首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A dihydropyrimidine dehydrogenase mutant of Pseudomonas chlororaphis ATCC 17414 was isolated and characterized in this study. Initially, reductive catabolism of uracil was confirmed to be active in ATCC 17414 cells. Following chemical mutagenesis and d-cycloserine counterselection, a mutant strain unable to utilize uracil as a nitrogen source was identified. It was also unable to utilize thymine as a nitrogen source but could use either dihydrouracil or dihydrothymine as a sole source of nitrogen. Subsequently, it was determined that the mutant strain was deficient for the initial enzyme in the reductive pathway dihydropyrimidine dehydrogenase. The lack of dehydrogenase activity did not seem to have an adverse effect upon the activity of the second reductive pathway enzyme dihydropyrimidinase activity. It was shown that both dihydropyrimidine dehydrogenase and dihydropyrimidinase levels were affected by the nitrogen source present in the growth medium. Dihydropyrimidine dehydrogenase and dihydropyrimidinase activities were elevated after growth on uracil, thymine, dihydrouracil or dihydrothymine as a source of nitrogen.  相似文献   

2.
Zusammenfassung Nach Behandlung mit 1-Nitroso-3-nitro-1-methylguanidin und nach Anreicherung in einem penicillinhaltigen Medium wurden von Hydrogenomonas facilis 35 Mutanten isoliert, die Uracil nicht mehr als N-Quelle zu nutzen vermochten. Eine Gruppe dieser Mutanten bildete keine Dihydrouracil-Dehydrogenase und verwertete Thymin, Orotsäure und Uracil nicht mehr. Eine zweite Gruppe hatte die Fähigkeit verloren, Dihydrouracil-Hydrase zu bilden und konnte Uracil, Orotsäure, Thymin, Dihydrouracil und Dihydrothymin nicht mehr verwerten. Während des Wachstums mit Cytosin wurde durch die erste Gruppe dieser Mutanten Uracil und durch die zweite Gruppe Dihydrouracil in das Nährmedium ausgeschieden.Die Enzyme Dihydrouracil-Dehydrogenase und Dihydrouracil-Hydrase waren in Zellen, die mit Cytosin, Uracil, Thymin oder Orotsäure angezogen worden waren, mit wesentlich höherer spezifischer Aktivität nachweisbar als in Zellen, die mit Ammoniumchlorid gewachsen waren. Dihydroorotsäure-Dehydrogenase und Dihydroorotsäure-Hydrase waren in den zellfreien Extrakten in keinem Fall nachweisbar. Die Befunde weisen daraufhin, daß Uracil und Thymin bei H. facilis durch eine unspezifische Dehydrogenase und Dihydrouracil und Dihydrothymin durch eine unspezifische Hydrase umgesetzt werden, und daß diese Enzyme in Gegenwart von Uracil, Thymin oder Orotsäure induktiv gebildet werden.
Utilization of pyrimidine derivatives by Hydrogenomonas facilis II. Degradation of thymine and uracil by wild type and mutants
Summary 35 mutant strains, unable to utilize uracil as a nitrogen source, were isolated from Hydrogenomonas facilis following treatment with 1-nitroso-3-nitro-1-methylguanidine and enrichment in a penicillin containing medium. One group of these mutants lacked dihydrouracil dehydrogenase and did not utilize thymine, orotic acid and uracil. A second group of mutants had lost the ability to form dehydrouracil hydrase and was unable to utilize uracil, orotic acid, thymine, dihydrouracil and dihydrothymine. The first group of these mutants excreted uracil, the second group dihydrouracil into the medium during growth with cytosine.The enzymes dihydrouracil dehydrogenase and dihydrouracil hydrase were present in much higher specific enzyme activities in cells grown with cytosine, uracil, thymine or orotic acid than in ammonia grown cells. Dihydroorotic dehydrogenase and dihydroorotase could not be demonstrated in cell-free extracts. These data indicate that both uracil and thymine are utilized as substrates by a non-specific hydrogenase and that both dihydrouracil and dihydrothymine are utilized by a non-specific hydrase. Both these enzymes are induced in presence of uracil, thymine or orotic acid in cells of Hydrogenomonas facilis.
  相似文献   

3.
We found that some strains of Rhodotorula glutinis can oxideze dihydrourcil to uracil, and we converted dihydrouracil into uracil using the resting and immobilized cells of R. glutinis IFO-1389.The optimum pH of the conversion of dihydrouracil into uracil was 7.8. Oxygen supply was essential to the conversion. With resting cells, the addition of both o-phenanthroline and Triton X-100 caused increase of the yield of uracil about ten times as much as that with no addition.The conversion ratios of dihydrouracil into uracil using immobilized-cell beds, which were made with chitosan and glutaraldehyde, were 100, 98, and 77% when the concentration of dihydrouracil were 1, 2, and 3 (w/v)%, respectively, for 68 h at 30°C.  相似文献   

