首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tight junctions and microvilli constitute an anti-invasive barrier at the luminal side of enteric cell layers. Both subcellular structures are disrupted following adhesion of Entamoeba histolytica trophozoites to enteric cell layers in vitro. It was our aim to analyse the molecular mechanism underlying this disruption. Therefore, we cocultured enteric T84 cell layers established on filter inserts with E. histolytica trophozoites and tested various modulators of enteric molecules, involved in the functional regulation of tight junctions, as well as inhibitors of trophozoite virulence factors on their capacity to maintain the transepithelial electrical resistance. Pretreatment of trophozoites with the proteinase inhibitor N-Tosyl-Phenylalanine chloromethyl ketone or N-Tosyl-l-Lysine chloromethyl ketone prevented the decrease in transepithelial electrical resistance whereas none of the modulators used to pretreat enterocytes were successful. Moreover, zymography and Western blot analysis revealed that both N-Tosyl-Phenylalanine chloromethyl ketone and N-Tosyl-l-Lysine chloromethyl ketone inhibited E. histolytica cysteine proteinases and prevented proteolysis of tight junction molecules ZO-1 and ZO-2 and of villin, the major actin bundling molecule in microvilli. Immunocytochemistry with an antibody against ezrin, an actin-binding molecule in microvilli, and phase contrast microscopy demonstrated that pretreatment of trophozoites with N-Tosyl-Phenylalanine chloromethyl ketone or N-Tosyl-l-Lysine chloromethyl ketone also prevented disturbance of microvilli and destruction of Caco-2 enteric cell layers in cocultures. Taken together, our results indicate that trophozoites use their proteinases to overcome microvilli and tight junction barriers during the invasion of enteric cell layers, that these phenomena could be prevented by pretreatment of trophozoites with N-Tosyl-Phenylalanine chloromethyl ketone or N-Tosyl-l-Lysine chloromethyl ketone, and that such pretreatment disabled trophozoites to destroy enteric cell layers in vitro.  相似文献   

2.
Entamoeba (E.) histolytica trophozoites initiate amebiasis through invasion into the enteric mucosa. It was our aim to understand the molecular interactions between amebic trophozoites and enterocytes during the early steps of invasion. Trophozoites of E. histolytica strain HM1:IMSS were seeded on the apical side of enteric T84 cell layers, which were established on filters in two-compartment culture chambers. Cocultures were analyzed for paracellular permeability by measurement of transepithelial electrical resistance (TER) and for the tight junction proteins ZO-1, ZO-2, occludin, and cingulin by immunocytochemistry and immunoprecipitation. On direct contact with the apical side of the enteric cells, trophozoites caused an increase in paracellular permeability as evidenced by a decrease of TER associated with an increase in [(3)H]mannitol flux. Immunoprecipitation of cocultures revealed dephosphorylation of ZO-2, loss of ZO-1 from ZO-2, and degradation of ZO-1 but less so of ZO-2 and none of occludin or E-cadherin. In conclusion, trophozoite-associated increase in paracellular permeability of enteric cell layers is ascribed to disturbance of the molecular organization of tight junction proteins.  相似文献   

3.
The injection of 1 x 10(6) trophozoites of axenically grown Entamoeba histolytica strain HM-1 in the subcutaneous tissue of the rat results in an acute and self-limited inflammatory process, characterized by the early onset of conspicuous tissue necrosis and focal hemorrhage in the vicinity of the parasites, followed by infiltration with polymorphonuclear leukocytes. The process develops for 5-10 hr but during that period amebic trophozoites progressively disappear, leukocytes undergo degenerative changes, and the lesion tends to heal in 72-96 hr. In leukopenic animals (less than 1000 white blood cells/ml) tissue necrosis and hemorrhage are equally conspicuous in the neighborhood of amebas. Inhibition of amebic proteinase activity prior to injection by heat denaturation, p-hydroxy-mercuri-benzoate (PHMB), soybean trypsin inhibitor (STI), and human alpha-2-macroglobulin (alpha 2M), alone or in various combinations, results in absence or notorious decrease in tissue necrosis as well as in clearly diminished inflammatory reaction. This effect is particularly evident when cysteine proteinases are either specifically or generally inhibited. On the other hand, amebic proteinase inhibition with alpha 2M and STI does not interfere with the cell-killing capacity of trophozoites co-incubated in vitro for 2 hr with rat peritoneal cells enriched for macrophages. We conclude that in acute experimental amebiasis produced in the subcutaneous tissue of the rat, amebic cysteine (and perhaps other) proteinases are primarily responsible for necrosis and are also important, but not essential, for inflammation. We also suggest that in this model polymorphonuclear leukocytes are not required for tissue necrosis. Finally, in an in vitro model, the cell-killing capacity of amebas is not influenced by the proteinase activity of the parasite.  相似文献   

