首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The novel coronavirus SARS-CoV-2, the causative agent of COVID-19 disease, has killed over five million people worldwide as of December 2021 with infections rising again due to the emergence of highly transmissible variants. Animal models that faithfully recapitulate human disease are critical for assessing SARS-CoV-2 viral and immune dynamics, for understanding mechanisms of disease, and for testing vaccines and therapeutics. Pigtail macaques (PTM, Macaca nemestrina) demonstrate a rapid and severe disease course when infected with simian immunodeficiency virus (SIV), including the development of severe cardiovascular symptoms that are pertinent to COVID-19 manifestations in humans. We thus proposed this species may likewise exhibit severe COVID-19 disease upon infection with SARS-CoV-2. Here, we extensively studied a cohort of SARS-CoV-2-infected PTM euthanized either 6- or 21-days after respiratory viral challenge. We show that PTM demonstrate largely mild-to-moderate COVID-19 disease. Pulmonary infiltrates were dominated by T cells, including CD4+ T cells that upregulate CD8 and express cytotoxic molecules, as well as virus-targeting T cells that were predominantly CD4+. We also noted increases in inflammatory and coagulation markers in blood, pulmonary pathologic lesions, and the development of neutralizing antibodies. Together, our data demonstrate that SARS-CoV-2 infection of PTM recapitulates important features of COVID-19 and reveals new immune and viral dynamics and thus may serve as a useful animal model for studying pathogenesis and testing vaccines and therapeutics.  相似文献   

2.
3.
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 2019 (COVID-19) in humans, has a broad host range, and is able to infect domestic and wild animal species. Notably, white-tailed deer (WTD, Odocoileus virginianus), the most widely distributed cervid species in the Americas, were shown to be highly susceptible to SARS-CoV-2 in challenge studies and reported natural infection/exposure rates approaching 30–40% in free-ranging WTD in the U.S. Thus, understanding the infection and transmission dynamics of SARS-CoV-2 in WTD is critical to prevent future zoonotic transmission to humans, at the human-WTD interface during hunting or venison farming, and for implementation of effective disease control measures. Here, we demonstrated that following intranasal inoculation with SARS-CoV-2 B.1 lineage, WTD fawns (~8-month-old) shed infectious virus up to day 5 post-inoculation (pi), with high viral loads shed in nasal and oral secretions. This resulted in efficient deer-to-deer transmission on day 3 pi. Consistent a with lack of infectious SARS-CoV-2 shedding after day 5 pi, no transmission was observed to contact animals added on days 6 and 9 pi. We have also investigated the tropism and sites of SARS-CoV-2 replication in adult WTD (3–4 years of age). Infectious virus was detected up to day 6 pi in nasal secretions, and from various respiratory-, lymphoid-, and central nervous system tissues, indicating broad tissue tropism and multiple sites of virus replication. The study provides important insights on the infection and transmission dynamics of SARS-CoV-2 in WTD, a wild animal species that is highly susceptible to infection and with the potential to become a reservoir for the virus in the field.  相似文献   

4.
The coronavirus disease 2019 (COVID-19) global pandemic evoked by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has triggered a major public health problem with significant morbidity and mortality. Understanding the pathogenesis and molecular mechanisms underlying this novel virus is crucial for both fundamental research and clinical trials in order to devise effective therapies and vaccination regimens. Basic research on SARS-CoV-2 largely depends on ex vivo models that allow viral invasion and replication. Organoid models are now emerging as a valuable tool to investigate viral biology and disease progression, serving as an efficient platform to investigate potential therapies for COVID-19. Here, we summarize various human stem cell-derived organoid types employed in SARS-CoV-2 studies. We highlight key findings from these models, including cell tropisms and molecular mechanisms in viral infection. We also describe their use in identifying potential therapeutic agents against SARS-CoV-2. As more and more advanced organoids emerge, they will facilitate the understanding of disease pathogenesis for drug development in this dreaded pandemic.  相似文献   

