首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Energy parasitism by ATP/ADP transport proteins is an essential, common feature of intracellular bacteria such as chlamydiae and rickettsiae, which are major pathogens of humans. Although several ATP/ADP transport proteins have so far been characterized, some fundamental questions regarding their function remained unaddressed. In this study, we focused on the detailed biochemical analysis of a representative ATP/ADP transporter (PamNTT1), from the amoeba symbiont Protochlamydia amoebophila (UWE25) to further clarify the principle of energy exploitation. We succeeded in the purification of the first bacterial nucleotide transporter (NTT) and its functional reconstitution into artificial lipid vesicles. Reconstituted PamNTT1 revealed high import velocities for ATP and an unexpected and previously unobserved stimulating effect of the luminal ADP on nucleotide import affinities. Latter preference of the nucleotide hetero-exchange is independent of the membrane potential, and therefore, PamNTT1 not only structurally but also functionally differs from the well-characterized mitochondrial ADP/ATP carriers. Reconstituted PamNTT1 exhibits a bidirectional orientation in lipid vesicles, but interestingly, only carriers inserted with the N-terminus directed to the proteoliposomal interior are functional. The data presented here comprehensively explain the functional basis of how the intracellular P. amoebophila manages to exploit the energy pool of its host cell effectively by using the nucleotide transporter PamNTT1. This membrane protein mediates a preferred import of ATP, which is additionally stimulated by a high internal (bacterial) ADP/ATP ratio, and the orientation-dependent functionality of the transporter ensures that it is not working in a mode that is detrimental to P. amoebophila. Heterologous expression and purification of high amounts of PamNTT1 provides the basis for its crystallization and detailed structure/function analyses. Furthermore, functional reconstitution of this essential chlamydial protein paves the way for high-throughput uptake studies in order to screen for specific inhibitors potentially suitable as anti-chlamydial drugs.  相似文献   

2.
Intracellular parasites of the phylum Apicomplexa are dependent on the scavenging of essential amino acids from their hosts. We previously identified a large family of apicomplexan-specific plasma membrane-localized amino acid transporters, the ApiATs, and showed that the Toxoplasma gondii transporter TgApiAT1 functions in the selective uptake of arginine. TgApiAT1 is essential for parasite virulence, but dispensable for parasite growth in medium containing high concentrations of arginine, indicating the presence of at least one other arginine transporter. Here we identify TgApiAT6-1 as the second arginine transporter. Using a combination of parasite assays and heterologous characterisation of TgApiAT6-1 in Xenopus laevis oocytes, we demonstrate that TgApiAT6-1 is a general cationic amino acid transporter that mediates both the high-affinity uptake of lysine and the low-affinity uptake of arginine. TgApiAT6-1 is the primary lysine transporter in the disease-causing tachyzoite stage of T. gondii and is essential for parasite proliferation. We demonstrate that the uptake of cationic amino acids by TgApiAT6-1 is ‘trans-stimulated’ by cationic and neutral amino acids and is likely promoted by an inwardly negative membrane potential. These findings demonstrate that T. gondii has evolved overlapping transport mechanisms for the uptake of essential cationic amino acids, and we draw together our findings into a comprehensive model that highlights the finely-tuned, regulated processes that mediate cationic amino acid scavenging by these intracellular parasites.  相似文献   

3.
In the endoplasmic reticulum (ER), a number of thioredoxin (Trx) superfamily proteins are present to enable correct disulfide bond formation of secretory and membrane proteins via Trx-like domains. Here, we identified a novel transmembrane Trx-like protein 4 (TMX4), in the ER of mammalian cells. TMX4, a type I transmembrane protein, was localized to the ER and possessed a Trx-like domain that faced the ER lumen. A maleimide alkylation assay showed that a catalytic CXXC motif in the TMX4 Trx-like domain underwent changes in its redox state depending on cellular redox conditions, and, in the normal state, most of the endogenous TMX4 existed in the oxidized form. Using a purified recombinant protein containing the Trx-like domain of TMX4 (TMX4-Trx), we confirmed that this domain had reductase activity in vitro. The redox potential of this domain (−171.5 mV; 30 °C at pH 7.0) indicated that TMX4 could work as a reductase in the environment of the ER. TMX4 had no effect on the acceleration of ER-associated degradation. Because TMX4 interacted with calnexin and ERp57 by co-immunoprecipitation assay, the role of TMX4 may be to enable protein folding in cooperation with these proteins consisting of folding complex in the ER.  相似文献   