4.
Induction of a phosphomannosyl binding lectin activity in Giardia   总被引:1,自引:0,他引:1  
Giardia lamblia, a protozoan parasite that causes widespread diarrheal disease, expresses a surface membrane associated lectin, taglin, which is specifically activated by limited proteolysis with trypsin, a protease that is present in abundance at the site of infection. When activated, taglin agglutinates enterocytes which are the cells to which the parasite adheres in vivo, and in addition, binds to isolated brush border membranes of these cells. These findings suggest that this lectin may be involved in the host-parasite interaction. Taglin is most specific for terminal phosphomannosyl residues and its binding to red cells is mediated by cell surface phosphate residues. Hemagglutinating activity induced by taglin is most active at pH 6.5 and is dependent on divalent cations. A monoclonal antibody to taglin reacts with the surface membrane of live trophozoites and recognizes a protein of 28/30 kDa in lysates of Giardia trophozoites, by immunoblotting. This finding is confirmed by direct demonstration of lectin activity by erythrocyte binding to proteins electroblotted to nitrocellulose, which revealed specific red cell binding to giardial protein bands in the same molecular weight range as those recognized by the monoclonal antibody.  相似文献   

5.
Work from several laboratories suggests a correlation between expression of cysteine proteinase activity and the cytopathic effect of virulent HM1 strain Entamoeba histolytica trophozoites on cultured cell monolayers. Consistent with this relationship, we find that L-6 trophozoites, mutants cloned from the HM1 parent strain, are deficient in both proteinase expression and cytopathic effect. Three other clones, with proteinase expression equal to or greater than that of the HM1 strain, express the cytopathic effect. Furthermore, a nontoxic specific proteinase inhibitor, Z-phenylalanyl-alanyl-CH2F, inhibits the cytopathic effect of live trophozoites in a dose-dependent manner. These results support the hypothesis that expression and release of the cysteine proteinase is an important factor in producing the cytopathic effect, presumably by its degradation of cell anchoring proteins.  相似文献   

6.
We have explored the development of the brush border in adult chicken enterocytes by analyzing the cytoskeletal protein and mRNA levels as enterocytes arise from crypt stem cells and differentiate as they move toward the villus. At the base of the crypt, a small population of cells contain a rudimentary terminal web and a few short microvilli with long rootlets. These microvilli appear to arise from bundles of actin filaments which nucleate on the plasma membrane. The microvilli apparently elongate via the addition of membrane supplied by vesicles that fuse with the microvillus and extend the membrane around the actin core. Actin, villin, myosin, tropomyosin and spectrin, but not myosin I (previously called 110 kD; see Mooseker and Coleman, J. Cell Biol. 108, 2395-2400, 1989) are already concentrated in the luminal cytoplasm of crypt cells, as seen by immunofluorescence. Using quantitative densitometry of cDNA-hybridized RNA blots from cells isolated from crypts, villus middle (mid), or villus tip (tip), we found a 2- to 3-fold increase in villin, calmodulin and tropomyosin steady-state mRNA levels; an increase parallel to morphological brush border development. Actin, spectrin and myosin mRNA levels did not change significantly. ELISA of total crypt, mid and tip cell lysates show that there are no significant changes in actin, myosin, spectrin, tropomyosin, myosin I, villin or alpha-actinin protein levels as the brush border develops. The G-/F-actin ratio also did not change with brush border assembly. We conclude that, although the brush border is not fully assembled in immature enterocytes, the major cytoskeletal proteins are present in their full concentration and already localized within the apical cytoplasm. Therefore brush border formation may involve reorganization of a pool of existing cytoskeletal proteins mediated by the expression or regulation of an unidentified key protein(s).  相似文献   

