首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Heteromorphs are ammonoids forming a conch with detached whorls (open coiling) or non-planispiral coiling. Such aberrant forms appeared convergently four times within this extinct group of cephalopods. Since Wiedmann's seminal paper in this journal, the palaeobiology of heteromorphs has advanced substantially. Combining direct evidence from their fossil record, indirect insights from phylogenetic bracketing, and physical as well as virtual models, we reach an improved understanding of heteromorph ammonoid palaeobiology. Their anatomy, buoyancy, locomotion, predators, diet, palaeoecology, and extinction are discussed. Based on phylogenetic bracketing with nautiloids and coleoids, heteromorphs like other ammonoids had 10 arms, a well-developed brain, lens eyes, a buccal mass with a radula and a smaller upper as well as a larger lower jaw, and ammonia in their soft tissue. Heteromorphs likely lacked arm suckers, hooks, tentacles, a hood, and an ink sac. All Cretaceous heteromorphs share an aptychus-type lower jaw with a lamellar calcitic covering. Differences in radular tooth morphology and size in heteromorphs suggest a microphagous diet. Stomach contents of heteromorphs comprise planktic crustaceans, gastropods, and crinoids, suggesting a zooplanktic diet. Forms with a U-shaped body chamber (ancylocone) are regarded as suspension feeders, whereas orthoconic forms additionally might have consumed benthic prey. Heteromorphs could achieve near-neutral buoyancy regardless of conch shape or ontogeny. Orthoconic heteromorphs likely had a vertical orientation, whereas ancylocone heteromorphs had a near-horizontal aperture pointing upwards. Heteromorphs with a U-shaped body chamber are more stable hydrodynamically than modern Nautilus and were unable substantially to modify their orientation by active locomotion, i.e. they had no or limited access to benthic prey at adulthood. Pathologies reported for heteromorphs were likely inflicted by crustaceans, fish, marine reptiles, and other cephalopods. Pathologies on Ptychoceras corroborates an external shell and rejects the endocochleate hypothesis. Devonian, Triassic, and Jurassic heteromorphs had a preference for deep-subtidal to offshore facies but are rare in shallow-subtidal, slope, and bathyal facies. Early Cretaceous heteromorphs preferred deep-subtidal to bathyal facies. Late Cretaceous heteromorphs are common in shallow-subtidal to offshore facies. Oxygen isotope data suggest rapid growth and a demersal habitat for adult Discoscaphites and Baculites. A benthic embryonic stage, planktic hatchlings, and a habitat change after one whorl is proposed for Hoploscaphites. Carbon isotope data indicate that some Baculites lived throughout their lives at cold seeps. Adaptation to a planktic life habit potentially drove selection towards smaller hatchlings, implying high fecundity and an ecological role of the hatchlings as micro- and mesoplankton. The Chicxulub impact at the Cretaceous/Paleogene (K/Pg) boundary 66 million years ago is the likely trigger for the extinction of ammonoids. Ammonoids likely persisted after this event for 40–500 thousand years and are exclusively represented by heteromorphs. The ammonoid extinction is linked to their small hatchling sizes, planktotrophic diets, and higher metabolic rates than in nautilids, which survived the K/Pg mass extinction event.  相似文献   

2.
Aim To document the historical development of cladistics and the roles palaeontology and biogeography played in establishing coherent concepts of phylogenetic relationships focusing on some aspects of the contributions of Gareth Nelson. Conclusions Nelson's reformulation of the threefold parallelism provides a rationale for investigating phylogeny, replacing the central role palaeontology once played with biogeography, adding a spatial dimension to the concept of phylogeny. This approach to phylogeny replaces the old ‘transformationist’ view with the cladistic view, the latter dependent on discovering relationships among taxa. Numerical phylogenetic methods are inherently ‘transformationist’ and have replaced stratigraphy as the key to phylogenetic relationships. Numerical methods in systematics and biogeography are inherently transformational and suffer the same problems as the old palaeontology.  相似文献   