4.
Dihydrouracil dehydrogenase (NADP+) (EC 1.3.1.2) was partially purified from the cytosol fraction of rat liver and fractionated by disc gel electrophoresis. A major and minor band were visualized by staining for enzyme activity. The substrate specificity of these bands was investigated. It was found that both bands were two to three times more active with dihydrothymine as substrate than with dihydrouracil in the presence of NADP+ and the optimum pH of 7.4. Mitochondrial fractions containing most of the NADH-dependent uracil reductase of rat liver cells were fractionated by centrifugation in sucrose density gradients. Two procedures involving linear or discontinuous gradients were used. By both, good separation of NADH- and NADPH- dependent reductases was achieved. Marker enzyme studies supported the view that the NADH-dependent enzyme is located principally in mitochondria whereas the NADPH-dependent enzyme is mainly in plasma and endoplasmic reticulum membranes. For the NADH-dependent reductase the apparent Km for thymine at pH 7.4 was 1.39 times that found for uracil whereas for the NADPH-dependent enzyme the apparent Km values were similar for the two substrates at this pH. Dihydrouracil was the principal product isolated by paper chromatography from the reaction mixture containing a partially purified fraction of mitochondria, uracil and NADH at pH 7.4. This fraction also catalyzed the formation of radioactive carbon dioxide from [2-14C]uracil. The proportion of CO2 formed by the mitochondria was about 10% of that formed by the original homogenate.  相似文献   

5.
B N Patel  T P West 《Microbios》1987,49(199):107-113
Degradation of the pyrimidine bases uracil and thymine by Escherichia coli B was investigated. The known products of the reductive pathway of pyrimidine base catabolism were tested to determine if they could support the growth of E. coli B cells as sole sources of nitrogen or carbon. As might be expected if the reductive pathway was present, it was found that dihydrouracil, N-carbamoyl-beta-alanine, beta-alanine, dihydrothymine and beta-aminoisobutyric acid could sustain the growth of the bacterial cells as sole nitrogen sources by at least a fourteen-fold greater level than that observed if they were included as sole carbon sources. The existence of the reductive pathway of pyrimidine base degradation was confirmed in this micro-organism, since dihydrouracil, N-carbamoyl-beta-alanine and beta-alanine were detected following thin-layer chromatographic separation of the catabolic products of uracil and dihydrouracil.  相似文献   

6.
Dihydropyrimidinase from Pseudomonas stutzeri ATCC 17588 was purified 100-fold and characterized. It was found that dihydrouracil, dihydrothymine and hydantoin could serve as substrates for the partially purified enzyme. The K m values for dihydrouracil, dihydrothymine and hydantoin were determined to be 19.6 M, 21.3 M and 36.4 M, respectively, while their respective V max values were 0.836 mol/min, 0.666 mol/min and 2.21 mol/min. Between pH 7.5 and 9.0, enzyme activity was shown to be maximal. The optimum temperature for enzyme activity was 45 °C. Using gel filtration, the molecular weight of the enzyme was calculated to be approximately 115000 Da. Metal ions were found to influence the level of enzyme activity. Dihydropyrimidinase activity was stimulated by magnesium ions and inhibited by either zinc or copper ions.  相似文献   

7.
Data on initial velocity and isotope exchange at equilibrium suggest a nonclassical ping-pong mechanism for the dihydropyrimidine dehydrogenase from pig liver. Initial velocity patterns in the absence of inhibitors appeared parallel at low reactant concentration, with substrate inhibition by NADPH that is competitive with uracil and with substrate inhibition by uracil that is uncompetitive with NADPH. The Km values for both uracil (1 microM) and NADPH (7 microM) are low. As a result, it was difficult to determine whether the initial velocity pattern in the absence of added inhibitors was parallel. Thus, the pattern was redetermined in the presence of the dead-end inhibitor 2,6-dihydroxypyridine, which binds to both sites. This treatment effectively eliminates the inhibition by both substrates and increases their Km values, giving a strictly parallel pattern. Product and dead-end inhibition patterns are consistent with a mechanism in which NADPH reduces the enzyme at site 1 and electrons are transferred to site 2 to reduce uracil to dihydrouracil. The predicted mechanism is corroborated by exchange between [14C] NADP and NADPH as well as [14C]thymine and dihydrothymine in the absence of the other substrate-product pair.  相似文献   