5.
6.
Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has caused a global pandemic. Intermediate horseshoe bats (Rhinolophus affinis) are hosts of RaTG13, the second most phylogenetically related viruses to SARS-CoV-2. We report the binding between intermediate horseshoe bat ACE2 (bACE2-Ra) and SARS-CoV-2 receptor-binding domain (RBD), supporting the pseudotyped SARS-CoV-2 viral infection. A 3.3 Å resolution crystal structure of the bACE2-Ra/SARS-CoV-2 RBD complex was determined. The interaction networks of Patch 1 showed differences in R34 and E35 of bACE2-Ra compared to hACE2 and big-eared horseshoe bat ACE2 (bACE2-Rm). The E35K substitution, existing in other species, significantly enhanced the binding affinity owing to its electrostatic attraction with E484 of SARS-CoV-2 RBD. Furthermore, bACE2-Ra showed extensive support for the SARS-CoV-2 variants. These results broaden our knowledge of the ACE2/RBD interaction mechanism and emphasize the importance of continued surveillance of intermediate horseshoe bats to prevent spillover risk.  相似文献   

7.
Iota-carrageenan (IC) nasal spray, a medical device approved for treating respiratory viral infections, has previously been shown to inhibit the ability of a variety of respiratory viruses, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), to enter and replicate in the cell by interfering with the virus binding to the cell surface. The aim of this study was to further investigate the efficacy and safety of IC in SARS-CoV-2 infection in advanced in vitro models of the human respiratory epithelium, the primary target and entry port for SARS-CoV-2. We extended the in vitro safety assessment of nebulized IC in a 3-dimensional model of reconstituted human bronchial epithelium, and we demonstrated the efficacy of IC in protecting reconstituted nasal epithelium against viral infection and replication of a patient-derived SARS-CoV-2 strain. The results obtained from these two advanced models of human respiratory tract epithelia confirm previous findings from in vitro SARS-CoV-2 infection assays and demonstrate that topically applied IC can effectively prevent SARS-CoV-2 infection and replication. Moreover, the absence of toxicity and functional and structural impairment of the mucociliary epithelium demonstrates that the nebulized IC is well tolerated.  相似文献   

8.
9.
Coronavirus disease 2019 (COVID-19) is a pulmonary inflammatory disease induced by a newly recognized coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). SARS-CoV-2 infection was detected for the first time in the city of Wuhan in China and spread all over the world at the beginning of 2020. Several millions of people have been infected with SARS-CoV-2, and almost 382,867 human deaths worldwide have been reported so far. Notably, there has been no specific, clinically approved vaccine or anti-viral treatment strategy for COVID-19. Herein, we review COVID-19, the viral replication, and its effect on promoting pulmonary fibro-inflammation via immune cell-mediated cytokine storms in humans. Several clinical trials are currently ongoing for anti-viral drugs, vaccines, and neutralizing antibodies against COVID-19. Viral clearance is the result of effective innate and adaptive immune responses. The pivotal role of interleukin (IL)-15 in viral clearance involves maintaining the balance of induced inflammatory cytokines and the homeostatic responses of natural killer and CD8+ T cells. This review presents supporting evidence of the impact of IL-15 immunotherapy on COVID-19.  相似文献   

10.
BackgroundJamestown Canyon virus (JCV) is a mosquito-borne orthobunyavirus that causes acute febrile illness, meningitis, and meningoencephalitis, primarily in North American adults. Currently, there are no available vaccines or specific treatments against JCV infections.Methodology/Principal findingsThe antiviral efficacy of favipiravir (FPV) against JCV infection was evaluated in vitro and in vivo in comparison with that of ribavirin (RBV) and 2’-fluoro-2’-deoxycytidine (2’-FdC). The in vitro inhibitory effect of these drugs on JCV replication was evaluated in Vero and Neuro-2a (N2A) cells. The efficacy of FPV in the treatment of JCV infection in vivo was evaluated in C57BL/6J mice inoculated intracerebrally with JCV, as per the survival, viral titers in the brain, and viral RNA load in the blood. The 90% inhibitory concentrations (IC90) of FPV, RBV, and 2’-FdC were 41.0, 61.8, and 13.6 μM in Vero cells and 20.7, 25.8, and 8.8 μM in N2A cells, respectively. All mice infected with 1.0×104 TCID50 died or were sacrificed within 10 days post-infection (dpi) without treatment. However, mice treated with FPV for 5 days [initiated either 2 days prior to infection (−2 dpi–2 dpi) or on the day of infection (0 dpi–4 dpi)] survived significantly longer than control mice, administered with PBS (p = 0.025 and 0.011, respectively). Moreover, at 1 and 3 dpi, the virus titers in the brain were significantly lower in FPV-treated mice (0 dpi–4 dpi) versus PBS-treated mice (p = 0.002 for both 1 and 3 dpi).Conclusions/SignificanceAlthough the intracerebral inoculation route is thought to be a challenging way to evaluate drug efficacy, FPV inhibits the in vitro replication of JCV and prolongs the survival of mice intracerebrally inoculated with JCV. These results will enable the development of a specific antiviral treatment against JCV infections and establishment of an effective animal model.  相似文献   

