首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The archaeal community present in a sample of Mixed Thermophilic Culture-B (MTC-B) from a laboratory-scale thermophilic bioleaching reactor was investigated by temperature gradient gel electrophoresis (TGGE) and fluorescence in situ hybridisation (FISH). Both techniques were specifically adapted for use on native state bioleaching samples, with a view to establishing convenient means for monitoring culture composition. Using the TGGE protocol developed, the relative species composition of the thermophilic bioleaching sample was analysed, and included four phylotypes belonging to the Sulfolobales, which were related to Stygiolobus azoricus, Metallosphaera sp. J1, Acidianus infernus and Sulfurisphaera ohwakuensis. However, the St. azoricus-like phylotype was difficult to resolve and some micro-heterogeneity was observed within this phylotype. Specific FISH probes were designed to qualitatively assess the presence of the phylotypes in MTC-B. The sample was dominated by Sf. ohwakuensis-like Archaea. In addition, the St. azoricus-like, Metallosphaera species-like and Acidianus species-like cells appeared in similar low abundance in the community. Most strikingly, FISH identified Sulfolobus shibatae-like cells present in low numbers in the sample even though these were not detected by PCR-dependent TGGE. These results highlight the importance of using more than one molecular technique when investigating the archaeal diversity of complex bioleaching reactor samples.  相似文献   

2.
Coal is one of the most important sources of fossil energy on earth. However, direct combustion of coal with a high sulfur content can cause various environmental problems. Other constituents of coal that can cause environmental problems include iron oxide (hematite), iron hydroxide, and silica. In this study, growing and resting cells of Rhodococcus erythropolis strains PD1, R1, and FMF, and R. qingshengii were used in heterotrophic removal of sulfur and bioleaching of iron and silica from coal. All of the mentioned strains have an ability of dibenzothiophene (DBT) desulfurization via 4-S pathway. 2-hydroxybiphenyl, sulfate, and ferric ions (Fe3+) were assayed by Gibb’s test, barium chloride (BaCl2), and thiocyanate ions (SCN?), respectively. FTIR and XRF analyzer were used for detection of the coal bioleaching process by the selected strain of R. erythropolis (PD1). Results indicated that all strains have the ability to grow on coal as the sulfur source. Among them, strain PD1 produced the highest optical density and continued to grow even after 150-h incubation. In both growing- and resting-cells experiments, strain PD1 desulfurized coal most readily compared to other strains. Results of XRF showed that growing cells of strain PD1 had high desulfurizing ability of coal (46%) compared to resting cells in the absence of any carbon sources (24%). Growing cells of strain PD1 also leached 46% of the iron and 14% of the silicate after 7?days of incubation. Resting cells of PD1 leached 32% of the iron as determined by XRF analysis. Also, growing cells of PD1 removed most SiO2 from coal as detected and confirmed by FTIR and XRF. To the best of our knowledge, this is the first report on bioleaching of iron and silica from coal by R. erythropolis strain PD1, making it a suitable candidate for coal bioremediation.  相似文献   

3.
Oxidation of Fe(II) iron and bioleaching of pyrite and chalcopyrite by Thiobacillus ferrooxidans was adversely affected by isopropylxanthate, a flotation agent, and by LIX 984, a solvent-extraction agent, each at 1 g/l. The reagents/l were adsorbed on the bacterial surface, decreasing the bacteria's development and preventing biooxidation. Both reagents inhibited the bioleaching of pyrite and LIX 984 also inhibited the bioleaching of chalcopyrite.  相似文献   

