrophoretic mobility consistent with a molecular weight of 68,000, sediments as a 5S species on sucrose gradients, and reacts with antibody specific to the human estrogen receptor.  相似文献   

19.
20.
The high affinity antiestrogen [3H]H1285 bound to the cytosol calf uterine estrogen receptor dissociated very slowly (t 1/2 approx 30 h at 20 degrees C) and did not demonstrate a change in dissociation rate in the presence of molybdate, which is characteristic of [3H]estradiol-receptor complexes. [3H]H1285-Receptor complexes sediment at approx 6S on 5-20% sucrose density gradients containing 0.3M KCl with or without 10 mM molybdate. This is in contrast to [3H]estradiol-receptor complexes which sedimented at approx 4.5S without molybdate and at approx 6S with molybdate. These results suggest a physicochemical difference in the estrogen receptor when occupied by antiestrogens versus estrogens. We recently reported that the cytoplasmic uterine estrogen receptor, when bound by estradiol and prepared in 10 mM molybdate, eluted from DEAE-Sephadex columns as Peak I (0.21 M KCl) & Peak II (0.25 M KCl). However, [3H]H1285 bound to the estrogen receptor eluted only as one peak at 0.21 M KCl, also suggesting that the initial interaction of antiestrogens with the estrogen receptor is different. We have extended these studies and report that H1285 can compete with [3H]estradiol for binding to both forms of the estrogen receptor and [3H]H1285 can bind to both forms if the unoccupied receptor is first separated by DEAE-Sephadex chromatography. However, if the receptor is first bound by unlabeled H1285, eluted from the column and post-labeled by exchange with [3H]estradiol, only one peak is measured. Thus, it appears that H1285 binding alters the properties of the receptor such that all receptor components seem to elute as one form. These partially purified [3H]H1285-receptor complexes obtained from DEAE-Sephadex columns sedimented as 5.5S in sucrose density gradients in contrast to the sedimentation values for the [3H]estradiol-receptor components eluting as Peak I (4.5S) and Peak II (6.3S). These differences in the physicochemical characteristics of the estrogen receptor when bound by estrogen versus antiestrogens may be related to some of the biological response differences induced by these ligands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号