11.
An experimental infection with highly pathogenic avian influenza (HPAI) and low pathogenic avian influenza (LPAI) viruses was carried out on falcons in order to examine the effects of these viruses in terms of pathogenesis, viral distribution in tissues and viral shedding. The distribution pattern of influenza virus receptors was also assessed. Captive-reared gyr-saker (Falco rusticolus x Falco cherrug) hybrid falcons were challenged with a HPAI H5N1 virus (A/Great crested grebe/Basque Country/06.03249/2006) or a LPAI H7N2 virus (A/Anas plathyrhynchos/Spain/1877/2009), both via the nasochoanal route and by ingestion of previously infected specific pathogen free chicks. Infected falcons exhibited similar infection dynamics despite the different routes of exposure, demonstrating the effectiveness of in vivo feeding route. H5N1 infected falcons died, or were euthanized, between 5-7 days post-infection (dpi) after showing acute severe neurological signs. Presence of viral antigen in several tissues was confirmed by immunohistochemistry and real time RT-PCR (RRT-PCR), which were generally associated with significant microscopical lesions, mostly in the brain. Neither clinical signs, nor histopathological findings were observed in any of the H7N2 LPAI infected falcons, although all of them had seroconverted by 11 dpi. Avian receptors were strongly present in the upper respiratory tract of the falcons, in accordance with the consistent oral viral shedding detected by RRT-PCR in both H5N1 HPAI and H7N2 LPAI infected falcons. The present study demonstrates that gyr-saker hybrid falcons are highly susceptible to H5N1 HPAI virus infection, as previously observed, and that they may play a major role in the spreading of both HPAI and LPAI viruses. For the first time in raptors, natural infection by feeding on infected prey was successfully reproduced. The use of avian prey species in falconry husbandry and wildlife rehabilitation facilities could put valuable birds of prey and humans at risk and, therefore, this practice should be closely monitored.  相似文献   

12.

Background

Detection of Polyomavirus (PyV) DNA in metropolitan rivers worldwide has led to the suggestion that primary viral infection can occur by the oral route. The aim of this study was to test this notion experimentally.

Methods

Mouse PyV (MPyV) was used to infect C57BL/6J mice by the nasal or intragastric route. Viral load kinetics was studied 3, 7, 10, 14, 21 and 28 days post-infection (dpi) using quantitative PCR.

Results

Following nasal infection, MPyV DNA was readily detected in many organs including lung, heart, aorta, colon, and stool with viral loads in the range of 103–106 copies/mg wet weight that peaked 7–10 dpi. Complete viral clearance occurred in the serum and kidney by 28 dpi, while clearance in other organs was partial with a 10–100 fold decrease in viral load. In contrast, following intragastric infection peak detection of PyV was delayed to 21 dpi, and viral loads were up to 3 logs lower. There was no detectable virus in the heart, colon, or stool.

Conclusions

The intragastric route of MPyV infection is successful, not as efficacious as the respiratory route, and associated with delayed viral dissemination as well as a lower peak MPyV load in individual organs.  相似文献   

13.
While SARS-CoV-2 continues to adapt for human infection and transmission, genetic variation outside of the spike gene remains largely unexplored. This study investigates a highly variable region at residues 203–205 in the SARS-CoV-2 nucleocapsid protein. Recreating a mutation found in the alpha and omicron variants in an early pandemic (WA-1) background, we find that the R203K+G204R mutation is sufficient to enhance replication, fitness, and pathogenesis of SARS-CoV-2. The R203K+G204R mutant corresponds with increased viral RNA and protein both in vitro and in vivo. Importantly, the R203K+G204R mutation increases nucleocapsid phosphorylation and confers resistance to inhibition of the GSK-3 kinase, providing a molecular basis for increased virus replication. Notably, analogous alanine substitutions at positions 203+204 also increase SARS-CoV-2 replication and augment phosphorylation, suggesting that infection is enhanced through ablation of the ancestral ‘RG’ motif. Overall, these results demonstrate that variant mutations outside spike are key components in SARS-CoV-2’s continued adaptation to human infection.  相似文献   