7.
Giardia duodenalis infections are among the most common causes of waterborne diarrhoeal disease worldwide. At the height of infection, G. duodenalis trophozoites induce multiple pathophysiological processes within intestinal epithelial cells that contribute to the development of diarrhoeal disease. To date, our understanding of pathophysiological processes in giardiasis remains incompletely understood. The present study reveals a previously unappreciated role for G. duodenalis cathepsin cysteine proteases in intestinal epithelial pathophysiological processes that occur during giardiasis. Experiments first established that Giardia trophozoites indeed produce cathepsin B and L in strain-dependent fashion. Co-incubation of G. duodenalis with human enterocytes enhanced cathepsin production by Assemblage A (NF and S2 isolates) trophozoites, but not when epithelial cells were exposed to Assemblage B (GSM isolate) trophozoites. Direct contact between G. duodenalis parasites and human intestinal epithelial monolayers resulted in the degradation and redistribution of the intestinal epithelial cytoskeletal protein villin; these effects were abolished when parasite cathepsin cysteine proteases were inhibited. Interestingly, inhibition of parasite proteases did not prevent degradation of the intestinal tight junction-associated protein zonula occludens 1 (ZO-1), suggesting that G. duodenalis induces multiple pathophysiological processes within intestinal epithelial cells. Finally, this study demonstrates that G. duodenalis-mediated disruption of villin is, at least, in part dependent on activation of myosin light chain kinase (MLCK). Taken together, this study indicates a novel role for parasite cathepsin cysteine proteases in the pathophysiology of G. duodenalis infections.  相似文献   

8.
We have examined by gelatin-SDS-PAGE the protease activity in cell lysates of Giardia duodenalis trophozoites of two axenic strains isolated in Brazil from a symptomatic patient (BTU-11) and an asymptomatic carrier (BTU-10), and the reference strain Portland 1 (P1). The proteolysis band patterns showed differences among strains isolated from asymptomatic and symptomatic individuals. The lysate of the strain BTU-10, showed only five hydrolysis bands, while a greater number of bands (10-11 bands) was seen in strains BTU-11 and P1. The protease activity in all lysates was inhibited by cysteine (E-64 and iodoacetamide) and serine proteases (TPCK and TLCK) inhibitors, but not by PMSF and EDTA. In general, the results revealed protease activities in G. duodenalis trophozoites of Brazilian axenic strains and the predominance of cysteine proteinases. It should be stressed the inter-strain difference in hydrolysis band patterns observed between strains isolated from symptomatic patients and the strain obtained from an asymptomatic carrier.  相似文献   

9.
Morphological and immunocytochemical techniques were used to examine the distribution of villin, with respect to actin, during the early events of brush border morphogenesis in the embryonic chicken intestine. Immunolocalization studies indicate that actin and villin exist as a cortical array in the apical domain of embryonic enterocytes at a time when few surface microvilli are visible by scanning and transmission electron microscopic techniques. A population of villin is also localized at the level of the junctional complex. With time, the density of microvilli increases and the cells begin to flatten. In these cells, villin is detected in the newly formed microvilli and also in the subjacent cortex, where microvillar rootlets are beginning to appear. The significance of actin-villin associations in the process of brush border assembly is discussed in the light of the functional properties of villin.  相似文献   

10.
Transfer of antigens frequently follows adhesion of protozoan parasites to host cells. We were interested in such transfer from the Entamoeba surface to enterocytes following adhesion of trophozoites. Therefore, cocultures of enterocytes in vitro and ex vivo with Entamoeba histolytica (strain HM-1:IMSS) or Entamoeba dispar (strain SAW760) trophozoites were processed for immunocytochemistry. The EH5 monoclonal antibody against amoebic proteophosphoglycans marked a dotted pattern on the apical side of enterocytes in in vitro cocultures with HM-1:IMSS and SAW760 trophozoites. Basolateral staining was present in cocultures following dysfunction of tight junctions, or when trophozoites made direct contact with the basolateral side of enterocytes in in vitro and ex vivo cocultures. Based on the molecular mass in Western blot, the transferred proteophosphoglycan was identified as a lipophosphopeptidoglycan. In conclusion, trophozoites transfer LPPG to the apical side of enterocytes following adhesion and prior to dysfunction of tight junctions.  相似文献   