4.
The mitochondrion is one of the defining characteristics of eukaryotic cells, and to date, no eukaryotic lineage has been shown to have lost mitochondria entirely. In certain anaerobic or microaerophilic lineages, however, the mitochondrion has become severely reduced that it lacks a genome and no longer synthesizes ATP. One example of such a reduced organelle, called the mitosome, is found in microsporidian parasites. Only a handful of potential mitosomal proteins were found to be encoded in the complete genome of the microsporidian Encephalitozoon cuniculi, and significantly no proteins of the mitochondrial carrier family were identified. These carriers facilitate the transport of solutes across the inner mitochondrial membrane, are a means of communication between the mitochondrion and cytosol, and are abundant in organisms with aerobic mitochondria. Here, we report the characterization of a mitochondrial carrier protein in the microsporidian Antonospora locustae and demonstrate that the protein is heterologously targeted to mitochondria in Saccharomyces cerevisiae. The protein is phylogenetically allied to the NAD+ transporter of S. cerevisiae, but we show that it has high specificity for ATP and ADP when expressed in Escherichia coli. An ADP/ATP carrier may provide ATP for essential ATP-dependent mitosomal processes such as Hsp70-dependent protein import and export of iron-sulfur clusters to the cytosol.  相似文献   

5.
Toxoplasma gondii is a master manipulator capable of effectively siphoning the resources from the host cell for its intracellular subsistence. However, the molecular underpinnings of how the parasite gains resources from its host remain largely unknown. Residing within a non-fusogenic parasitophorous vacuole (PV), the parasite must acquire resources across the limiting membrane of its replicative niche, which is decorated with parasite proteins including those secreted from dense granules. We discovered a role for the host Endosomal Sorting Complex Required for Transport (ESCRT) machinery in host cytosolic protein uptake by T. gondii by disrupting host ESCRT function. We identified the transmembrane dense granule protein TgGRA14, which contains motifs homologous to the late domain motifs of HIV-1 Gag, as a candidate for the recruitment of the host ESCRT machinery to the PV membrane. Using an HIV-1 virus-like particle (VLP) release assay, we found that the motif-containing portion of TgGRA14 is sufficient to substitute for HIV-1 Gag late domain to mediate ESCRT-dependent VLP budding. We also show that TgGRA14 is proximal to and interacts with host ESCRT components and other dense granule proteins during infection. Furthermore, analysis of TgGRA14-deficient parasites revealed a marked reduction in ingestion of a host cytosolic protein compared to WT parasites. Thus, we propose a model in which T. gondii recruits the host ESCRT machinery to the PV where it can interact with TgGRA14 for the internalization of host cytosolic proteins across the PV membrane (PVM). These findings provide new insight into how T. gondii accesses contents of the host cytosol by exploiting a key pathway for vesicular budding and membrane scission.  相似文献   

6.
In eukaryotic cells, uptake of cytosolic ATP into the endoplasmic reticulum (ER) lumen is critical for the proper functioning of chaperone proteins. The human transport protein SLC35B1 was recently postulated to mediate ATP/ADP exchange in the ER; however, the underlying molecular mechanisms mediating ATP uptake are not completely understood. Here, we extensively characterized the transport kinetics of human SLC35B1 expressed in yeast that was purified and reconstituted into liposomes. Using [α32P]ATP uptake assays, we tested the nucleotide concentration dependence of ATP/ADP exchange activity on both sides of the membrane. We found that the apparent affinities of SLC35B1 for ATP/ADP on the internal face were approximately 13 times higher than those on the external side. Because SLC35B1-containing liposomes were preferentially inside-out oriented, these results suggest a low-affinity external site and a high-affinity internal site in the ER. Three different experimental approaches indicated that ATP/ADP exchange by SLC35B1 was not strict, and that other di- and tri-nucleotides could act as suitable counter-substrates for ATP, although mononucleotides and nucleotide sugars were not transported. Finally, bioinformatic analysis and site-directed mutagenesis identified that conserved residues K117 and K120 from transmembrane helix 4 and K277 from transmembrane helix 9 play critical roles in transport. The fact that SLC35B1 can promote ATP transport in exchange for ADP or UDP suggest a more direct coupling between ATP import requirements and the need for eliminating ADP and UDP, which are generated as side products of reactions taking place in the ER-lumen.  相似文献   