8.
9.
Dihydropyrimidinase (DHP) is the second enzyme in the catabolic pathway of uracil, thymine, and chemotherapeutic fluoropyrimidine agents such as 5-fluorouracil (5-FU). Thus, DHP deficiency might be associated with 5-FU toxicity during fluoropyrimidine chemotherapy. We performed genetic analyses of the family of a patient with advanced colon cancer who underwent radical colectomy followed by treatment with 5-FU prodrug capecitabine and developed severe toxicity attributable to a lack of DHP. We measured urinary uracil and dihydrouracil, and genotyped DPYS in the patient and her family. We also measured the allele frequency of DPYS polymorphisms in 391 unrelated Japanese subjects. The patient had compound heterozygous missense and nonsense polymorphisms comprising c.1001A>G (p.Gln334Arg) in exon 6 and c.1393C>T (p.Arg465Ter) in exon 8, which are known to result in a DHP enzyme with little or no activity. The urinary dihydrouracil/uracil ratio in the patient was 17.08, while the mean ± SD urinary dihydrouracil/uracil ratio in family members who were heterozygous or homozygous for wild-type DPYS was 0.25 ± 0.06. In unrelated subjects, 8 of 391 individuals were heterozygous for the c.1001A>G mutation, while the c.1393C>T mutation was not identified. This is the first report of a DHP-deficient patient with DPYS compound heterozygous polymorphisms who was treated with a fluoropyrimidine, and our findings suggest that polymorphisms in the DPYS gene are pharmacogenomic markers associated with severe 5-FU toxicity in Japanese patients.  相似文献   

10.
In the reductive pyrimidine catabolic pathway uracil and thymine are converted to beta-alanine and beta-aminoisobutyrate. The amidohydrolases of this pathway are responsible for both the ring opening of dihydrouracil and dihydrothymine (dihydropyrimidine amidohydrolase) and the hydrolysis of N-carbamyl-beta-alanine and N-carbamyl-beta-aminoisobutyrate (beta-alanine synthase). The review summarizes what is known about the properties, kinetic parameters, three-dimensional structures and reaction mechanisms of these proteins. The two amidohydrolases of the reductive pyrimidine catabolic pathway have unrelated folds, with dihydropyrimidine amidohydrolase belonging to the amidohydrolase superfamily while the beta-alanine synthase from higher eukaryotes belongs to the nitrilase superfamily. beta-Alanine synthase from Saccharomyces kluyveri is an exception to the rule and belongs to the Acyl/M20 family.  相似文献   

11.
12.
Pyrimidines are important nucleic acid precursors which are constantly synthesized, degraded, and rebuilt in the cell. Four degradation pathways, two of which are found in eukaryotes, have been described. One of them, the URC pathway, has been initially discovered in our laboratory in the yeast Lachancea kluyveri. Here, we present the global changes in gene expression in L. kluyveri in response to different nitrogen sources, including uracil, uridine, dihydrouracil, and ammonia. The expression pattern of the known URC genes, URC1-6, helped to identify nine putative novel URC genes with a similar expression pattern. The microarray analysis provided evidence that both the URC and PYD genes are under nitrogen catabolite repression in L. kluyveri and are induced by uracil or dihydrouracil, respectively. We determined the function of URC8, which was found to catalyze the reduction of malonate semialdehyde to 3-hydroxypropionate, the final degradation product of the pathway. The other eight genes studied were all putative permeases. Our analysis of double deletion strains showed that the L. kluyveri Fui1p protein transported uridine, just like its homolog in Saccharomyces cerevisiae, but we demonstrated that is was not the only uridine transporter in L. kluyveri. We also showed that the L. kluyveri homologs of DUR3 and FUR4 do not have the same function that they have in S. cerevisiae, where they transport urea and uracil, respectively. In L. kluyveri, both of these deletion strains grew normally on uracil and urea.  相似文献   