3.
4.
AMMONOIDS ACROSS THE PERMIAN/TRIASSIC BOUNDARY: A CLADISTIC PERSPECTIVE   总被引:1,自引:0,他引:1  
Abstract:  The rapid diversification of ceratitid ammonoids during the earliest Mesozoic has been taken at face value as an example of explosive radiation following the Permian/Triassic mass extinction. However, the validity of this interpretation has never been tested within a phylogenetic framework. A total evidence cladistic analysis of Mid–Late Permian and Induan (earliest Triassic) ammonoids confirms the monophyly of the Ceratitida. Partitioned phylogenetic analysis of suture line characters vs. shell shape and ornament characters confirms the importance of suture-line characters for resolving the higher taxonomy of ammonoids. When the cladogram is compared with the observed fossil record, the resultant tree implies that the divergence of a number of early Triassic lineages actually occurred during the latest Permian. If these range extensions are taken into account the ammonoid per-genus extinction rate across the Permian/Triassic boundary drops from c. 85 per cent to c. 60 per cent.  相似文献   

5.
The unique preservation of heteromorphic shells of Luppovia Kakabadze, Bogdanova & Mikhailova 1978 from the Aptian deposits of Bolshoj Balkhan (western Turkmenia) made it possible to study the microstructure, internal shell characteristics and suture ontogeny of this genus. Microstructural investigations revealed that the dorsal shell wall in Luppovia is composed of three layers in contrast to that of monomorphic ammonoids, which is single-layered. This ability of secreting different numbers of layers in monomorphs and heteromorphs demonstrates plasticity of secreting activity of the mantle epithelium. Data obtained from the study of internal shell structure and suture ontogeny have been compared. Both these methods of investigation lead to the conclusion that the genus Luppovia belongs to the order Ammonitida. The results obtained confirm the viewpoint that the Cretaceous heteromorphic superfamilies Turrilitaceae and Ancylocerataceae have independent origins and belong to two different orders, Lytoceratida and Ammonitida, respectively. □ Ammonoidea , Luppovia, shell structure, ontogeny, phylogeny, Cretaceous.  相似文献   

6.
A wind of change has swept through palaeontology in the past few decades. Contrast Sir Peter Medawar’s dismissive: ‘palaeontology is a particularly undemanding branch of science’ (as recalled by John Maynard Smith in Sabbagh 1999, p. 158) with ‘Palaeontology: grasping the opportunities in the science of the twenty–first century’, the title of a contribution to a special issue of Geobios by the Cambridge palaeontologist, Simon Conway Morris (1998a). The winds of change have come partly from palaeontologists seeking to broaden the impact of their studies and partly from biologists (neontologists) realizing the contributions that palaeontology can make to their disciplines. Consequently, impressions of past life preserved in stone are coming alive. Fossils are being described and analyzed using new tools and languages as the static fossil record becomes a record of transitions in patterns that can be explained and related to biological, ecological, climatic and tectonic changes. The latest addition is evolutionary developmental biology, or ‘evo–devo’, whose language provides a new basis upon which to interpret anatomical change, both materially and mechanistically. In this review I examine the major contributions made by palaeontology, how palaeontology has been linked to evolution and to embryology in the past, and how links with evo–devo have enlivened and will continue to enliven both palaeontology and evo–devo. Closer links between the two fields should illuminate important unresolved issues related to the origin of the metazoans (e.g. Why is there a conflict between molecular clocks and the fossil record in timing the metazoan radiation; were Precambrian metazoan ancestors similar to extant larvae or to miniature adults?) and to diversification of the metazoans (e.g. How do developmental constraints bias the direction of evolution; how do microevolutionary developmental processes relate to macroevolutionary changes?).  相似文献   