7.
8.
The genome of Chlamydia trachomatis, one of the most prominent human pathogens, contains two structural genes coding for proteins, herein called Npt1Ct and Npt2Ct (nucleoside phosphate transporters 1 and 2 of C. trachomatis), exhibiting 68 and 61% similarity, respectively, to the ATP/ADP transporter from the intracellular bacterium Rickettsia prowazekii at the deduced amino acid level. Hydropathy analysis and sequence alignments suggested that both proteins have 12 transmembrane domains. The putative transporters were expressed as histidine-tagged proteins in Escherichia coli to study their biochemical properties. His10-Npt1Ct catalyzed ATP and ADP transport in an exchange mode. The apparent Km values were 48 (ATP) and 39 (ADP) μM. ATP and ADP transport was specific since AMP, GTP, CTP, UTP, dATP, dCTP, dGTP, and dTTP did not inhibit uptake. In contrast, His10-Npt2Ct transported all four ribonucleoside triphosphates with apparent Km values of 31 μM (GTP), 302 μM (UTP), 528 μM (CTP), and 1,158 μM (ATP). Ribonucleoside di- and monophosphates and deoxyribonucleotides were not substrates. The protonophore m-chlorocarbonylcyanide phenylhydrazone abolished uptake of all nucleoside triphosphates by Npt2Ct. This observation indicated that His10-Npt2Ct acts as a nucleosidetriphosphate/H+ symporter energized by the proton motive force across the Escherichia coli cytoplasmic membrane. We conclude that Npt1Ct provides chlamydiae with energy whereas Npt2Ct catalyzes the net uptake of ribonucleoside triphosphates required for anabolic reactions.  相似文献   

9.
The cystic fibrosis transmembrane conductance regulator (CFTR) is a Cl?channel in the ATP-binding cassette (ABC) transporter protein family. CFTR features the modular design characteristic of ABC transporters, which includes two membrane-spanning domains forming the channel pore, and two ABC nucleotide-binding domains that interact with ATP and contain the enzymatic activity coupled to normal gating. Like other ABC transporters CFTR is an ATPase (ATP + H2O → ADP + Pi). Recent work has shown that CFTR also possesses intrinsic adenylate kinase activity (ATP + AMP ? ADP + ADP). This finding raises important questions: How does AMP influence CFTR gating? Why does ADP inhibit CFTR current? Which enzymatic activity gates CFTR in vivo? Are there implications for other ABC transporters? This minireview attempts to shed light on these questions by summarizing recent advances in our understanding of the role of the CFTR adenylate kinase activity for channel gating.  相似文献   

10.
Toxoplasma gondii parasites present strong but geographically varied signatures of population structure. Populations sampled from Europe and North America have commonly been defined by over-representation of a small number of clonal types, in contrast to greater diversity in South America. The occurrence and extent of genetic diversity in African T. gondii populations remains understudied, undermining assessments of risk and transmission. The present study was designed to establish the occurrence, genotype and phylogeny of T. gondii in meat samples collected from livestock produced for human consumption (free-range chickens, n = 173; pigs, n = 211), comparing with T. gondii detected in blood samples collected from seropositive pregnant women (n = 91) in Benue state, Nigeria. The presence of T. gondii DNA was determined using a published nested polymerase chain reaction, targeting the 529 bp multicopy gene element. Samples with the highest parasite load (assessed using quantitative PCR) were selected for PCR-restriction fragment length polymorphism (PCR-RFLP) targeting the surface antigen 3 (SAG3), SAG2 (5’ and 3’), beta-tubulin (BTUB) and dense granule protein 6 (GRA6) loci, and the apicoplast genome (Apico). Toxoplasma gondii DNA was detected in all three of the populations sampled, presenting 30.6, 31.3 and 25.3% occurrence in free-range chickens, pigs and seropositive pregnant women, respectively. Quantitative-PCR indicated low parasite occurrence in most positive samples, limiting some further molecular analyses. PCR-RFLP results suggested that T. gondii circulating in the sampled populations presented with a type II genetic background, although all included a hybrid type I/II or II/III haplotype. Concatenation of aligned RFLP amplicon sequences revealed limited diversity with nine haplotypes and little indication of host species-specific or spatially distributed sub-populations. Samples collected from humans shared haplotypes with free-range chickens and/or pigs. Africa remains under-explored for T. gondii genetic diversity and this study provides the first detailed definition of haplotypes circulating in human and animal populations in Nigeria.  相似文献   