11.
Entamoeba histolytica: purification of cathepsin B   总被引:4,自引:0,他引:4  
A cytotoxic cysteine proteinase with a molecular weight of 16,000 was isolated from axenically grown trophozoites of Entamoeba histolytica. The enzyme was purified from frozen-thawed strain HM-1 by ion-exchange chromatography on DEAE-cellulose, organomercurial agarose affinity chromatography, and size-exclusion chromatography. The purified enzyme had proteinase activity that could be demonstrated on azocasein (pH 5), hemoglobin (pH 5), or carbobenzoxy-L-arginyl--L-arginyl-7-amino-4-trifluoromethylcoumarin++ + (Z-arg-arg-AFC), a substrate specific for cathepsin B. Enzyme activity was stable to high pH, but not to 40 C for 1 hr or 56 C for 0.5 hr. As typical of cysteine proteinases, inhibition of activity on Z-arg-arg-AFC by p-chloromercuribenzoate or mercury was reversed by free sulfhydryl groups. Both the proteinase and cytotoxic activities of the purified amoebal cathepsin B were inhibited by leupeptin and serum and activated by free sulfhydryl groups, supporting the hypothesis that both activities are characteristics of amoebal cathepsin B. Virulent strains of E. histolytica (HM-1 and Rahman) had significantly more cathepsin B activity per milligram protein than less virulent strains (HK-9, Laredo, and Huff). The correlation between higher levels of cathepsin B activity in strains with greater virulence could indicate a role for amoebal cathepsin B in the pathogenesis of amoebiasis.  相似文献   

12.
13.
Protease activities of rumen protozoa.   总被引:3,自引:1,他引:2       下载免费PDF全文
Intact, metabolically active rumen protozoa prepared by gravity sedimentation and washing in a mineral solution at 10 to 15 degrees C had comparatively low proteolytic activity on azocasein and low endogenous proteolytic activity. Protozoa washed in 0.1 M potassium phosphate buffer (pH 6.8) at 4 degrees C and stored on ice autolysed when they were warmed to 39 degrees C. They also exhibited low proteolytic activity on azocasein, but they had a high endogenous proteolytic activity with a pH optimum of 5.8. The endogenous proteolytic activity was inhibited by cysteine proteinase inhibitors, for example, iodoacetate (63.1%) and the aspartic proteinase inhibitor, pepstatin (43.9%). Inhibitors specific for serine proteinases and metalloproteinases were without effect. The serine and cysteine proteinase inhibitors of microbial origin, including antipain, chymostatin, and leupeptin, caused up to 67% inhibition of endogenous proteolysis. Hydrolysis of casein by protozoa autolysates was also inhibited by cysteine proteinase inhibitors. Some of the inhibitors decreased endogenous deamination, in particular, phosphoramidon, which had little inhibitory effect on proteolysis. Protozoal and bacterial preparations exhibited low hydrolytic activities on synthetic proteinase and carboxypeptidase substrates, although the protozoa had 10 to 78 times greater hydrolytic activity (per milligram of protein) than bacteria on the synthetic aminopeptidase substrates L-leucine-p-nitroanilide, L-leucine-beta-naphthylamide, and L-leucinamide. The aminopeptidase activity was partially inhibited by bestatin. It was concluded that cysteine proteinases and, to a lesser extent, aspartic proteinases are primarily responsible for proteolysis in autolysates of rumen protozoa. The protozoal autolysates had high aminopeptidase activity; low deaminase activity was observed on endogenous amino acids.  相似文献   