7.
The Triassic–Jurassic extinction resulted in the near demise of the ammonoids. Based on a survey of ammonoid expansion rates, coiling geometry and whorl shape, we use the Raup accretionary growth model to outline a universal morphospace for planispiral shell geometry. We explore the occupation of that planispiral morphospace in terms of both breadth and density of occupation in addition to separately reviewing the occurrence of heteromorphs. Four intervals are recognized: pre‐extinction (Carnian to Rhaetian); aftermath (Hettangian); post‐extinction (Sinemurian to Aalenian) and recovery (Bajocian to Callovian). The pre‐extinction and recovery intervals show maximum disparity. The aftermath is marked by the disappearance of heteromorphs and a dramatic reduction in the range of planispiral morphologies to a core area of the morphospace. It is also characterized by an expansion into an evolute, slowly expanding part of the morphospace that was not occupied prior to the extinction and is soon abandoned during the post‐extinction interval. Aftermath and post‐extinction ammonoid data show a persistent negative correlation whereby rapid expansion rates are associated with narrow umbilical widths and often compressed whorls. The permanently occupied core area of planispiral morphospace represents generalist demersals whose shells were probably optimizing both hydrodynamic efficiency and shell stability. All other parts of the planispiral morphospace, and the pelagic modes of life the shells probably exploited, were gradually reoccupied during the post‐extinction interval. Planispiral adaptation was by diffusion away from the morphospace core rather than by radical jumps. Recovery of disparity was not achieved until some 30 Myr after the extinction event.  相似文献   

8.
The origin and early evolution of birds   总被引:9,自引:0,他引:9  
Birds evolved from and are phylogenetically recognized as members of the theropod dinosaurs; their first known member is the Late Jurassic Archaeopteryx, now represented by seven skeletons and a feather, and their closest known non-avian relatives are the dromaeosaurid theropods such as Deinonychus. Bird flight is widely thought to have evolved from the trees down, but Archaeopteryx and its outgroups show no obvious arboreal or tree-climbing characters, and its wing planform and wing loading do not resemble those of gliders. The ancestors of birds were bipedal, terrestrial, agile, cursorial and carnivorous or omnivorous. Apart from a perching foot and some skeletal fusions, a great many characters that are usually considered ‘avian’ (e.g. the furcula, the elongated forearm, the laterally flexing wrist and apparently feathers) evolved in non-avian theropods for reasons unrelated to birds or to flight. Soon after Archaeopteryx, avian features such as the pygostyle, fusion of the carpometacarpus, and elongated curved pedal claws with a reversed, fully descended and opposable hallux, indicate improved flying ability and arboreal habits. In the further evolution of birds, characters related to the flight apparatus phylogenetically preceded those related to the rest of the skeleton and skull. Mesozoic birds are more diverse and numerous than thought previously and the most diverse known group of Cretaceous birds, the Enantiornithes, was not even recognized until 1981. The vast majority of Mesozoic bird groups have no Tertiary records: Enantiornithes, Hesperornithiformes, Ichthyornithiformes and several other lineages disappeared by the end of the Cretaceous. By that time, a few Linnean ‘Orders’ of extant birds had appeared, but none of these taxa belongs to extant ‘families’, and it is not until the Paleocene or (in most cases) the Eocene that the majority of extant bird ‘Orders’ are known in the fossil record. There is no evidence for a major or mass extinction of birds at the end of the Cretaceous, nor for a sudden ‘bottleneck’ in diversity that fostered the early Tertiary origination of living bird ‘Orders’.  相似文献   