11.
The intracellular parasite Toxoplasma gondii invades almost all nucleated cells, and has infected approximately 34% of the world's population to date. In order to develop effective vaccines against T. gondii infection, understanding of the role of the molecules that are involved in the invasion process is important. For this purpose, we characterized T. gondii proteins that contain microneme adhesive repeats (MARs), which are common in moving junction proteins. T. gondii MAR domain-containing protein 4a (TgMCP4a), which contains repeats of 17–22 amino acid segments at the N-terminus and three putative MAR domains at the C-terminus, is localized near the rhoptry of extracellular parasites. Following infection, TgMCP4a was detected in the parasitophorous vacuole. The recombinant Fc-TgMCP4a N-terminus protein (rTgMCP4a-1/Fc) showed binding activity to the surface proteins of Vero, 293T, and CHO cells. The recombinant GST-TgMCP4a N-terminus protein (rTgMCP4a-1/GST), which exhibited binding activity, was used to pull down the interacting factors from 293T cell lysate, and subsequent mass spectrometry analysis revealed that three types of heat shock proteins (HSPs) interacted with TgMCP4a. Transfection of a FLAG fusion protein of TgMCP4a-1 (rTgMCP4a-1/FLAG) into 293T cell and the following immunoprecipitation with anti-FLAG antibody confirmed the interactions of HSC70 with TgMCP4a. The addition of rTgMCP4a-1/GST into the culture medium significantly affected the growth of the parasite. This study hints that T. gondii may employ HSP proteins of host cell to facilitate their growth.  相似文献   

12.
Toxoplasmosis gondii exposure has been linked to increased impulsivity and risky behaviors, which has implications for eating behavior. Impulsivity and risk tolerance is known to be related with worse diets and a higher chance of obesity. There is little known, however, about the independent link between Toxoplasma gondii (T. gondii) exposure and diet-related outcomes. Using linear and quantile regression, we estimated the relationship between T. gondii exposure and BMI, total energy intake (kcal), and diet quality as measured by the Health Eating Index-2015 (HEI) among 9,853 adults from the 2009–2014 National Health and Nutrition Examination Survey. Previous studies have shown different behavioral responses to T. gondii infection among males and females, and socioeconomic factors are also likely to be important as both T. gondii and poor diet are more prevalent among U.S. populations in poverty. We therefore measured the associations between T. gondii and diet-related outcomes separately for men and women and for respondents in poverty. Among females <200% of the federal poverty level Toxoplasmosis gondii exposure was associated with a higher BMI by 2.0 units (95% CI [0.22, 3.83]) at median BMI and a lower HEI by 5.05 units (95% CI [-7.87, -2.24]) at the 25th percentile of HEI. Stronger associations were found at higher levels of BMI and worse diet quality among females. No associations were found among males. Through a detailed investigation of mechanisms, we were able to rule out T. gondii exposure from cat ownership, differing amounts of meat, and drinking water source as potential confounding factors; environmental exposure to T. gondii as well as changes in human behavior due to parasitic infection remain primary mechanisms.  相似文献   

13.
Herein, we report the cloning and molecular characterization of a full cDNA encoding a putative plastidic ATP/ADP transporter, designated HtAATP, for Helianthus tuberosus L. The ATP/ADP translocator protein was isolated from the tuber-cDNA library of H. tuberosus for the first time. The predicted HtAATP protein was judged as a plastidic ATP/ADP translocator protein from its high homology at the amino acid sequence level to the two Arabidopsis thaliana plastidic ATP/ADP translocator proteins AATP1 and AATP2 (84.8% and 79.9% identity, respectively). Amino acid sequence analysis of the primary structure of HtAATP revealed that it belonged to the plastidic ATP/ADP transporter family. Hydropathy prediction indicated that HtAATP gene product is a highly hydrophobic membrane protein that contains 10 transmembrane domains to form a spanning topology. Southern blotting analysis showed that the HtAATP gene is a single-copy gene in the H. tuberosus genome. Tissue distribution analysis showed that the HtAATP gene is prominently expressed in sink tissues. A stable expression pattern in tubers at different developmental stages implies an active involvement of HtAATP during carbohydrate formation.  相似文献   