14.
Severe COVID-19 disease caused by SARS-CoV-2 is frequently accompanied by dysfunction of the lungs and extrapulmonary organs. However, the organotropism of SARS-CoV-2 and the port of virus entry for systemic dissemination remain largely unknown. We profiled 26 COVID-19 autopsy cases from four cohorts in Wuhan, China, and determined the systemic distribution of SARS-CoV-2. SARS-CoV-2 was detected in the lungs and multiple extrapulmonary organs of critically ill COVID-19 patients up to 67 days after symptom onset. Based on organotropism and pathological features of the patients, COVID-19 was divided into viral intrapulmonary and systemic subtypes. In patients with systemic viral distribution, SARS-CoV-2 was detected in monocytes, macrophages, and vascular endothelia at blood–air barrier, blood–testis barrier, and filtration barrier. Critically ill patients with long disease duration showed decreased pulmonary cell proliferation, reduced viral RNA, and marked fibrosis in the lungs. Permanent SARS-CoV-2 presence and tissue injuries in the lungs and extrapulmonary organs suggest direct viral invasion as a mechanism of pathogenicity in critically ill patients. SARS-CoV-2 may hijack monocytes, macrophages, and vascular endothelia at physiological barriers as the ports of entry for systemic dissemination. Our study thus delineates systemic pathological features of SARS-CoV-2 infection, which sheds light on the development of novel COVID-19 treatment.Subject terms: Mechanisms of disease, Immunology  相似文献   

15.
16.
Scrub typhus is a neglected tropical disease, caused by Orientia tsutsugamushi, a Gram-negative bacterium that is transmitted to mammalian hosts during feeding by Leptotrombidium mites and replicates predominantly within endothelial cells. Most studies of scrub typhus in animal models have utilized either intraperitoneal or intravenous inoculation; however, there is limited information on infection by the natural route in murine model skin or its related early host responses. Here, we developed an intradermal (i.d.) inoculation model of scrub typhus and focused on the kinetics of the host responses in the blood and major infected organs. Following ear inoculation with 6 x 104 O. tsutsugamushi, mice developed fever at 11–12 days post-infection (dpi), followed by marked hypothermia and body weight loss at 14–19 dpi. Bacteria in blood and tissues and histopathological changes were detected around 9 dpi and peaked around 14 dpi. Serum cytokine analyses revealed a mixed Th1/Th2 response, with marked elevations of MCP-1/CCL2, MIP-1α/CCL3 and IL-10 at 9 dpi, followed by increased concentrations of pro-inflammatory markers (IL-6, IL-12, IFN-γ, G-CSF, RANTES/CCL5, KC/CCL11, IL-1α/β, IL-2, TNF-α, GM-CSF), as well as modulatory cytokines (IL-9, IL-13). Cytokine levels in lungs had similar elevation patterns, except for a marked reduction of IL-9. The Orientia 47-kDa gene and infectious bacteria were detected in several organs for up to 84 dpi, indicating persistent infection. This is the first comprehensive report of acute scrub typhus and persistent infection in i.d.-inoculated C57BL/6 mice. This is a significant improvement over current murine models for Orientia infection and will permit detailed studies of host immune responses and infection control interventions.  相似文献   