14.
Intact, metabolically active rumen protozoa prepared by gravity sedimentation and washing in a mineral solution at 10 to 15 degrees C had comparatively low proteolytic activity on azocasein and low endogenous proteolytic activity. Protozoa washed in 0.1 M potassium phosphate buffer (pH 6.8) at 4 degrees C and stored on ice autolysed when they were warmed to 39 degrees C. They also exhibited low proteolytic activity on azocasein, but they had a high endogenous proteolytic activity with a pH optimum of 5.8. The endogenous proteolytic activity was inhibited by cysteine proteinase inhibitors, for example, iodoacetate (63.1%) and the aspartic proteinase inhibitor, pepstatin (43.9%). Inhibitors specific for serine proteinases and metalloproteinases were without effect. The serine and cysteine proteinase inhibitors of microbial origin, including antipain, chymostatin, and leupeptin, caused up to 67% inhibition of endogenous proteolysis. Hydrolysis of casein by protozoa autolysates was also inhibited by cysteine proteinase inhibitors. Some of the inhibitors decreased endogenous deamination, in particular, phosphoramidon, which had little inhibitory effect on proteolysis. Protozoal and bacterial preparations exhibited low hydrolytic activities on synthetic proteinase and carboxypeptidase substrates, although the protozoa had 10 to 78 times greater hydrolytic activity (per milligram of protein) than bacteria on the synthetic aminopeptidase substrates L-leucine-p-nitroanilide, L-leucine-beta-naphthylamide, and L-leucinamide. The aminopeptidase activity was partially inhibited by bestatin. It was concluded that cysteine proteinases and, to a lesser extent, aspartic proteinases are primarily responsible for proteolysis in autolysates of rumen protozoa. The protozoal autolysates had high aminopeptidase activity; low deaminase activity was observed on endogenous amino acids.  相似文献   

15.
Acanthamoeba species can cause granulomatous encephalitis and keratitis in man. The mechanisms that underlie tissue damage and invasion by the amoebae are poorly understood, but involvement of as yet uncharacterized proteinases has been suggested. Here, we employed gelatin-containing gels and azocasein assays to examine proteinase activities in cell lysates and in medium conditioned by Acanthamoeba polyphaga trophozoites. Azocasein hydrolysis by cell lysates was optimally detected at pH 4.0-5.0 and was predominantly associated with the activity of cysteine proteinases. Compatible with enzyme activation during secretion, culture supernatants additionally contained a prominent azocasein hydrolyzing activity attributable to serine proteinases; these enzymes were better detected at pH 6.0 and above, and resolved at 47, 60, 75, 100, and >110 kDa in overlay gelatin gels. Although a similar banding profile was observed in gels of trophozoite lysates, intracellular serine proteinases were shown to be activated during electrophoresis and to split the substrate during migration in sodium dodecyl sulfate gels. Blockage of serine proteinases with phenylmethylsulfonylfluoride prior to electrophoresis permitted the detection of 43-, 59-, 70-, and 100-130-kDa acidic cysteine proteinases in cell lysates, and of 3 (43, 70, and 130 kDa) apparently equivalent enzymes in culture supernatants. Under the conditions employed, no band associated with a metalloproteinase activity could be depicted in substrate gels, although the discrete inhibition of supernatants' azocaseinolytic activity by 1,10-phenanthroline suggested secretion of some metalloproteinase.  相似文献   

16.
Invasion of human tissues by the parasitic protozoan Entamoeba histolytica is a multistep process involving, as a first step, the recognition of surface molecules on target tissues by the amebas or trophozoites. This initial contact is followed by the release of proteolytic and other activities that lyse target cells and degrade the extracellular matrix. In other parasitic diseases, as well as in certain cancers, the interaction of invasive organisms or cells with fibronectin (FN) through specific receptors has been shown to be the initial step in target cell recognition. Interaction with FN triggers the release of proteolytic activities necessary for the effector cell migration and invasion. Here, we describe the specific interaction of Entamoeba histolytica trophozoites with FN, and identify a 37-kD membrane peptide as the putative receptor for FN. The interaction between the parasite and FN leads to a response reaction that includes the secretion of proteases that degrade the bound FN and the rearrangement of amebic actin into "adhesion plates" at sites of contact with FN-coated surfaces. The kinetics of the interaction was determined by measuring the binding of soluble 125I-FN to the trophozoites and visualization of the bound protein using specific antibodies. Degradation of FN was measured by gel electrophoresis and the release of radioactivity into the incubation medium. Focal degradation of FN was visualized as black spots under the trophozoites at contact sites with fluorescent FN. We conclude that the interaction of E. histolytica with FN occurs through a specific surface receptor. The interaction promotes amebic cytoskeleton changes and release of proteases from the parasite. The binding and degradation of extracellular matrix components may facilitate the migration and penetration of amebas into tissues, causing the lesions seen in human hosts.  相似文献   

