首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Substrate oxidation of aromatic substances by the enzyme laccase followed by a heteromolecular coupling with a co-substrate is a promising possibility for the synthesis of new compounds. To find a suitable reactor for the effective production of new compounds, the laccase-catalysed coupling of 3-(3,4-dihydroxyphenyl)propionic acid with 4-aminobenzoic acid was investigated as a model system. Based on the kinetic parameters, a mathematical model was used to predict the reaction yield and oxygen demand in a discontinuously stirred tank reactor and a continuously operated stirred tank reactor. Membrane processes were used for bubble-free aeration of the system and to recover the soluble enzyme.  相似文献   

2.
This study reports the results of experiments on continuous adsorption and desorption of Cr(VI) ions by a chemically modified and polysulfone-immobilized biomass of the fungus Rhizopus nigricans. A fixed quantity of polymer-entrapped biomass beads corresponding to 2 g of dry biomass powder was employed in packed bed, fluidized bed, and stirred tank reactor for monitoring the continuous removal and recovery of Cr(VI) ions from aqueous solution and synthetic chrome plating effluent. Parameters such as flow rate (5, 10 and 15 mL/min), inlet concentration of Cr(VI) ions (50, 100, 150 and 250 mg/L) and the depth of biosorbent packing (22.8, 11.2 and 4.9 cm) were evaluated for the packed bed reactor. The breakthrough time and the adsorption rates in the packed bed column were found to decrease with increasing flow rate and higher Cr inlet concentrations and to increase with higher depths of sorbent packing. To have a comparative analysis of Cr adsorption efficiency in different types of reactors, the fluidized bed reactor and stirred tank reactor were operated using the same quantities of biosorbent material. For the fluidized bed reactor, Cr(VI) solution of 100 mg/L was pumped at 5 mL/min and fluidized by compressed air at a flow rate of 0.5 kg/cm.(2) The stirred tank reactor had a working volume of 200 mL capacity and the inlet/outlet flow rate was 5 mL/min. The maximum removal efficiency (mg Cr/g biomass) was obtained for the stirred tank reactor (159.26), followed by the fluidized reactor (153.04) and packed bed reactor (123.33). In comparison to the adsorption rate from pure chromate solution, approximately 16% reduction was monitored for synthetic chrome plating effluent in the packed bed. Continuous desorption of bound Cr ions from the reactors was effective with 0.01 N Na(2)CO(3) and nearly 80-94% recoveries have been obtained for all the reactors.  相似文献   

3.
Summary A method for the continuous production of extracellular alpha amylase by surface immobilized cells of Bacillus amyloliquefaciens NRC 2147 has been developed. A large-pore, macroreticular anionic exchange resin was capable of initially immobilizing an effective cell concentration of 17.5 g DW/1 (based on a total reactor volume of 160 ml). The reactor was operated continuously with a nutrient medium containing 15 g/l soluble starch, as well as yeast extract and salts. Aeration was achieved by sparging oxygen enriched air into the column inlet. Fermentor plugging by cells was avoided by periodically substituting the nutrient medium with medium lacking in both soluble starch and yeast extract. This fermentor was operated for over 200 h and obtained a steady state enzyme concentration of 18700 amylase activity units per litre (18.7 kU/l), and an enzyme volumetric productivity of 9700 amylase activity units per litre per hour (9.7 kU/l-h). Parallel fermentations were performed using a 2 l stirred vessel fermentor capable of operation in batch and continuous mode. All fermentation conditions employed were identical to those of the immobilized cell experiments in order to assess the performance of the immobilized cell reactor. Batch stirred tank operation yielded a maximum amylase activity of 150 kU/l and a volumetric productivity of 2.45 kU/l-h. The maximum cell concentration obtained was 5.85 g DW/l. Continuous stirred tank fermentation obtained a maximum effluent amylase activity of 6.9 kU/l and a maximum enzyme volumetric productivity of 2.73 kU/l-h. Both of these maximum values were observed at a dilution rate of 0.345 l/h. The immobilized cell reactor was observed to achieve larger volumetric productivities than either mode of stirred tank fermentation, but achieved an enzyme activity concentration lower than that of the batch stirred tank fermentor.  相似文献   

