首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
5.
Anthracyclines are a class of conventional and commonly used frontline chemotherapy drugs to treat breast cancer. However, the anthracycline-based regimens can only reduce breast cancer mortality by 20–30%. Furthermore, there is no appropriate biomarker for predicting responses to this kind of chemotherapy currently. Here we report our findings that may fill this gap by showing the AQP1 (Aquaporin1) protein as a potential response predictor in the anthracycline chemotherapy. We showed that breast cancer patients with a high level of AQP1 expression who underwent the anthracycline treatment had a better clinical outcome relative to those with a low level of AQP1 expression. In the exploration of the underlying mechanisms, we found that the AQP1 and glycogen synthase kinase-3β (GSK3β) competitively interacted with the 12 armadillo repeats of β-catenin, followed by the inhibition of the β-catenin degradation that led to β-catenin’s accumulation in the cytoplasm and nuclear translocation. The nuclear β-catenin interacted with TopoIIα and enhanced TopoIIα’s activity, which resulted in a high sensitivity of breast cancer cells to anthracyclines. We also found, the miR-320a-3p can attenuate the anthracycline’s chemosensitivity by inhibiting the AQP1 expression. Taken together, our findings suggest the efficacy of AQP1 as a response predictor in the anthracycline chemotherapy. The application of our study includes, but is not limited to, facilitating screening of the most appropriate breast cancer patients (who have a high AQP1 expression) for better anthracycline chemotherapy and improved prognosis purposes.Subject terms: Predictive markers, Tumour biomarkers  相似文献   

6.
There is increasing evidence that a fine-tuned integrin cross talk can generate a high degree of specificity in cell adhesion, suggesting that spatially and temporally coordinated expression and activation of integrins are more important for regulated cell adhesive functions than the intrinsic specificity of individual receptors. However, little is known concerning the molecular mechanisms of integrin cross talk. With the use of beta(1)-null GD25 cells ectopically expressing the beta(1)A integrin subunit, we provide evidence for the existence of a cross talk between beta(1) and alpha(V) integrins that affects the ratio of alpha(V)beta(3) and alpha(V)beta(5) integrin cell surface levels. In particular, we demonstrate that a down-regulation of alpha(V)beta(3) and an up-regulation of alpha(V)beta(5) occur as a consequence of beta(1)A expression. Moreover, with the use of GD25 cells expressing the integrin isoforms beta(1)B and beta(1)D, as well as two beta(1) cytoplasmic domain deletion mutants lacking either the entire cytoplasmic domain (beta(1)TR) or only its "variable" region (beta(1)COM), we show that the effects of beta(1) over alpha(V) integrins take place irrespective of the type of beta(1) isoform, but require the presence of the "common" region of the beta(1) cytoplasmic domain. In an attempt to establish the regulatory mechanism(s) whereby beta(1) integrins exert their trans-acting functions, we have found that the down-regulation of alpha(V)beta(3) is due to a decreased beta(3) subunit mRNA stability, whereas the up-regulation of alpha(V)beta(5) is mainly due to translational or posttranslational events. These findings provide the first evidence for an integrin cross talk based on the regulation of mRNA stability.  相似文献   

7.
8.
CEACAM1-LF, a homotypic cell adhesion adhesion molecule, transduces intracellular signals via a 72 amino acid cytoplasmic domain that contains two immunoreceptor tyrosine-based inhibitory motifs (ITIMs) and a binding site for β-catenin. Phosphorylation of Ser503 by PKC in rodent CEACAM1 was shown to affect bile acid transport or hepatosteatosis via the level of ITIM phosphorylation, but the phosphorylation of the equivalent residue in human CEACAM1 (Ser508) was unclear. Here we studied this analogous phosphorylation by NMR analysis of the 15N labeled cytoplasmic domain peptide. Incubation with a variety of Ser/Thr kinases revealed phosphorylation of Ser508 by GSK3bβ but not by PKC. The lack of phosphorylation by PKC is likely due to evolutionary sequence changes between the rodent and human genes. Phosphorylation site assignment by mass spectrometry and NMR revealed phosphorylation of Ser472, Ser461 and Ser512 by PKA, of which Ser512 is part of a conserved consensus site for GSK3β binding. We showed here that only after phosphorylation of Ser512 by PKA was GSK3β able to phosphorylate Ser508. Phosphorylation of Ser512 by PKA promoted a tight association with the armadillo repeat domain of β-catenin at an extended region spanning the ITIMs of CEACAM1. The kinetics of phosphorylation of the ITIMs by Src, as well dephosphorylation by SHP2, were affected by the presence of Ser508/512 phosphorylation, suggesting that PKA and GSK3β may regulate the signal transduction activity of human CEACAM1-LF. The interaction of CEACAM1-LF with β-catenin promoted by PKA is suggestive of a tight association between the two ITIMs of CEACAM1-LF.  相似文献   