13.
Benzoate-4-hydroxylase from a soil pseudomonad was isolated and purified about 50-fold. Polyacrylamide gel electrophoresis of this enzyme preparation showed one major band and one minor band. The approximate molecular weight of the enzyme was found to be 120,000. Benzoate-4-hydroxylase was most active around pH 7.2. The enzyme showed requirements for tetrahydropteridine as the cofactor and molecular oxygen as the electron acceptor. NADPH, NADH, dithiothreitol, β-mercaptoethanol, and ascorbic acid when added alone to the reaction mixture did not support the hydroxylation reaction to any significant extent. However, when these compounds were added together with tetrahydropteridine, they stimulated the hydroxylation. This stimulation is probably due to the reduction of the oxidized pteridine back to the reduced form. This enzyme was activated by Fe2+ and benzoate. It was observed that benzoate-4-hydroxylase could catalyze the oxidation of NADPH in the presence of benzoate,p-aminobenzoate, p-nitrobenzoate, p-chlorobenzoate, and p-methylbenzoate, with only benzoate showing maximum hydroxylation. Inhibition studies with substrate analogs and their kinetic analysis revealed that the carboxyl group is involved in binding the substrate to the enzyme at the active center. The enzyme catalyzed the conversion of 1 mol of benzoate to 1 mol of p-hydroxybenzoate with the consumption of slightly more than 1 mol of NADPH and oxygen.  相似文献   

14.
Previous studies, including those done with a similar species, have indicated that dihydrouracil is formed by the breakdown of uracil and is degraded into N-carbamyl-beta-alanine. (Fink et al., J. Biol. Chem. 201:349-355, 1953; S. R. Vilks and M. Y. Vitols, Mikrobiologiya 42:567-583, 1973; O. A. Milstein and M. L. Bekker, J. Bacteriol. 127:1-6, 1976). In the present work the conversion of dihydrouracil to uracil is studied in Rhodosporidium toruloides, and the growth characteristics of mutants that have lost the ability to use dihydrouracil as a source of nitrogen are examined. It is concluded that dihydrouracil must be converted to uracil before catabolism of the pyrimidine ring can take place.  相似文献   

15.
T W Traut  S Loechel 《Biochemistry》1984,23(11):2533-2539
We have developed a one-dimensional thin-layer chromatography procedure that resolves the initial substrate uracil and its catabolic derivatives dihydrouracil, N-carbamoyl-beta-alanine (NCBA) and beta-alanine. This separation scheme also simplifies the preparation of the radioisotopes of N-carbamoyl-beta-alanine and dihydrouracil. Combined, these methods make it possible to assay easily and unambiguously, jointly or individually, all three enzyme activities of uracil catabolism: dihydropyrimidine dehydrogenase, dihydropyrimidinase, and N-carbamoyl-beta-alanine amidohydrolase. Earlier reports had presented data suggesting that these three enzyme activities were combined in a complex because they appeared to be controlled at a single genetic locus [Dagg, C. P., Coleman, D.L., & Fraser, G.M. (1964) Genetics 49, 979-989] and because they appeared able to channel metabolites [Barrett, H.W., Munavalli, S.N., & Newmark, P. (1964) Biochim. Biophys. Acta 91, 199-204]. Although the three enzymes from rat liver have similar sizes, with apparent molecular weights of 218 000 for dihydropyrimidine dehydrogenase, 226 000 for dihydropyrimidinase, and 234 000 for NC beta A amidohydrolase, they are easily separated from each other. Kinetic studies show no evidence of substrate channeling and therefore do not support a model for an enzyme complex. The earlier reports may be explained by our studies on the amidohydrolase, which suggest that under certain conditions this enzyme may become the rate-limiting step in uracil catabolism.  相似文献   

16.
UMP pyrophosphorylase (EC 2.4.2.9, UMP:pyrophosphate phosphoribosyltransferase) was purified approximately 85-fold from exponentially growing cells of Tetrahymena pyriformis GL-7. It was found to have a molecular weight of 36,000, and was active over a broad pH range, with an optimum at 7.5. The enzyme exhibited a temperature optimum at 40 °C, above which irreversible inactivation began to occur. The apparent Km values for uracil and phosphoribosyl pyrophosphate (PRPP) were 0.4 and 6.9 m, respectively. The pyrophosphorylase exhibited a pyrimidine base specificity for uracil, although 5-fluorouracil was utilized by the enzyme. Neither cytosine, orotic acid, nor 6-azauracil competed with uracil for the enzyme or inhibited the production of UMP from uracil and PRPP. Although most triphosphates had little effect on pyrophosphorylase activity, UTP and dUTP, each at a concentration of 1 mm, depressed UMP formation by 86 and 59%, respectively. Thus, UMP pyrophosphorylase may be sensitive to feedback inhibition by the product of the pathway it initiates. UMP pyrophosphorylase specific activity in extracts of Tetrahymena grown in a medium containing uracil as the sole pyrimidine source was threefold higher than that in extracts of cells grown on uridine or UMP.  相似文献   