14.
ATP-binding cassette (ABC) transporters belong to one of the largest protein superfamilies that expands from prokaryotes to man. Recent x-ray crystal structures of bacterial and mammalian ABC exporters suggest a common alternating access mechanism of substrate transport, which has also been biochemically substantiated. However, the current model does not yet explain the coupling between substrate binding and ATP hydrolysis that underlies ATP-dependent substrate transport. In our studies on the homodimeric multidrug/lipid A ABC exporter MsbA from Escherichia coli, we performed cysteine cross-linking, fluorescence energy transfer, and cysteine accessibility studies on two reporter positions, near the nucleotide-binding domains and in the membrane domains, for transporter embedded in a biological membrane. Our results suggest for the first time that substrate binding by MsbA stimulates the maximum rate of ATP hydrolysis by facilitating the dimerization of nucleotide-binding domains in a state, which is markedly distinct from the previously described nucleotide-free, inward-facing and nucleotide-bound, outward-facing conformations of ABC exporters and which binds ATP.  相似文献   

15.
ANTXR 1 and 2, also known as TEM8 and CMG2, are two type I membrane proteins, which have been extensively studied for their role as anthrax toxin receptors, but with a still elusive physiological function. Here we have analyzed the importance of N-glycosylation on folding, trafficking and ligand binding of these closely related proteins. We find that TEM8 has a stringent dependence on N-glycosylation. The presence of at least one glycan on each of its two extracellular domains, the vWA and Ig-like domains, is indeed necessary for efficient trafficking to the cell surface. In the absence of any N-linked glycans, TEM8 fails to fold correctly and is recognized by the ER quality control machinery. Expression of N-glycosylation mutants reveals that CMG2 is less vulnerable to sugar loss. The absence of N-linked glycans in one of the extracellular domains indeed has little impact on folding, trafficking or receptor function of the wild type protein expressed in tissue culture cells. N-glycans do, however, seem required in primary fibroblasts from human patients. Here, the presence of N-linked sugars increases the tolerance to mutations in cmg2 causing the rare genetic disease Hyaline Fibromatosis Syndrome. It thus appears that CMG2 glycosylation provides a buffer towards genetic variation by promoting folding of the protein in the ER lumen.  相似文献   

16.
Understanding the spread of Toxoplasma gondii (T. gondii) in wild birds, particularly in those with opportunistic feeding behavior, is of interest for elucidating the epidemiological involvement of these birds in the maintenance and dissemination of the parasite. Overall, from 2009 to 2011, we collected sera from 525 seagull chicks (Yellow-legged gull (Larus michahellis) and Audouin’s gull (L. audouinii)) from 6 breeding colonies in Spain and tested them using the modified agglutination test (MAT) for the presence of antibodies against T. gondii. Chick age was estimated from bill length. Main food source of seagull chicks was evaluated using stable isotope analyses from growing scapular feathers. Overall T. gondii seroprevalence was 21.0% (IC95% 17.5–24.4). A generalized linear mixed-effects model indicated that year (2009) and food source (freshwater) were risk factors associated to the individual risk of infection by T. gondii, while age (days) was close to significance. Freshwater food origin was related to the highest seroprevalence levels, followed by marine origin, supporting freshwater and sewages as important routes of dispersion of T. gondii. Year differences could indicate fluctuating rates of exposure of seagull chicks to T. gondii. Age ranged from 4 to 30 days and seropositivity tended to increase with age (P = 0.07), supporting that seropositivity is related to T. gondii infection rather than to maternal transfer of antibodies, which in gulls is known to sharply decrease with chick age. This study is the first to report T. gondii antibodies in Yellow-legged and Audouin’s gulls, thereby extending the range of intermediate hosts for this parasite and underscoring the complexity of its epidemiology.  相似文献   