4.
《Process Biochemistry》2010,45(10):1624-1631
Dephosphorization of high-phosphorus iron ore is an unsolved problem worldwide so far. Biotechnology could be a cost-effective and environment-friendly way to solve this problem. A novel method for bioleaching of phosphorus from high-phosphorus iron ores using indigenous sulfur-oxidizing bacteria from municipal wastewaters was first reported in this work. Before bioleaching, the contents of phosphorus and iron from the high-phosphorus iron ore used were 1.04 and 47.89% (w/w), respectively. The effects of ore solid concentration on the phosphorus bioleaching were investigated. It was found most of phosphorus existed in the form of apatite in the iron ore. After bioleaching for 41 days, the final ore slurry pHs at all solid concentrations 10–300 g/L were between 0.09 and 0.63. The average contents of phosphorus and iron in the bioleaching solid residues were 0.21 and 51.7% (w/w), respectively. The average removal percentage of phosphorus and percentage of iron lost were 82.3 and 1.7%, respectively. After bioleaching, the high-phosphorus iron ore was suitable to be used in the manufacture of iron and steel. The optimal ore solid concentration for bioleaching of phosphorus was 250 g/L under the bioleaching conditions. Thus, this bioleaching process seems to be economic and effective.  相似文献   

5.
In the present study, the potential application of Acidithiobacillus ferrooxidans for elimination of ash and sulfur from bitumen was investigated in batch experiments. A comparison between the bioleaching and abiotic treatments indicated that A. ferrooxidans cells enhanced ash and pyritic sulfur removal by 20 and 59%, respectively. The X-ray diffraction profiles of the samples indicated the precipitation of some mineral elements inside of bitumen decreased the bioleaching performance after 9 days from beginning of the experiments. The effects of bitumen particle size (X1), agitation speed (X2) and initial pH (X3) as interfacial factors each at three levels on the ash removal (Y1) and pyritic sulfur removal (Y2) were investigated by response surface methodology as a statistical design of the experiment. On the basis of quadratic models applied to the performance of the bioleaching process, 66.42% of the pyritic sulfur and 50.88% of the ash could be removed after 9 days under optimal conditions, namely a bitumen particle size of 100 µm, an agitation speed of 80 rpm, and initial pH of 2.  相似文献   

6.
Summary The efficiency of a biological bleaching process on a highly contaminated iron oxides kaolin was analyzed. The bio-bleaching method consists of two steps: first, the fermentation of a chemically-defined medium byAspergillus niger leads to a spent liquor which, in a second step, is employed as leaching agent for kaolin. In the leaching process 43% of iron oxides was removed when the kaolin was treated at 60°C for 5 h and the whiteness index was increased to 67%. Extracellular enzymes were not responsible for leaching, which is basically due to organic acids produced during the fermentation.  相似文献   

7.
Iron has a central role in bioleaching and biooxidation processes. Fe2+ produced in the dissolution of sulfidic minerals is re-oxidized to Fe3+ mostly by biological action in acid bioleaching processes. To control the concentration of iron in solution, it is important to precipitate the excess as part of the process circuit. In this study, a bioprocess was developed based on a fluidized-bed reactor (FBR) for Fe2+ oxidation coupled with a gravity settler for precipitative removal of ferric iron. Biological iron oxidation and partial removal of iron by precipitation from a barren heap leaching solution was optimized in relation to the performance and retention time (τFBR) of the FBR. The biofilm in the FBR was dominated by Leptospirillum ferriphilum and “Ferromicrobium acidiphilum.” The FBR was operated at pH 2.0 ± 0.2 and at 37 °C. The feed was a barren leach solution following metal recovery, with all iron in the ferrous form. 98–99% of the Fe2+ in the barren heap leaching solution was oxidized in the FBR at loading rates below 10 g Fe2+/L h (τFBR of 1 h). The optimal performance with the oxidation rate of 8.2 g Fe2+/L h was achieved at τFBR of 1 h. Below the τFBR of 1 h the oxygen mass transfer from air to liquid limited the iron oxidation rate. The precipitation of ferric iron ranged from 5% to 40%. The concurrent Fe2+ oxidation and partial precipitative iron removal was maximized at τFBR of 1.5 h, with Fe2+ oxidation rate of 5.1 g Fe2+/L h and Fe3+ precipitation rate of 25 mg Fe3+/L h, which corresponded to 37% iron removal. The precipitates had good settling properties as indicated by the sludge volume indices of 3–15 mL/g but this step needs additional characterization of the properties of the solids and optimization to maximize the precipitation and to manage sludge disposal.  相似文献   