9.
Interstitial pulmonary fibrosis (IPF) is a severe progressive lung disease with limited therapeutic options and poor prognosis. Initially, we found the downregulated level of neural precursor cell expressed developmentally down-regulated 4-like protein (NEDD4L) in IPF-related expression microarray dataset, and this study was thus performed to explore the molecular mechanism of NEDD4L in IPF. The expression of NEDD4L was subsequently validated in lung tissues of IPF patients and mouse models. Then, mouse primary lung fibroblasts (LFs) were collected for in vitro functional experiments, with CCK-8, Transwell, and immunofluorescence assays used to examine the viability, migration, and differentiation of LFs. The in vitro findings were further assessed using in vivo mouse models. The expression of NEDD4L was down-regulated in lung tissues of IPF patients and mouse models. Overexpression of NEDD4L restricted the formation and progression of IPF in mice and attenuated the proliferative, invasive and differentiative abilities of LFs. Further, NEDD4L halted LFs activity by enhancing β-catenin ubiquitination and down-regulating the CTHRC1/HIF-1α axis. Also, in vivo experiments then validated that NEDD4L silencing repressed β-catenin ubiquitination and activated the CTHRC1/HIF-1α axis, thereby aggravating IPF in mice. NEDD4L may suppress the formation and progression of IPF through augmenting β-catenin ubiquitination and inhibiting the CTHRC1/HIF-1α axis.  相似文献   

10.
11.
Cancer-associated fibroblasts (CAFs) contribute to tumour epithelial-mesenchymal transition (EMT) via interaction with cancer cells. However, the molecular mechanisms underlying tumour-promoting EMT of CAFs in lung adenocarcinoma (ADC) remain unclear. Here, we observed that CAFs isolated from lung ADC promoted EMT via production of stromal cell-derived factor-1 (SDF-1) in conditioned medium (CM). CAF-derived SDF-1 enhanced invasiveness and EMT by upregulating CXCR4, β-catenin, and PPARδ, while downregulating these proteins reversed the effect. Furthermore, RNAi-mediated CXCR4 knockdown suppressed β-catenin and PPARδ expression, while β-catenin inhibition effectively downregulated PPARδ without affecting CXCR4; however, treatment with a PPARδ inhibitor did not inhibit CXCR4 or β-catenin expression. Additionally, pairwise analysis revealed that high expression of CXCR4, β-catenin, and PPARδ correlated positively with 75 human lung adenocarcinoma tissues, which was predictive of poor prognosis. Thus, targeting the CAF-derived, SDF-1-mediated CXCR4 β-catenin/ PPARδ cascade may serve as an effective targeted approach for lung cancer treatment.Subject terms: Cancer microenvironment, Non-small-cell lung cancer  相似文献   

12.
13.
In Wnt/β-catenin signaling, the β-catenin protein level is deliberately controlled by the assembly of the multiprotein β-catenin destruction complex composed of Axin, adenomatous polyposis coli (APC), glycogen synthase kinase 3β (GSK3β), casein kinase 1α (CK1α), and others. Here we provide compelling evidence that formation of the destruction complex is driven by protein liquid–liquid phase separation (LLPS) of Axin. An intrinsically disordered region in Axin plays an important role in driving its LLPS. Phase-separated Axin provides a scaffold for recruiting GSK3β, CK1α, and β-catenin. APC also undergoes LLPS in vitro and enhances the size and dynamics of Axin phase droplets. The LLPS-driven assembly of the destruction complex facilitates β-catenin phosphorylation by GSK3β and is critical for the regulation of β-catenin protein stability and thus Wnt/β-catenin signaling.  相似文献   

14.
The prognosis of locally advanced colorectal cancer (CRC) is currently unsatisfactory. This is mainly due to drug resistance, recurrence, and subsequent metastatic dissemination, which are sustained by the cancer stem cell (CSC) population. The main driver of the CSC gene expression program is Wnt signaling, and previous reports indicate that Wnt3a can activate p38 MAPK. Besides, p38 was shown to feed into the canonical Wnt/β-catenin pathway. Here we show that patient-derived locally advanced CRC stem cells (CRC-SCs) are characterized by increased expression of p38α and are “addicted” to its kinase activity. Of note, we found that stage III CRC patients with high p38α levels display reduced disease-free and progression-free survival. Extensive molecular analysis in patient-derived CRC-SC tumorspheres and APCMin/+ mice intestinal organoids revealed that p38α acts as a β-catenin chromatin-associated kinase required for the regulation of a signaling platform involved in tumor proliferation, metastatic dissemination, and chemoresistance in these CRC model systems. In particular, the p38α kinase inhibitor ralimetinib, which has already entered clinical trials, promoted sensitization of patient-derived CRC-SCs to chemotherapeutic agents commonly used for CRC treatment and showed a synthetic lethality effect when used in combination with the MEK1 inhibitor trametinib. Taken together, these results suggest that p38α may be targeted in CSCs to devise new personalized CRC treatment strategies.Subject terms: Cancer stem cells, Colorectal cancer, Post-translational modifications  相似文献   

15.
16.
Canonical Wnt signaling pathway plays a crucial role in cancer cell proliferation, which links by the growth of β-catenin in cell due to inactivation of glycogen synthetase kinase-3. Therefore, it is of interest to design novel candidates to bind with β-catenin. Hence, we document the molecular docking analysis data of aspirin analogues with β-catenin for further consideration.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号