17.
Proteolytic activity of the bovine rumen microflora was studied with azocasein as the substrate. Approximately 25% of the proteolytic activity of rumen contents was recovered in the strained rumen fluid fraction, and the balance of the activity was associated with the particulate fraction. The proportion of proteinase activity associated with particulate material decreased when the quantity of particulate material in rumen contents was reduced. The specific activity of the proteinase from the bacterial fraction was 6 to 10 times higher than that from the protozoal fraction. Proteinase inhibitors of synthetic, plant, and microbial origin were tested on proteolytic activity of the separated bacteria. Synthetic proteinase inhibitors that caused significant inhibition of proteolysis included phenylmethylsulfonyl fluoride, N-tosyl-1-lysine chloromethyl ketone, N-tosylphenylalanine chloromethyl ketone, EDTA, cysteine, dithiothreitol, iodoacetate, and Merthiolate. Plant proteinase inhibitors that had an inhibitory effect included soybean trypsin inhibitors types I-S and II-S and the lima bean trypsin inhibitor. Proteinase inhibitors of microbial origin that showed an inhibitory effect included antipain, leupeptin, and chymostatin; phosphoramidon and pepstatin had little effect. We tentatively concluded that rumen bacteria possess, primarily, serine, cysteine, and metalloproteinases.  相似文献   

18.
Proteolytic activity of the bovine rumen microflora was studied with azocasein as the substrate. Approximately 25% of the proteolytic activity of rumen contents was recovered in the strained rumen fluid fraction, and the balance of the activity was associated with the particulate fraction. The proportion of proteinase activity associated with particulate material decreased when the quantity of particulate material in rumen contents was reduced. The specific activity of the proteinase from the bacterial fraction was 6 to 10 times higher than that from the protozoal fraction. Proteinase inhibitors of synthetic, plant, and microbial origin were tested on proteolytic activity of the separated bacteria. Synthetic proteinase inhibitors that caused significant inhibition of proteolysis included phenylmethylsulfonyl fluoride, N-tosyl-1-lysine chloromethyl ketone, N-tosylphenylalanine chloromethyl ketone, EDTA, cysteine, dithiothreitol, iodoacetate, and Merthiolate. Plant proteinase inhibitors that had an inhibitory effect included soybean trypsin inhibitors types I-S and II-S and the lima bean trypsin inhibitor. Proteinase inhibitors of microbial origin that showed an inhibitory effect included antipain, leupeptin, and chymostatin; phosphoramidon and pepstatin had little effect. We tentatively concluded that rumen bacteria possess, primarily, serine, cysteine, and metalloproteinases.  相似文献   

19.
Summary Brush borders which are localized at the apical face of enterocytes, are composed of thousands of stiff microvilli containing bundles of microfilaments made of actin. Their assembly occurs during terminal differentiation of the enterocytes when these cells migrate along the villus of the intestinal mucosa. The cell line HT 29 derived from a human colonic adenocarcinoma whose differentiation can be induced, can also be used as a model to study in culture the assembly of the intestinal brush border.Villin is one of the actin binding proteins found in microvilli which compose brush borders. Villin is expressed in the adult and in the embryo before the appearance of the brush border. Villin can be used as a tissue-specific marker for normal diffentiated and undifferentiated cells derived from gastrointestinal tractus in the adult as well as in the embryo. Since villin is a good marker for intestinal cells and plays a structural role in the assembly of the brush border we have analysed its expression and its localization in HT 29 cells. In HT 29 cells, as in the tissue, villin is synthesized at low levels before the appearance of the brush border. The high rate of synthesis and the recruitement of villin at the apical pole of the cells can be correlated with the existence of a well developed brush border.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号