8.
In this study, we investigate exopolysaccharide production by a bacterial consortium during the bioleaching of a cobaltiferrous pyrite. Whereas comparable studies have looked at exopolysaccharide production in batch systems, this study focuses on a continuous system comprising a series of four stirred bioreactors and reveals the difficulties in quantifying biomolecules in complex media such as bioleached samples. We also adapted the phenol/sulphuric acid method to take into account iron interference, thus establishing a new protocol for sugar quantification in bioleached samples characterised by low pH (1.4) and high iron concentration (2 g l−1). This allows sugar analysis without any prior sample preparation step; only a small amount of sample is needed (0.5 ml) and sample preparation is limited to a single filtration step. We found that free exopolysaccharides represented more than 80% of the total sugars in the bioreactors, probably because stirring creates abrasive conditions and detaches sugars bound to pyrite or bacteria and that they were produced mainly in the first two reactors where bioleaching activity was greatest. However, we could not establish any direct link between the measured exopolysaccharide concentration and bioleaching activity. Exopolysaccharides could have another role (protection against stress) in addition to that in bacterial attachment.  相似文献   

9.
Abstract

The bioleaching efficiency and mechanism of recovery of cobalt (Co) and nickel from laterites and pyritic ores by Aspergillus niger were investigated. Recoveries of Co from laterites and pyritic ores by direct bioleaching were 65.9?±?1.8% and 4.9?±?2.7%, respectively, while 30.9?±?0.6% and 10.9?±?6.2% recovery of Ni were obtained from laterites and pyritic ores, respectively. Recovery of Co via indirect bioleaching in the absence of the fungal biomass from laterite was significantly lower when compared with Co released by direct bioleaching. In the latter, hyphal penetration and colonization of the laterites were clearly observed by scanning electron microscopy (SEM). X-ray powder diffraction (XRPD) analysis of mineral phases before and after bioleaching indicated that cobalt-bearing goethite was the main phase bioleached in the laterites. No significant difference was found between Co recoveries from synthesized cobalt-bearing goethite by both direct and indirect bioleaching. Therefore, we propose that two processes are involved in bioleaching from laterites: (1) cobalt-bearing goethite was exposed via direct interactions between the fungus and the minerals and (2) cobalt-bearing goethite was dissolved by released metabolites of A. niger, such as organic acids. An incongruent pattern of Co and Fe bioleaching from the laterites was also a feature of the metal recovery process.  相似文献   

10.
Summary This study investigates the possibility of reusing metal-contaminated equilibrium fluid catalytic cracking (FCC) catalyst after bioleaching. Leaching with Aspergillus niger culture was found to be more effective in the mobilization of nickel from the catalyst particles compared to chemical leaching with citric acid. Bioleaching achieved 32% nickel removal whereas chemical leaching achieved only 21% nickel removal from catalyst particles. The enhanced nickel removal from the catalysts in the presence of A. niger culture was attributed to the biosorption ability of the fungal mycelium and to the higher local concentration of citric acid on the catalyst surface. It was found that 9% of solubilized nickel in the liquid medium was biosorbed to fungal biomass. After nickel leaching with A. niger culture, the hydrogen-to-methane molar ratio and coke yield, which are the measures of dehydrogenation reactions catalysed by nickel during cracking reactions, decreased significantly.  相似文献   

11.
The bioleaching experiment was conducted for the removal of heavy metals from mine tailings. A fungal strain was isolated from the gold mine tailings and it has been identified as Aspergillus fumigatus based on its 18S rDNA analysis. Bioleaching using A. fumigatus was carried out in bioleaching step processes (one-step and two-step) at various tailings concentrations (1%, 2%, 4%, and 8% [w/v]). In the one-step bioleaching process where fungi were cultivated in the presence of the tailings, concentration of oxalic acid was the highest among the organic acids produced. On the other hand, in the two-step bioleaching process where the metabolic products of fungal growth, which have been separated from its biomass, were used, citric acid was dominant. In the one-step process, the highest As (62%), Fe (58%), Mn (100%), and Zn (54%) removals were observed at the lowest tailings concentration (1%). The removal of Pb at 1% tailings concentration in the one-step process was 56%, whereas 88% removal was achieved in the two-step process where citric acid was dominant. In general, heavy metals removal efficiency decreased with increased tailings of the concentration in both bioleaching processes. This study shows the possibility of using A. fumigatus to bioleach hazardous heavy meals from gold mine tailings.  相似文献   