17.
Purification and subunit structure of mouse liver cystathionase   总被引:1,自引:0,他引:1  
Cystathionase has been purified from mouse liver by ammonium sulfate precipitation, ethanol precipitation, column chromatography on DEAE-cellulose and on hydrox-ylapatite, as well as Sephadex G-200 gel filtration. These procedures yielded a chromatographically homogeneous enzyme which was purified more than 1000-fold relative to whole liver extract. Overall recovery was approximately 4%. The purified enzyme does not contain detectable carbohydrate and migrates as a single protein component on analytical disc gel electrophoresis. A sedimentation coefficient of 8.3 S has been determined for the active enzyme by rate zonal centrifugation in glycerol gradients. This value suggests a molecular weight for the native enzyme of approximately 160,000 g/mol, a value similar to that estimated by gel filtration. Following sodium dodecyl sulfate gel electrophoresis in the presence of reducing agent and at different gel concentrations, a single protein component with a molecular weight of 40,000 g/mol was obtained. Thus, the enzyme appears to consist of four subunits of equal size. The Km value for cystathionine at pH 8.1, 37 °C, and in the presence of 1 mm dithioerythritol is approximately 1 mm.  相似文献   

18.
Enzyme deficiencies in pyrimidine metabolism are associated with a risk for severe toxicity against the antineoplastic agent 5-fluorouracil. To assess whether urinary levels of pyrimidines and their metabolites can be used for predicting patients' individual phenotype, a new gas chromatographic-tandem mass spectrometric method was developed which allows the simultaneous determination of uracil and thymine and their metabolites dihydrouracil, dihydrothymine, beta-ureidopropionic acid, beta-ureidoisobutyric acid, and the amino acids beta-alanine and beta-aminoisobutyric acid in human urine. Small aliquots (2-20 microl) of the urine samples were evaporated and derivatized to the tert.-butyldimethylsilyl derivatives before quantification, using the respective stable isotope-labelled analogues as internal standards. Analytical variation was acceptable with an intra-day imprecision (RSD) below 10%, for beta-ureidoisobutyric acid below 15%. The method was used for investigating the stability of urine samples and the influence of urine collection at different times.  相似文献   

19.
Pyrimidine ribonucleoside catabolic enzyme activities of the opportunistic pathogenPseudomonas pickettii were examined. Of the pyrimidine and related compounds tested, only dihydrouracil (nitrogen source) and ribose (carbon source) supported growth. Thin-layer chromatographic separation of the uridine and cytidine catabolities produced byP. pickettii extracts indicated that this pseudomonad contained nucleoside hydrolase activity. Its presence was confirmed by enzyme assay. Hydrolase activity was elevated in both glucose- and ribose-grown cells relative to succinate-grown cells. Nucleoside hydrolase activity was depressed when dihydrouracil served as a nitrogen source. Cytosine deaminase activity was present in extracts prepared from succinate-, glucose- or ribose-grown cells when (NH4)2SO4 served as the nitrogen source although cells grown on glucose or ribose exhibited a higher enzyme activity. Cytosine deaminase activity was not detected in extracts prepared from cells grown on dihydrouracil as a nitrogen source. Both dihydropyrimidine dehydrogenase and dihydropyrimidinase activities were measurable inP. pickettii. The dehydrogenase activity was higher with NADH than with NADPH as its nicotinamide cofactor when uracil served as its substrate. Carbon source did not affect dehydrogenase or dihydropyrimidinase activity greatly but both activities were diminished in cells grown on the nitrogen source dihydrouracil.  相似文献   

20.
A new flavoprotein enzyme, GSH oxidase, was found in the aqueous extract of a wheat bran culture of Penicillium sp. K-6-5. The oxidase is also produced extra and intracellularly in the liquid culture, although the production is much lower than that in the wheat bran culture.

The enzyme has been purified to homogeneity. It shows absorption maxima at 270, 350 and 444 nm and a shoulder around 465 nm and contains 2 mol of FAD per mol of enzyme. The enzyme has a molecular weight of approximately 95,000 and consists of two subunits identical in molecular weight (about 47,000). Balance studies show that 2 mol of GSH are converted to 1 mol of GSSG and hydrogen peroxide with the consumption of 1 mol of oxygen. In addition to GSH, several sulfhydryl compounds are oxidized by the enzyme to a lesser extent. The Michaelis constants are as follows: 0.69 mm for GSH, 3.6 mm for l-cysteine and 6.7 mm for dithiothreitol at pH 7.4. The oxidase scarcely acts on reduced RNase A in contrast to the known sulfhydryl oxidases. The isoelectric point and the optimal pH are 4.2 and 7.4, respectively. The enzyme activity is completely inhibited by addition of 1 mm ZnSO4.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号