9.
The ‘Age of Mammals’ began in the Paleocene epoch, the 10 million year interval immediately following the Cretaceous–Palaeogene mass extinction. The apparently rapid shift in mammalian ecomorphs from small, largely insectivorous forms to many small‐to‐large‐bodied, diverse taxa has driven a hypothesis that the end‐Cretaceous heralded an adaptive radiation in placental mammal evolution. However, the affinities of most Paleocene mammals have remained unresolved, despite significant advances in understanding the relationships of the extant orders, hindering efforts to reconstruct robustly the origin and early evolution of placental mammals. Here we present the largest cladistic analysis of Paleocene placentals to date, from a data matrix including 177 taxa (130 of which are Palaeogene) and 680 morphological characters. We improve the resolution of the relationships of several enigmatic Paleocene clades, including families of ‘condylarths’. Protungulatum is resolved as a stem eutherian, meaning that no crown‐placental mammal unambiguously pre‐dates the Cretaceous–Palaeogene boundary. Our results support an Atlantogenata–Boreoeutheria split at the root of crown Placentalia, the presence of phenacodontids as closest relatives of Perissodactyla, the validity of Euungulata, and the placement of Arctocyonidae close to Carnivora. Periptychidae and Pantodonta are resolved as sister taxa, Leptictida and Cimolestidae are found to be stem eutherians, and Hyopsodontidae is highly polyphyletic. The inclusion of Paleocene taxa in a placental phylogeny alters interpretations of relationships and key events in mammalian evolutionary history. Paleocene mammals are an essential source of data for understanding fully the biotic dynamics associated with the end‐Cretaceous mass extinction. The relationships presented here mark a critical first step towards accurate reconstruction of this important interval in the evolution of the modern fauna.  相似文献   

10.
In the present paper, we describe and figure some rare lower Aptian (Lower Cretaceous) helical ammonoids from the Deshayesites deshayesi Zone of the Argiles à Plicatules Formation (Paris Basin, NE France). Those are the only helical ammonoids known in this zone so far. They were only occasionally evoked in literature and this is probably on the basis of the specimens here described that, according to us, the genus Toxoceratoides (Helicancylidae) was wrongly regarded as possessing an early helical spiral part. We demonstrate here that these specimens are not belonging to Toxoceratoides nor Helicancylidae: they are interpreted as ‘abnormally’ helical representatives of the genus Ancyloceras (Ancyloceratidae) or a new taxon of Ancyloceratidae.  相似文献   

11.
Ammonoids are diverse and widespread fossil, externally shelled cephalopods that flourished for more than 300 Myr before their total extinction 65 Ma ago. In spite of two centuries of intensive scientific studies, their mode(s) of life and long‐distance dispersal abilities remain poorly known. Here, we address this by focusing on the latitudinal distribution of Early Triassic (approximately 250 Myr) ammonoids through similarity‐distance decay analyses. We examine and compare rates of similarity‐distance decay between various groups with respect to systematics, shell geometry and ornamentation to untangle phylogenetic, geometric and ornamental imprints on the observed biogeographical pattern. Our data do not support any phylogenetic and shell ornamentation influence, but rather demonstrate the significant effect of (sub‐)adult shell geometry on the similarity–distance decay: most evolute morphs tend to have been more endemic than most involute forms. This contrasts with the classic hypothesis that long‐distance ammonoid dispersal mainly occurred during the earliest planktonic stages, and thus that (sub‐)adult morphological characteristics should not constrain large‐scale biogeographical patterns of ammonoids. Although direct control by Sea Surface Temperature can be discarded, this result may indicate that at least some adult Triassic ammonoid morphs were skilled active swimmers capable of achieving long‐distance migration, as observed for some present‐day coleoid cephalopods. □Ammonoid, dispersal, similarity‐distance decay, morphology, phylogeny, biogeography, Triassic.  相似文献   

12.
Following publication of On the Origin of Species, biologists concentrated on and resolved the mechanisms of adaptation and speciation, but largely ignored extinction. Thus, extinction remained essentially a discipline of palaeontology. Adequate language is not available to describe extinction phenomena because they must be discussed in the passive voice, wherein populations simply ‘go extinct’ without reference to process, specifics, effects, or causality. Extinction is also described typically in terms of its dynamics (including rate or risk), and although correlative variables enhance our ability to predict extinction, they do not necessarily enable an understanding of process. Yet background extinction, like evolution, is a process requiring a functional explanation, without which it is impossible to formulate mechanisms. We define the mechanism of background extinction as a typically long‐term, multi‐generational loss of reproductive fitness. This simple concept has received little credence because of a perception that excess generation of progeny ensures population sustainability, and perhaps the misconception that the loss of reproductive fitness somehow constitutes selection against reproduction itself. During environmental shifts, reproductive fitness is compromised when biotic or abiotic extremes consistently exceed existing norms of reaction. Subsequent selection will now favour individual survival over reproductive fitness, initiating long‐term negative selection pressure and population decline. Background extinction consists typically of two intergrading phases: habitat attenuation and habitat dissolution. These processes generate the relict populations that characterize many species undergoing background extinction. © 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, 105 , 255–268.  相似文献   