12.
AIMS: To understand the composition and structure of microbial communities in different acid mineral bioleaching systems, and to present a more complete picture of microbially mediated acid mine drainage production. METHODS AND RESULTS: In Tong Shankou Copper Mine, China, two samples (named K1 and K2) from two different sites with bioleaching were studied. A bacterial 16S rDNA library and an archaeal 16S rDNA library of the sample from each site were constructed by 16S rDNA polymerase chain reaction (PCR), restriction fragment length polymorphism (RFLP) and sequencing. A total of 18 bacterial representative sequences and 12 archaeal representative sequences were obtained. Phylogenetic analysis indicated that 77.09% of the total bacterial clones were affiliated with Proteobacteria, and 21.22% of the total bacterial clones were closely related to Nitrospira. The rest of the bacterial clones were related to Firmicutes (1.68%). Sequences affiliated with the archaea of the Thermoplasma and Ferroplasma lineages were detected abundantly in the two samples. Unexpectedly, sequences affiliated with Sulfolobales and Methanothermus genera were also detected. CONCLUSIONS: The molecular studies appear to be consistent with the environmental conditions existing at the sites, which coincides with previous studies. High concentrations of some elements (such as copper, iron and sulfur) seemed to be the key factors resulting in the diverse distribution of typical iron-oxidizing bacteria such as Leptospirillum species and Acidithiobacillus ferrooxidans. SIGNIFICANCE AND IMPACT OF THE STUDY: Research on micro-organisms present in bioleaching systems especially archaea is not abundant. The acidophiles in the two bioleaching sites obtained from Tong Shankou Copper Mine, China, have not been reported until now. These results may expand our knowledge of the microbial diversity in the acid mineral bioleaching systems.  相似文献   

13.
The bioleachings of chalcopyrite ore were compared after inoculating different cultures enriched from the original acid mine drainage sample. The results showed that the higher bioleaching performance was achieved for inoculation with the enrichment D (0.5 % S, 2 % iron and 1 % chalcopyrite) compared to other enrichment systems. The generated ferric precipitation during bioleaching had a key influence on the final copper extraction. After enrichment, higher ratio of iron-oxidizer and higher ratio of sulfur-oxidizer existed in enrichment B and C, respectively. These caused the different bioleaching behaviours from other systems. Maintaining a suitable equilibrium between iron- and sulfur-oxidizers is significant to decrease ferric precipitation or postpone its formation, finally prolong efficient bioleaching period and improve copper extraction.  相似文献   

14.
Enargite (Cu3AsS4) was leached at 70°C by Sulfolobus BC in shake-flasks. The highest copper dissolution (52% after 550 h of leaching) was obtained with bacteria and 1 g l–1 ferric ion. In the absence of ferric ion, Sulfolobus BC catalyzes the bioleaching of enargite through a direct mechanism after adhesion onto the mineral surface. In ferric bioleaching, arsenic precipitated as ferric arsenate and arsenic remained associated to the solid residues, preventing the presence of a high dissolved arsenic concentration in the leaching solution. About 90% inhibition of bacterial growth rate and activity was observed for dissolved arsenic concentrations above 600 mg l–1 for As(III) and above 1000 mg l–1 for As(V). Arsenic-bearing copper ores and concentrates could be leached by Sulfolobus BC in the presence of ferric iron due to the favourable precipitation of arsenic ion as ferric arsenate, avoiding significant bacterial inhibition.  相似文献   