17.
Toxoplasma gondii is an obligate intracellular protozoan parasite found worldwide that is able to chronically infect almost all vertebrate species, especially birds and mammalians. Chitinases are essential to various biological processes, and some pathogens rely on chitinases for successful parasitization. Here, we purified and characterized a chitinase from T. gondii. The enzyme, provisionally named Tg_chitinase, has a molecular mass of 13.7 kDa and exhibits a Km of 0.34 mM and a Vmax of 2.64. The optimal environmental conditions for enzymatic function were at pH 4.0 and 50°C. Tg_chitinase was immunolocalized in the cytoplasm of highly virulent T. gondii RH strain tachyzoites, mainly at the apical extremity. Tg_chitinase induced macrophage activation as manifested by the production of high levels of pro-inflammatory cytokines, a pathogenic hallmark of T. gondii infection. In conclusion, to our knowledge, we describe for the first time a chitinase of T. gondii tachyzoites and provide evidence that this enzyme might influence the pathogenesis of T. gondii infection.  相似文献   

18.
Interleukin (IL)-23 and IL-12 are closely related in structure, and these cytokines regulate both innate and adaptive immunity. However, the precise signaling networks that regulate the production of each in Toxoplasma gondii-infected THP-1 monocytic cells, particularly the PI3K/AKT and MAPK signaling pathways, remain unknown. In the present study, T. gondii infection upregulated the expression of IL-23 and IL-12 in THP-1 cells, and both cytokines increased with parasite dose. IL-23 secretion was strongly inhibited by TLR2 monoclonal antibody (mAb) treatment in a dose-dependent manner and by TLR2 siRNA transfection, whereas IL-12 secretion was strongly inhibited by TLR4 mAb treatment dose-dependently and by TLR4 siRNA transfection. IL-23 production was dose-dependently inhibited by the PI3K inhibitors LY294002 and wortmannin, whereas IL-12 production increased dose-dependently. THP-1 cells exposed to live T. gondii tachyzoites underwent rapid p38 MAPK, ERK1/2 and JNK activation. IL-23 production was significantly upregulated by the p38 MAPK inhibitor SB203580 dose-dependently, whereas pretreatment with 10 μM SB203580 significantly downregulated IL-12 production. ERK1/2 inhibition by PD98059 was significantly downregulated IL-23 production but upregulated IL-12 production. JNK inhibition by SP600125 upregulated IL-23 production, but IL-12 production was significantly downregulated dose-dependently. T. gondii infection resulted in AKT activation, and AKT phosphorylation was inhibited dose-dependently after pretreatment with PI3K inhibitors. In T. gondii-infected THP-1 cells, ERK1/2 activation was regulated by PI3K; however, the phosphorylation of p38 MAPK and JNK was negatively modulated by the PI3K signaling pathway. Collectively, these results indicate that IL-23 production in T. gondii-infected THP-1 cells was regulated mainly by TLR2 and then by PI3K and ERK1/2; however, IL-12 production was mainly regulated by TLR4 and then by p38 MAPK and JNK. Our findings provide new insight concerning the intracellular networks of the PI3K/AKT and MAPK signaling cascades for regulating T. gondii-induced IL-23 and IL-12 secretion in human monocytic cells.  相似文献   

19.
Because transmembrane (TM) protein localization, or nonlocalization, in ordered membrane domains (rafts) is a key to understanding membrane domain function, it is important to define the origin of protein-raft interaction. One hypothesis is that a tight noncovalent attachment of TM proteins to lipids that have a strong affinity for ordered domains can be sufficient to induce raft-protein interaction. The sterol-binding protein perfringolysin O (PFO) was used to test this hypothesis. PFO binds both to sterols that tend to localize in ordered domains (e.g., cholesterol), and to those that do not (e.g., coprostanol), but it does not bind to epicholesterol, a raft-promoting 3α-OH sterol. Using a fluorescence resonance energy transfer assay in model membrane vesicles containing coexisting ordered and disordered lipid domains, both TM and non-TM forms of PFO were found to concentrate in ordered domains in vesicles containing high and low-Tm lipids plus cholesterol or 1:1 (mol/mol) cholesterol/epicholesterol, whereas they concentrate in disordered domains in vesicles containing high-Tm and low-Tm lipids plus 1:1 (mol/mol) coprostanol/epicholesterol. Combined with previous studies this behavior indicates that TM protein association with ordered domains is dependent upon both the association of the protein-bound sterol with ordered domains and hydrophobic match between TM segments and rafts.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号