13.
Abstract: The Spanish town of Galve (Teruel) is notable because of the abundance of Upper Jurassic and, especially, Lower Cretaceous vertebrates recorded there. Although most groups have been studied in detail, information on turtles is very limited even though the material is relatively abundant. So far, no turtle taxa have been identified at the generic level. The only Lower Cretaceous articulated specimen from Galve is analysed here. It is identified as a representative of Cryptodira, Galvechelone lopezmartinezae gen. et sp. nov. Galvechelone lopezmartinezae is determined as a taxon belonging to the node that groups the turtles traditionally assigned to ‘Macrobaenidae’ and ‘Sinemydidae’, and other taxa such as the members of Panchelonioidea. This node, very abundant in the Lower Cretaceous of Asia, and with a broad subsequent distribution, has recently been recognized in the Lower Cretaceous of Europe. The diversity of basal members of Eucryptodira in the European Late Jurassic (represented by Thalassemydidae, Plesiochelyidae and Eurysternidae) was high. Owing to a relative scarcity of well‐preserved early Cretaceous turtles from Europe, the knowledge of this group of reptiles is limited. The study of the new turtle from Galve, together with the recently described Hoyasemys jimenezi, and the recently completed review of the enigmatic Chitracephalus dumonii demonstrate that members of the cryptodiran node grouping ‘Macrobaenidae’, ‘Sinemydidae’ and Panchelonioidea were also very diverse in this period.  相似文献   

14.
Marine and terrestrial animals show a mosaic of lineage extinctions and diversifications during the Jurassic–Cretaceous transition. However, despite its potential importance in shaping animal evolution, few palaeontological studies have focussed on this interval and the possible climate and biotic drivers of its faunal turnover. In consequence evolutionary patterns in most groups are poorly understood. We use a new, large morphological dataset to examine patterns of lineage diversity and disparity (variety of form) in the marine tetrapod clade Plesiosauria, and compare these patterns with those of other organisms. Although seven plesiosaurian lineages have been hypothesised as crossing the Jurassic–Cretaceous boundary, our most parsimonious topology suggests the number was only three. The robust recovery of a novel group including most Cretaceous plesiosauroids (Xenopsaria, new clade) is instrumental in this result. Substantial plesiosaurian turnover occurred during the Jurassic–Cretaceous boundary interval, including the loss of substantial pliosaurid, and cryptoclidid diversity and disparity, followed by the radiation of Xenopsaria during the Early Cretaceous. Possible physical drivers of this turnover include climatic fluctuations that influenced oceanic productivity and diversity: Late Jurassic climates were characterised by widespread global monsoonal conditions and increased nutrient flux into the opening Atlantic‐Tethys, resulting in eutrophication and a highly productive, but taxonomically depauperate, plankton. Latest Jurassic and Early Cretaceous climates were more arid, resulting in oligotrophic ocean conditions and high taxonomic diversity of radiolarians, calcareous nannoplankton and possibly ammonoids. However, the observation of discordant extinction patterns in other marine tetrapod groups such as ichthyosaurs and marine crocodylomorphs suggests that clade‐specific factors may have been more important than overarching extrinsic drivers of faunal turnover during the Jurassic–Cretaceous boundary interval.  相似文献   