4.
不同培养方式对细菌纤维素产量和结构性质的影响   总被引:9,自引:0,他引:9  
考察了自行筛选的Acetobacter xylinum NUST4.2在静置培养和发酵罐培养获得的细菌纤维素(BC)的产量、基本结构和性能的差异。结果表明:静置培养时产纤维素7.5g/L,产率为0.052g/L/h,在机械搅拌发酵罐中培养3d产量达3.13g/L,产率达0.043g/L/h;SEM分析显示静置培养和发酵罐培养得到的纤维素均具有网状结构,但静置获得的纤维素丝带相互缠绕且层状重叠,更加致密,丝带更细;FT-IR分析知搅拌不改变纤维素的化学结构,但能减弱分子间氢键,和XRD结合分析可知静置培养的纤维素具有更高结晶指数,更高Iα含量和更大晶粒尺寸,但不改变晶型,仍为纤维素I型,说明搅拌会干扰纤维素初始纤丝的结晶,有利于形成更小的晶粒和较Iα稳定的Iβ。与棉纤维素相比,静置培养获得的纤维素的热稳定性更好,而发酵罐培养获得的纤维素则阻燃性更好。  相似文献   

5.
Summary A recently developed immobilization method, characterized by the adsorption of the mycelia onto a glass-carrier in a fixed-bed reactor, was applied for citric acid production by Aspergillus niger ATCC 9142, and compared with conventional culture techniques.In a fixed-bed reactor and in a stirred fermenter a rapid gluconic acid production started immediately after nitrate exhaustion, though the pH was below 2.5 During a second production phase a comparatively small amount of citric acid was formed.In surface and shaken-flask cultures nearly no gluconic acid could be found, whereas citric acid yields were significantly higher than in the fixed-bed reactor and in the stirred fermenter.Manganese (0.8×10–7 Mol×dm–3 after 6 days incubation) from the stainless steel parts of the vessel seemed to be responsible for both gluconic acid production and small citric acid yields in the stirred fermenter and in the fixed-bed reactor.  相似文献   

6.
Summary The production of a secondary metabolite (-amylase) by a highly aerobic bacterium (Bacillus amyloliquefaciens) was examined in batch, single-stage chemostat, two-stage stirred tank, and two-stage stirred tank/tubular reactor configurations. The relative performance of these reactor systems as measured by product concentration and volumetric productivity was compared, and the effect of aeration rate on the extent of plug flow in the tubular reactor was examined.  相似文献   

7.
The enzymatic synthesis of homogeneous tri-docosahexaenoylglycerol from glycerol and ethyl docosahexaenoate in a solvent-free medium was achieved using Novozym SP 435 (immobilized lipase from Candida antarctica). Two processes were tested: a constant stirred tank reactor with N2 bubbling through and a constant stirred tank reactor under vacuum. The first experimental apparatus was clearly found to be better than the other, giving 100% (w/w) conversion after 10 h.  相似文献   

8.
Two-phase anaerobic digestion of cheese whey was investigated in a system consisting of a stirred acidogenic reactor followed by a stirred methanogenic reactor, the latter being coupled to a membrane filtration system to enable removal of soluble effluent whilst retaining solids. The acidogenic reactor was operated at a hydraulic retention time (HRT) of one day, giving maximum acidification of 52.25% with up to 5 g/l volatile fatty acids, of which 63.7% was acetic acid and 24.7% was propionic acid. The methanogenic reactor received an organic load up to 19.78 g COD/ld, corresponding to a HRT of 4 days, at which 79% CODs and 83% BOD(5) removal efficiencies were obtained. Average removals of COD, BOD(5) and TSS in the two-phase anaerobic digestion process were 98.5%, 99% and 100%, respectively. The daily biogas production exceeded 10 times reactor volume and biogas methane content was greater than 70%.  相似文献   

9.
Calcium gluconate production by Aspergillus niger was investigated in shake flask, rolling shaker, air-lift reactor and stirred reactor. Growth pattern of the organism and fermentation conditions determined the yield of the product. High calcium gluconate production was achieved in air-lift reactor with pellet form of cell growth at moderate specific growth rate and biomass concentration. In another variation of air-lift reactor, when calcium carbonate was confined to a cellulose membrane, calcium gluconate production was maximum (149 g/L). At higher specific growth rate, obtained in shake flask, despite the formation of cell pellets, product formation was low. Physical separation of particulate calcium carbonate and growing cells favoured product formation. In stirred reactor pulpy mycelial growth was obtained and calcium gluconate production was poor.  相似文献   

10.
Liu Q  Jia C  Kim JM  Jiang P  Zhang X  Feng B  Xu S 《Biotechnology letters》2008,30(3):497-502
Monolauroyl maltose was synthesized by an immobilized lipase that catalyzed condensation of maltose and lauric acid in acetone using a batch reactor or a continuous stirred tank reactor. Mono- and di-lauroyl maltoses were identified by FT-IR, 1H NMR, 13C NMR and MS. Monolauroyl maltose was selectively synthesized in a continuous stirred tank reactor and no diester was detected. The highest concentration of monolauroyl maltose at 28 mmol/l was obtained in 250 ml acetone when maltose was added at 4 g/d and the molar ratio of lauric acid to maltose was fixed at 4:1 at a flow rate of 0.15 ml/min for both influx and effluent without supplement of fresh molecular sieve.  相似文献   