15.
A process for biological removal of iron from quartz sands, kaolins and clays was developed in which these industrial minerals were leached at 90°C with lixiviant produced as a result of the cultivation of acid-producing heterotrophic microorganisms, mainly strains of Aspergillus niger, at 30°C in a nutrient medium containing molasses as a source of carbon and energy. The lixiviant, i.e. the fermentation fluid, contained oxalic and citric acids as main components and after the cultivation was acidified to a pH of 0.5 by means of hydrochloric acid. The leaching was carried out in mechanically stirred acid-resistant vats for a period of from 1 to 5 hours. The iron content of some sands treated by this method was lowered from 0.035–0.088 to below 0.012% Fe2O3 making them suitable for the preparation of high quality glass. The iron content of different kaolins was lowered from 0.65–1.49 to 0.44–0.75% Fe2O3 and as a result of this their whiteness was increased from 55–87 to 86–92%. The iron content of a clay was lowered from 6.25 to 1.85% Fe2O3 and this increased the fireproofness of the clay from 1 670 to 1 750°C. Similar process was used for leaching of aluminium from aluminosilicates, mainly clays and kaolins. However, after the cultivation the fermentation fluid was acidified either by means of sulfuric or hydrochloric acid or by means of different mixtures of inorganic acids. For enhancing aluminium solubilization the aluminosilicates were heated before leaching at 600–650°C for 1–2 hours. Over 90% of the aluminium present in different clays and kaolins was leached within 3–6 hours in this way. “Silicate” bacteria related to the species Bacillus circulans and B. mucilaginosus were used to leach silicon from low-grade bauxite ores containing aluminosilicates as impurities. The bacterial action was connected with the formation of mucilaginous capsules consisting of expolysaccharides. The solid residues after leaching were characterized by higher values of alumina content and were suitable for processing by means of the BAYER process for recovering aluminium. Heterotrophic bacteria were used to leach manganese from oxide ores using different organic compounds as reducing agents.  相似文献   

16.

Commercial bioleaching of copper and the biooxidation of gold is a cost-effective and environmentally friendly process for metal recovery. A partial genome sequence of the acidophilic, bioleaching bacterium Acidithiobacillus ferrooxidans is available from two public sources. This information has been used to build preliminary models that describe how this microorganism confronts unusually high iron loads in the extremely acidic conditions (pH 2) found in natural environments and in bioleaching operations. A. ferrooxidans contains candidate genes for iron uptake, sensing, storage, and regulation of iron homeostasis. Predicted proteins exhibit significant amino acid similarity with known proteins from neutrophilic organisms, including conservation of functional motifs, permitting their identification by bioinformatics tools and allowing the recognition of common themes in iron transport across distantly related species. However, significant differences in amino acid sequence were detected in pertinent domains that suggest ways in which the periplasmic and outer membrane proteins of A. ferrooxidans maintain structural integrity and relevant protein-protein contacts at low pH. Unexpectedly, the microorganism also contains candidate genes, organized in operon-like structures that potentially encode at least 11 siderophore systems for the uptake of Fe(III), although it does not exhibit genes that could encode the biosynthesis of the siderophores themselves. The presence of multiple Fe(III) uptake systems suggests that A. ferrooxidans can inhabit aerobic environments where iron is scarce and where siderophore producers are present. It may also help to explain why it cannot tolerate high Fe(III) concentrations in bioleaching operations where it is out-competed by Leptospirillum species.

  相似文献   

17.
【目的】研究Acidithiobacillus ferrooxidans BY-3对雄黄表面改性作用,为进一步研究雄黄的生物炮制技术提供实验基础与理论依据。【方法】在4组生物浸出体系中(每组包含100 mL无亚铁离子的9K培养基和0.500 g雄黄):第1组无添加;第2组添加4.469 g硫酸亚铁;第3组添加0.100 g硫粉;第4组加入4.469 g硫酸亚铁和0.100 g硫粉。在上述4组中使用A.ferrooxidans BY-3对雄黄进行生物浸出。浸出前后雄黄表面形貌及元素变化,使用扫描电镜(SEM)与能谱仪(EDS)、X-射线衍射(XRD)、拉曼光谱(Raman)、电感耦合等离子体原子发射光谱仪(ICP-AES)进行分析。【结果】4组浸出体系均发现A.ferrooxidans BY-3粘附于雄黄表面以此来产生直接作用。含Fe2+的浸出体系中雄黄表面产生非常明显的变化,含硫的浸出体系中雄黄表面变化不明显;只有Fe2+存在的浸出体系中As/S比率增高,而其余3组浸出体系中As/S比率均明显下降;另外,改性雄黄的表面存在黄钾铁矾、硫、赤铁矿、针铁矿和磁铁矿等,但未检测到砷华(As2O3)与副雄黄(Pararealgar)。【结论】A.ferrooxidans对雄黄改性具有重要作用。Fe2+对雄黄的改性具有促进作用,而硫对雄黄的改性具有抑制作用。雄黄改性前后的物化分析结果证实了生物浸出技术可有效解决传统方法制备雄黄及贮存过程中氧化和光化问题。  相似文献   