15.
16.
The relationship between the appearances of heteromorph and monomorph ammonoids and changes in the abiotic environment was studied. The correlation of these processes was examined for different intervals in the Early Cretaceous. The phylogeny of the superfamily Ancyloceratoidea Gill from the time of appearance of early heteromorphs (due to changes in ecological specialization) and the reversal process of the return to monomorph shells is examined for four superfamilies. The origin of monomorph ammonites of the superfamilies Theodoritoidea Baraboshkin et I. Michailova, superfam. nov., Douvilleiceratoidea Parona et Bonarelli, Parahoplitoidea Spath et Deshayesitoidea Stoyanow from heteromorph ancestral families Crioceratitidae Gill, Ancyloceratidae Gill, Hemihoplitidae Spath, and Heteroceratidae Spath in the superfamily Ancyloceratoidea Gill is suggested.  相似文献   

17.
The mid-Cretaceous of North America and Europe has long been noted for the absence of sauropod dinosaurs, leading several authors to suggest that this depauperate interval is a consequence of an end-Albian sauropod extinction. This time period has become known as the ‘mid-Cretaceous sauropod hiatus’, with the subsequent presence of titanosaurian sauropods in the latest Cretaceous of North America and Europe interpreted as the result of dispersal of taxa from South America and Africa, respectively. However, several lines of evidence indicate that this hiatus is probably a sampling artefact. New fossil and trackway discoveries have considerably shortened the hiatus, reducing it to the Turonian–early Campanian in North America, and to just two short intervals in the late Cenomanian–early Turonian and late Coniacian–Santonian of Europe. Palaeoenvironmental analyses of sauropods demonstrate an inland terrestrial preference for titanosaurs, the dominant Late Cretaceous sauropods; however, during the hiatus there was a decline in inland deposits and increase in coastal sediments in Europe and North America, which would have greatly reduced the probability of preserving titanosaurs. Neither the decline in inland deposits, nor the ‘sauropod hiatus’, occurred elsewhere in the world. Statistical comparisons also demonstrate a significant positive correlation between fluctuations in inland deposits and sauropod occurrences during the mid–Late Cretaceous in Europe and North and South America. Lastly, cladistic analyses do not place latest Cretaceous North American and European titanosaurs within South American and African clades, contradicting the predictions of the ‘austral immigrant’ hypothesis. The latter hypothesis also receives little support from biogeographical analysis of dispersal among titanosaurs. Thus, the ‘sauropod hiatus’ of North America and Europe is most plausibly interpreted as the product of a sampling bias pertaining to the rarity of inland sediments and dominance of coastal deposits preserved in these two regions during the mid-Cretaceous. The presence of titanosaurs in these areas during the latest Cretaceous can be explained by dispersal from Southern Hemisphere continents, but this is no more probable than descent from Early Cretaceous incumbent faunas or dispersal from Asia.  相似文献   

18.
The avifauna of New Zealand is taxonomically and ecologically distinctive, as is typical of island biotas. However, the potential for an old geological age of New Zealand has encouraged a popular notion of a ‘Moa’s ark’ based on the idea that much of the fauna was isolated when Zealandia broke from Gondwana c. 83 million years ago. Molecular phylogenetics has proved useful for exploring the relative importance of different biogeographical processes, revealing for example that ‘tramp’ species (widely dispersing taxa) have arrived in New Zealand even in the last few hundred years, and that some avian taxa have close phylogenetic relatives overseas (predominantly Australian), indicating their recent ancestors were tramps, too. Distinctive taxa with deep phylogenetic ancestry might be ‘vicars’ that owe their presence to vicariance, but lack of close morphological, taxonomic and phylogenetic affinity provides only tenuous evidence for this. Disproving the alternative possibility that apparent vicars are descended from tramps that dispersed in earlier times remains challenging, but molecular analyses have yielded startling insights. Among New Zealand’s iconic taxa, the world’s largest eagle shared a Pleistocene ancestor with a small Australian eagle, and giant, flightless moa are phylogenetic sisters of the much smaller, flying tinamous of South America. The New Zealand avifauna is neither isolated nor stable, but demonstrative of prolonged and ongoing colonization, speciation and extinction.  相似文献   