11.
 The biotreatability of a xenobiotic contaminated soil is frequently determined through a bioslurry treatment usually performed in lab-scale shaken baffled flasks. In this study, a 3-l unconventional stirred tank reactor was developed and tested in the slurry-phase treatment of a soil heavily contaminated by polychlorobiphenyls (PCBs) derived from an Italian dump site, in the absence and in the presence of biphenyl and of the exogenous PCB aerobically dechlorinating co-culture ECO3. The data obtained were compared with those obtained on the same soil in experiments performed in parallel in 3-l baffled shaken flask reactors. Considerably higher PCB removal and soil detoxification yields (determined through the Lepidium sativum germination test and the Collembola mortality test) were attained in the stirred tank reactors, which generally displayed a higher slurry-phase homogeneity and a higher availability of biphenyl- and chlorobenzoic acid-degrading bacteria compared to the corresponding shaken flask reactors. Moreover, enhanced soil PCB biodegradation and detoxification yields were observed when the developed reactor was supplemented with biphenyl and the exogenous ECO3 bacteria. In conclusion, the results of the soil biotreatability experiments commonly performed in bioslurry lab-scale reactors are significantly infuenced by the reactor configuration; the use of the unconventional stirred tank reactor system developed in this work is recommended. Received: 21 June 1999 / Received revision: 9 September 1999 / Accepted: 10 September 1999  相似文献   

12.
Summary A bench scale continuously stirred reactor was used to study the acidogenic phase of the anaerobic fermentation of stillage. The residence time of the effluent in the reactor ranged from 15.7 to 8.2 hours, pH was around 5.0 and temperature was maintained at 35°C. The results indicate that the residence time had no appreciable effect on the production or composition of the organic acids. The main acid products found in the reactor effluent were acetic, propionic and butiric acids.  相似文献   

13.
The study reports on the development of a bioreactor for the production of alpha-keto acids from D,L- or D-amino acids using Rhodotorula gracilis D-amino acid oxidase. D-Amino acid oxidase was co-immobilized with catalase on Affi-Gel 10 matrix, and the reactor was operated as a continuous-stirred tank reactor (CSTR) or stirred tank with medium recycling conditions. The optimum substrate concentration and quantity of biocatalyst were determined (5 mM and 1.2 mg/L, respectively). Under optimum operating conditions, product formation was linearly related to both substrate and enzyme concentration, showing the system to be highly flexible. Under these conditions, in a stirred tank, over 90% conversion was achieved in 30 min with a maximum production of 0.23 g of pyruvic acid/day/enzyme units. Product was recovered by ion exchange chromatography. The operational stability of the reactor was high (up to 9.5 h of operation without loss of activity) and the inactivation half-life was not reached even after 18 h or 36 bioconversion cycles. This represents the first case of a reactor developed successfully with a D-amino acid oxidase. (c) 1994 John Wiley & Sons, Inc.  相似文献   

14.
Batch and continuous hydrolysis of olive oil in an organic-aqueous two-phase system using the live whole cell of Pseudomonas putida 3SK as a source of a lipase is investigated. The strain was not only fully viable and grown well, but also produced extracellular lipase simultaneously. The degree of hydrolysis, depending on olive oil concentration in the solvents, was maximal at 13.5% (w/v) and decreased with the increase of the substrate concentration. At the optimal condition, a degree of hydrolysis higher than 95% was achieved with 24 h at 30 degrees C when the reaction was carried out in a two-phase batch stirred reactor. For long-term operation a continuous stirred reactor was designed. When the reaction was carried out in a continuous stirred reactor, the degree was hydrolysis reached 86% at a dilution rate of 0.2 h(-1). Satisfactory performance of a two-phase bioreactor was obtained in a long-term continous operation, which lasted for at least 30 days by feeding organic solvent containing olive oil and aqueous media separately. (c) 1994 John Wiley & Sons, Inc.  相似文献   