18.
Two sphalerite samples with different iron/sulphur (Fe/S) ratios, Shuikousan ore (Fe/S 0.2) and Dachang ore (Fe/S 0.52), were processed using three microbial species, Leptospirillum ferriphilum, Acidithiobacillus ferrooxidans and Acidithiobacillus caldus. Following 20 days of bioleaching in shake flask cultures, a higher zinc (Zn) extraction (96%) was achieved with Shuikousan ore than with Dachange ore (72%). The extraction efficiency increased when elemental S was added to Dachang ore to attain the same Fe/S ratio as that for Shuikousan ore. Following the addition of S, the redox potential, pH and total dissolved Fe for Dachang ore demonstrated similar behaviors to those of Shuikousan ore. Acidithiobacillus caldus and L. ferriphilum became the dominant species during the bioleaching of sphalerite with a high Fe/S ratio. In contrast, the dominant species were A. ferrooxidans and A. caldus during the bioleaching of sphalerite with a low Fe/S ratio. These results show that the Fe/S ratio has a significant influence on the bioleaching behavior of sphalerite and the composition of the microbial community.  相似文献   

19.
Chen P  Yan L  Leng F  Nan W  Yue X  Zheng Y  Feng N  Li H 《Bioresource technology》2011,102(3):3260-3267
The characteristics of the bioleaching of realgar by Acidithiobacillus ferrooxidans BY-3 (A. ferrooxidans) were investigated in this work. We examined the effects of using ferrous iron and elemental sulfur as the sole and mixed energy sources on the bioleaching of realgar. Under all experimental conditions, A. ferrooxidans BY-3 significantly enhanced the dissolution of realgar. Moreover, arsenic was more efficiently leached using A. ferrooxidans BY-3 in the presence of ferrous iron than in other culture conditions. A high concentration of arsenic was observed in the absence of alternative energy sources. This concentration was higher than that in cultures with sulfur only and lower than that in cultures with ferrous iron and sulfur. Linear or nonlinear models best fit the experimental data; the nonlinear model exhibited the dual effects of dissolution and removal on the bioleaching of realgar, whereas the linear model only applied to situations of slow bioleaching rather than removal.  相似文献   

20.
Accumulation of elemental sulfur during pyrite oxidation lowers the efficiency of coal desulfurization and bioleaching. In the case of pyrite bioleaching by Leptospirillum ferrooxidans, an iron(II)-ion-oxidizing organism without sulfur-oxidizing capacity, from the pyritic sulfur moiety about 10% elemental sulfur, 2% pentathionate, and 1% tetrathionate accumulated by a recently described cyclic pyrite oxidation mechanism. In the case of pure cultures of Thiobacillus ferrooxidans and mixed cultures of L. ferrooxidans and T. thiooxidans, pyrite was nearly completely oxidized to sulfate because of the capacity of these cultures to oxidize both iron(II) ions and sulfur compounds. Pyrite oxidation in acidic solutions, mediated chemically by iron(III) ion, resulted in an accumulation of similar amounts of sulfur compounds as obtained with L. ferrooxidans. Changes of pH to values below 2 or in the iron ion concentration are not decisive for diverting the flux of sulfur compounds. The literature on pyrite bioleaching is in agreement with the findings indicating that the chemistry of direct and indirect pyrite leaching is identical. Received: 20 April 1998 / Received revision: 27 August 1998 / Accepted: 3 September 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号