17.
To date, coronavirus disease 2019 (COVID-19) continues to be considered a pandemic worldwide, with a mild to severe disease presentation that is sometimes associated with serious complications that are concerning to global health authorities. Scientists are working hard to understand the pathogenicity of this novel virus, and a great deal of attention and effort has been focused on identifying therapeutics and vaccines to control this pandemic.MethodsThis study used tonsils removed from twelve patients who underwent an elective tonsillectomy in the ear, nose, and throat (ENT) department at Saudi Germany Hospital, Madinah, Saudi Arabia. Tonsillar mononuclear cells (MNCs) were separated and co-cultured in RPMI complete medium in the presence and absence of viral spike (S) proteins (the full-length S, S1 subunit, and S2 subunit proteins). Enzyme-linked immunosorbent assay (ELISA) was used to measure secreted antibody concentrations following stimulation.ResultsThe in vitro human nasal-associated lymphoid tissue (NALT) cell culture model was successfully used to evaluate the humoral immune response against SARS-CoV-2- S protein. Significant (p < 0.0001, n = 12) levels of specific, anti-S IgG, IgM, and IgA antibody responses were detected in cells culture supernatanat folloeing stimulation with the full-length S protein compared with unstimulated cells. In contrast, S1 and S2 subunit proteins alone failed to induce a mucosal humoral immune response following tonsillar MNC stimulation.ConclusionWe demonstrated a successful human NALT in vitro cell culture model that was used to study the mucosal humoral immune response to the SARS-CoV-2 S protein. This model could be advantageous for the in-depth study of cellular immune responses to the S protein and other viral antigens, such as nucleocapsid and matrix antigen. The S protein appears to be the important viral protein that may be able to mimic the natural infection process intranasally and should be studied as a component of a candidate vaccine.  相似文献   

18.
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the cause of coronavirus disease 2019 (COVID-19), rapidly spread across the world in late 2019, leading to a pandemic. While SARS-CoV-2 infections predominately affect the respiratory system, severe infections can lead to renal and cardiac injury and even death. Due to its highly transmissible nature and severe health implications, animal models of SARS-CoV-2 are critical to developing novel therapeutics and preventatives. Syrian hamsters (Mesocricetus auratus) are an ideal animal model of SARS-CoV-2 infections because they recapitulate many aspects of human infections. After inoculation with SARS-CoV-2, hamsters become moribund, lose weight, and show varying degrees of respiratory disease, lethargy, and ruffled fur. Histopathologically, their pulmonary lesions are consistent with human infections including interstitial to broncho-interstitial pneumonia, alveolar hemorrhage and edema, and granulocyte infiltration. Similar to humans, the duration of clinical signs and pulmonary pathology are short lived with rapid recovery by 14 d after infection. Immunocompromised hamsters develop more severe infections and mortality. Preclinical studies in hamsters have shown efficacy of therapeutics, including convalescent serum treatment, and preventatives, including vaccination, in limiting or preventing clinical disease. Although hamster studies have contributed greatly to our understanding of the pathogenesis and progression of disease after SARS-CoV-2 infection, additional studies are required to better characterize the effects of age, sex, and virus variants on clinical outcomes in hamsters. This review aims to describe key findings from studies of hamsters infected with SARS-CoV-2 and to highlight areas that need further investigation.

Coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a novel betacoronavirus that was first detected in Wuhan, China at the end of 2019.31 Coronavirus infections predominantly present with either respiratory or gastrointestinal manifestations, depending on the strain and host. While many coronavirus infections result in mild clinical symptoms, SARS-CoV-2 is highly pathogenic and poses significant health concerns.31,58,78 Although initial clinical signs are attributed to the respiratory system, severe infections result in systemic complications, such as acute cardiac and renal injury, secondary infections, and shock.31,58SARS-CoV-2 relies on a structural surface spike glycoprotein to establish infection. The spike protein binds to the angiotensin-converting enzyme 2 (ACE2) receptor on host cells to gain entry in a receptor-mediated fashion. This interaction facilitates both human-to-human transmission and cross-species infection.77 Species tropism is determined by the presence of ACE2 residues that recognize the SARS-CoV-2 spike protein. Animals permissive for SARS-CoV-2 infection include cats, ferrets, pigs, nonhuman primates, select genetically modified mice, and hamsters.5,7,23,37,67 Susceptible species can be both intermediate hosts and sources of infection of SARS-CoV-2 for humans.77 Rodents, such as mice and hamsters, are ideal models for the study of COVID-19 due to their small size, ready availability, low cost of care, SPF status, and in-depth characterization across a variety of translational models, including past and present betacoronavirus infections.60,61 Although transgenic mice expressing human ACE2 are susceptible to SARS-CoV-2 infection, Syrian hamsters (Mesocricetus auratus) naturally express ACE2 residues that recognize the SARS-CoV-2 spike protein.5,46,84 As such, Syrian hamsters are a valuable animal model for studying COVID-19.Syrian hamsters, commonly referred to as golden hamsters, belong to the family Cricetidae and have a natural geographic range of arid southeast Europe and Asia Minor. Additional members of the Cricetidae family used in biomedical research include Chinese hamsters (Cricetulus griseus), European hamsters (Cricetus cricetus), Armenian hamsters (Cricetulus migratorius), and dwarf hamsters (Phodopus species). Unless otherwise noted, any mention of hamsters in this overview refers to Syrian hamsters. Laboratory hamsters primarily originated from one Syrian litter captured in 1930. Progeny of this litter were first imported into the United States in 1938.50 Outbred Syrian hamsters are widely available; recently developed transgenic hamsters are increasingly used in biomedical research and may provide unique insight into SARS-CoV-2 infections.22,44 Syrian hamsters have a rich history in biomedical research and can be used to model cancer and infectious, metabolic, cardiovascular, and respiratory diseases.50Hamsters play an important role in SARS-CoV-2 studies. This is due, in part, to their susceptibility to the first described highly pathogenic coronavirus infection in the 21st century, severe acute respiratory syndrome (SARS-CoV). SARS-CoV emerged in late 2002 in Southern China. Although individuals in more than 20 countries contracted SARS-CoV, the spread was quickly contained, with the last reported case in July 2003.16,40 After experimental infection with SARS-CoV, hamsters developed high viral loads in the lungs and nasal turbinates.15,32,56,62,69 Pulmonary pathology included inflammation, cell necrosis, and consolidation without clinical signs of disease.61 Based on their susceptibility to SARS-CoV and natural expression of ACE2 capable of recognizing the SARS-CoV-2 spike protein, hamsters have been a preferred model of SARS-CoV-2. Hamster studies have replicated key aspects of SARS-CoV-2 infections in humans, including viral replication, transmission, and pathology. Furthermore, hamsters are a model organism for developing and testing novel preventions and therapeutics. However, using hamsters in biomedical research has several key limitations, including the lack of reagents, especially antibodies, suitable for use with hamster tissue and the relatively few established transgenic hamsters compared to mice. The purpose of this review is to describe key findings of hamster models of SARS-CoV-2 and to highlight gaps in our current understanding that will require further investigation.  相似文献   

19.
Hydroxychloroquine, used to treat malaria and some autoimmune disorders, potently inhibits viral infection of SARS coronavirus (SARS-CoV-1) and SARS-CoV-2 in cell-culture studies. However, human clinical trials of hydroxychloroquine failed to establish its usefulness as treatment for COVID-19. This compound is known to interfere with endosomal acidification necessary to the proteolytic activity of cathepsins. Following receptor binding and endocytosis, cathepsin L can cleave the SARS-CoV-1 and SARS-CoV-2 spike (S) proteins, thereby activating membrane fusion for cell entry. The plasma membrane-associated protease TMPRSS2 can similarly cleave these S proteins and activate viral entry at the cell surface. Here we show that the SARS-CoV-2 entry process is more dependent than that of SARS-CoV-1 on TMPRSS2 expression. This difference can be reversed when the furin-cleavage site of the SARS-CoV-2 S protein is ablated or when it is introduced into the SARS-CoV-1 S protein. We also show that hydroxychloroquine efficiently blocks viral entry mediated by cathepsin L, but not by TMPRSS2, and that a combination of hydroxychloroquine and a clinically-tested TMPRSS2 inhibitor prevents SARS-CoV-2 infection more potently than either drug alone. These studies identify functional differences between SARS-CoV-1 and -2 entry processes, and provide a mechanistic explanation for the limited in vivo utility of hydroxychloroquine as a treatment for COVID-19.  相似文献   

20.
The viral infection by SARS-CoV-2 has irrevocably altered the life of the majority of human beings, challenging national health systems worldwide, and pushing researchers to rapidly find adequate preventive and treatment strategies. No therapies have been shown effective with the exception of dexamethasone, a glucocorticoid that was recently proved to be the first life-saving drug in this disease. Remarkably, around 20 % of infected people develop a severe form of COVID-19, giving rise to respiratory and multi-organ failures requiring subintensive and intensive care interventions. This phenomenon is due to an excessive immune response that damages pulmonary alveoli, leading to a cytokine and chemokine storm with systemic effects. Indeed glucocorticoids’ role in regulating this immune response is controversial, and they have been used in clinical practice in a variety of countries, even without a previous clear consensus on their evidence-based benefit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号