19.
Atoposaurids are a group of small‐bodied, extinct crocodyliforms, regarded as an important component of Jurassic and Cretaceous Laurasian semi‐aquatic ecosystems. Despite the group being known for over 150 years, the taxonomic composition of Atoposauridae and its position within Crocodyliformes are unresolved. Uncertainty revolves around their placement within Neosuchia, in which they have been found to occupy a range of positions from the most basal neosuchian clade to more crownward eusuchians. This problem stems from a lack of adequate taxonomic treatment of specimens assigned to Atoposauridae, and key taxa such as Theriosuchus have become taxonomic ‘waste baskets’. Here, we incorporate all putative atoposaurid species into a new phylogenetic data matrix comprising 24 taxa scored for 329 characters. Many of our characters are heavily revised or novel to this study, and several ingroup taxa have never previously been included in a phylogenetic analysis. Parsimony and Bayesian approaches both recover Atoposauridae as a basal clade within Neosuchia, more stemward than coelognathosuchians, bernissartiids, and paralligatorids. Atoposauridae is a much more exclusive clade than previously recognized, comprising just three genera (Alligatorellus, Alligatorium, and Atoposaurus) that were restricted to the Late Jurassic of western Europe, and went extinct at the Jurassic/Cretaceous boundary. A putative Gondwanan atoposaurid (Brillanceausuchus) is recovered as a paralligatorid. Our results exclude both Montsecosuchus and Theriosuchus from Atoposauridae. Theriosuchus is polyphyletic, forming two groupings of advanced neosuchians. Theriosuchus (restricted to Theriosuchus pusillus, Theriosuchus guimarotae, and Theriosuchus grandinaris) spanned the Middle Jurassic to early Late Cretaceous, and is known from Eurasia and North Africa. Two Cretaceous species previously assigned to Theriosuchus (‘Theriosuchusibericus and ‘Theriosuchussympiestodon) are shown to be nested within Paralligatoridae, and we assign them to the new genus Sabresuchus. The revised phylogenetic placement of Theriosuchus has several implications for our understanding of eusuchian evolution. Firstly, the presence of fully pterygoidean choanae, previously regarded as a defining characteristic of Eusuchia, is not found in some basal members of Eusuchia. However, eusuchians can be distinguished from Theriosuchus and other basal neosuchians in that their choanae are posteriorly positioned, with an anterior margin medial to the posterior edge of the suborbital fenestra. This feature distinguishes eusuchians from Theriosuchus and more basal neosuchians. Secondly, our refined understanding of Theriosuchus implies that this taxon possessed only amphicoelous presacral vertebrae, and therefore fully developed vertebral procoely is likely to have evolved only once in Crocodylomorpha, on the lineage leading to Eusuchia. These and other findings presented herein will provide an important framework for understanding the neosuchian–eusuchian transition.  相似文献   

20.
Species structure and phylogenetic relationships among the four currently recognised North Atlantic redfish species, Sebastes mentella (‘deep‐sea’ and ‘oceanic’ phenotype), S. marinus (including ‘giant’ phenotype), S. fasciatus and S. viviparus, were investigated by sequencing the complete mitochondrial NADH dehydrogenase subunit 3 (ND3) gene for 313 individuals (333 including outliers). Low levels of sequence divergence of 0.3–2.3% between the North Atlantic Sebastes haplotypes, low resolution in phylogenetic trees and a star‐like statistical parsimony network indicate a population bottleneck and/or founder event with a subsequent population expansion and a rapid speciation in North Atlantic Sebastes. Diagnostic mutations within the ND3 gene were recognised for some of the species. The results lead to the hypothesis that the ancestral haplotype lineage is now very rare or has suffered extinction and that the most basal lineage is found in S. viviparus. The results further indicate direct descendants in the S. fasciatus and S. marinus lineages from the S. mentella lineage, whereas the S. viviparus lineage originates from an earlier division. The observation of two haplotype lineages in S. marinus with a relatively high level of intraspecific genetic divergence, points towards a possible cryptic speciation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号