15.
In industrial biotechnology increasing reactor volumes have the potential to reduce production costs. Whenever the achievable space time yield is determined by the mass transfer performance of the reactor, energy efficiency plays an important role to meet the requirements regarding low investment and operating costs. Based on theoretical calculations, compared to bubble column, airlift reactor, and aerated stirred tank, the jet loop reactor shows the potential for an enhanced energetic efficiency at high mass transfer rates. Interestingly, its technical application in standard biotechnological production processes has not yet been realized. Compared to a stirred tank reactor powered by Rushton turbines, maximum oxygen transfer rates about 200% higher were achieved in a jet loop reactor at identical power input in a fed batch fermentation process. Moreover, a model‐based analysis of yield coefficients and growth kinetics showed that E. coli can be cultivated in jet loop reactors without significant differences in biomass growth. Based on an aerobic fermentation process, the assessment of energetic oxygen transfer efficiency [kgO2 kW?1 h?1] for a jet loop reactor yielded an improvement of almost 100%. The jet loop reactor could be operated at mass transfer rates 67% higher compared to a stirred tank. Thus, an increase of 40% in maximum space time yield [kg m?3 h?1] could be observed.  相似文献   

16.
The use of organic liquids as vectors to enhance mass transfer has been applied since the 1970s. However, mass transfer in three-phase reactors is only partially understood. This paper aimed to characterize oxygen transfer in three-phase reactors containing air as gas, silicone oil as vector and water as aqueous phase. A mass transfer model that considers separately air/vector, vector/water and air/water oxygen transfers was developed. The model was used to describe oxygen transfer in airlift and stirred tank reactors containing from 0 to 50% of silicone oil. Under the experimental conditions, silicone oil had a positive effect on the overall oxygen transfer. In both reactor designs, the maximum overall oxygen transfer was observed with 10% silicone oil which was increased by 65 and 84% in the airlift and stirred reactor, respectively, compared to reactors operated without silicone oil. The overall transfer increase was mainly due to an enhanced air/water transfer. With 10% silicone oil, the air/water contribution to the overall oxygen transfer was 94.7 and 93.0% for the airlift and stirred reactor, respectively.  相似文献   

17.
Gluconic acid and sorbitol were simultaneously produced from glucose and Jerusalem artichoke using a glucose-fructose oxidoreductase of Zymomonas mobilis and inulinase. Inulinase was immobilized on chitin by cross-linking with glutaraldehyde. Cells of Z. mobilis permeabilized with toluene were coimmobilized with chitin-immobilized inulinase in alginate beads. The optimum amounts of both chitin-immobilized inulinase and permeabilized cells for coimmobilization were determined, and operational conditions were optimized. In a continuous stirred tank reactor operation, the maximum productivities for gluconic acid and sorbitol were about 19.2 and 21.3 g/L/h, respectively, at the dilution rate of 0.23 h(-1) and the substrate concentration of 20%, but operational stability was low because of the abrasion of the beads. As an approach to increase the operational stability, a recycle packed-bed reactor (RPBR) was employed. In RPBR operation, the maximum productivities for gluconic acid and sorbitol were found to be 23.4 and 26.0 g/L/h, respectively, at the dilution rate of 0.35 h(-1) and the substrate concentration of 20% when the recirculation rate was fixed at 900 mL/h. Coimmobilized enzymes were stable for 250 h in a recycle packed-bed reactor without any loss of activity, while half-life in a continuous stirred tank reactor (CSTR) was observed to be about 150 h.  相似文献   

18.
Summary A lactic starter culture of a flocculentLactobacillus plantarum was produced in a fluidized bed reactor with higher cell volumetric productivities than in a continuous stirred tank reactor. The fluidized bed reactor was operated at optimised parameters obtained in batch reactor performed with and without pH control.  相似文献   

19.
研究了微水-有机溶剂两相体系中固定化脂肪酶催化的萘甲酯的立体选择性水解反应,固定化酶活性受载体极性、水含量、有机溶剂的logP值,产物抑制的影响,据此构建了一种可以连续拆分产生(S)-(+)-萘普生的微水-有机溶剂两相体系。反应在一个具有回路的连续流搅拌反应器中进行,反应器中添加有采用吸附法固定化的脂肪酶,截体为一种弱极性的合成载体,水相连同固定化酶颗粒一起永久保持在反应器中,有机流动相带入底物,  相似文献   

20.
The mechanisms and kinetic course of BOD exertion were compared in both open and closed systems. Two open reactors, a simulated stream device, and an open stirred reactor were employed, and the closed systems consisted of standard BOD bottles and 2.4-liter vessels. In the closed systems, both quiescent and stirred conditions of incubation were examined. Biological solids concentration, bacteria and protozoa concentration, substrate analysis, and chemical oxygen demand as well as biochemical oxygen utilization were employed to assess the performance of these systems. Oxygen uptake rate constants were observed to increase with increasing concentration o carbon source, thus militating against irect use of the usual dilution technique for predicting rate of deoxygenation in receiving streams. The relationship between specific O2 uptake rate and substrate concentration approximated a hyperbolic function similar to the Mono relationship for specific growth rate and substrate concentration. A technique using an open stirred reactor than the standard BOD bottle dilution technique is recommended.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号