首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nitrogen transformation of sewage sludge composting without or with rice husks as a bulking agent was investigated. When rice husks were added, nitrogen loss was reduced. Garbage and fish residue were also composted to compare the ammonia volatilization with sewage sludge. Conversion of carbon and that of nitrogen were correlated with the change of the C/N ratio of initial composting materials. Sawdust and bark were found to be efficient bulking agents to reduce the loss of nitrogen due to volatilization of ammonia during composting.  相似文献   

2.
Dewatered sewage sludge was composted in a laboratory-scale autothermal reactor in which a constant temperature of 60°C was kept as long as possible by regulating the air feed rate. The change in CO2 evolution rate was measured continuously from the start up through the cessation of compositing. The succession of mesophilic bacteria, thermophilic bacteria, and thermophilic actinomycetes was also observed during the composting. Specific CO2 evolution rates of thermophilic bacteria and actinomycetes in the constant-temperature region of 60°C were assessed quantitatively. It was found that the CO2 evolution rate was attributed to thermophilic bacteria at the initial stage of 60°C and to thermophilic actinomycetes at the later stage of 60°C.  相似文献   

3.
Two-phase olive mill waste (TPOMW) is a semisolid sludge generated by the olive oil industry. Its recycling as a soil amendment, either unprocessed or composted, is being promoted as a beneficial agricultural practice in the Mediterranean area. One of the major difficulties when composting TPOMW is the compaction of the material due to its dough-like texture, which leads to an inadequate aeration. For this reason, the addition of bulking agents is particularly important to attain a proper composting process. In this study we followed the evolution of two composting mixtures (A and B) prepared by mixing equal amounts of TPOMW and sheep litter (SL) (in a dry weight basis). In pile B grape stalks (GS) were added (10% dry weight) as bulking agent to study their effect on the development of the composting process and the final compost quality. The incorporation of grape stalks to the composting mixture changed the organic matter (OM) degradation dynamics and notably reduced the total amount of lixiviates. The evolution of several maturation indices (C/N, germination index, water soluble carbon, humification indices, C/N in the leachates) showed a faster and improved composting process when GS were added. Moreover, chemical (NH4 +, NO3 , cation exchange capacity, macro and micronutrients, heavy metals) and physical properties (bulk and real densities, air content, total water holding capacity, porosity) of the final composts were analysed and confirmed the superior quality of the compost where GS were added.  相似文献   

4.
Five different piles were prepared by mixing olive mill wastewater (alpechin) and alpechin sludge with two bulking agents (cotton waste and maize straw) and two organic wastes with high content of nitrogen (sewage sludge and poultry manure), which were composted by the Rutgers static pile composting system in a pilot plant. The aim of this work was to study the evolution of total nitrogen and different forms of organic matter and evaluate the variation in the aerobic bacterial microbiota present and biotoxicity during the composting process.In piles prepared with alpechin, the use of the maize straw as a bulking agent reduced the nitrogen losses whereas the use of sewage sludge, instead of poultry manure, with cotton waste originated the highest degradation of organic matter. In piles prepared with alpechin sludge a similar evolution of the composting process was observed. There were not great variations during composting in the aerobic bacterial microbiota present in the mixtures. However, the pile prepared with alpechin sludge and maize straw was only one to present bacteria capable of growing in alpechin, and the toxicity study showed that this was only present in the starting mixtures.  相似文献   

5.
The present work attempts to ascertain the efficacy of low cost technology (in our case, composting) as a bioremediation technique for reducing the hydrocarbon content of oil refinery sludge with a large total hydrocarbon content (250–300 g kg−1), in semiarid conditions. The oil sludge was produced in a refinery sited in SE Spain The composting system designed, which involved open air piles turned periodically over a period of 3 months, proved to be inexpensive and reliable. The influence on hydrocarbon biodegradation of adding a bulking agent (wood shavings) and inoculation of the composting piles with pig slurry (a liquid organic fertiliser which adds nutrients and microbial biomass to the pile) was also studied. The most difficult part during the composting process was maintaining a suitable level of humidity in the piles. The most effective treatment was the one in which the bulking agent was added, where the initial hydrocarbon content was reduced by 60% in 3 months, compared with the 32% reduction achieved without the bulking agent. The introduction of the organic fertiliser did not significantly improve the degree of hydrocarbon degradation (56% hydrocarbon degraded). The composting process undoubtedly led to the biodegradation of toxic compounds, as was demonstrated by ecotoxicity tests using luminescent bacteria and tests on plants in Petri dishes.  相似文献   

6.
Effect of Temperature on Composting of Sewage Sludge   总被引:9,自引:1,他引:8       下载免费PDF全文
The effect of temperature on the composting reaction of sewage sludge was investigated at 50, 60, and 70°C. The total amount of CO2 evolved and the final conversion of volatile matter were maximum at 60°C., suggesting that the optimal temperature for composting was around 60°C. The specific CO2 evolution rate (moles of CO2 evolved per hour per viable cell) was maximum at 70°C. The isolated thermophilic bacterium which was dominant at 60°C but did not grow at 70°C showed that the rate of O2 consumption measured on the agar plate at 70°C was four times higher than that at 60°C. This showed that the energy yielded from catabolism is rather uncoupled with the anabolism at 70°C in the metabolism of microorganisms indigenous in the compost. A higher respiratory quotient was observed at 70°C than at any other temperature.  相似文献   

7.
To develop an active microbial activity quickly developing stabilizing thermophilic temperatures during the composting of wastewater sludge, the bulking agent (BA) plays a major role in establishing the recipe structure, exposed particle surface area and porosity. To optimize the biodegradation of a sludge compost recipe, the objective of this paper was to study the effect and interaction of initial moisture content (MC) and BA particle size distribution. Three 300 L insulated laboratory composters were used to treat two series of ten (10) recipes with different combinations of MC and BA particle size distribution. Using a to wastewater sludge to BA dry mass ratio of 1/6, the ten (10) recipes were repeated using two BA, residues recycled from a commercial sludge composting plant and crushed wood pallets. Each four week trial monitored O2 uptake, temperature, compost consolidation and airflow distribution. The Central Composite Factor Design method produced a model from the results estimating the impact of a wider range of MC and BA particles size distribution. The MC directly affected the total O2 uptake and therefore, organic matter biodegradation. The BA particle size distribution influenced compost consolidation with a MC crossed effect. Both BA particle size distribution and MC influenced compost airflow dispersion. Composting was optimized using the BA consisting of recycled green waste residues with particle size of 20–30 mm and a 55% MC. The predictive models suggested the need for further optimization of sludge and wood residue composting recipe.  相似文献   

8.
Influence of bulking agent on sewage sludge composting process   总被引:3,自引:0,他引:3  
Four types of compost, consisting of mixtures of Acacia dealbata (A) with sewage sludge (SS) were studied in a laboratory reactor. Composting time was 80 days and parameters monitored over this period included temperature, organic matter, pH, CO2, O2, C/N ratio, Kjeldahl-N, as well as maturity indexes. All the studied parameters were influenced by the bulking amount used. The highest profile temperature measured was for the A/SS 1/2 (w/w) mixture that reached a maxima temperature of 67 °C and lower maximum temperatures of 52, 48 and 46 °C were observed for A/SS 1/3, 1/1 and 1/0 composts, respectively. The kinetic model used showed that a descent of sewage sludge in the composting mixtures favored the enzyme–substrate affinity. However, an increase in depending on the parameters of the process factors was observed when the sewage sludge ratio was increased in mixtures. The optimal amounts of sewage sludge for co-composting with Acacia indicate that moderate amounts of sludge (1/1) would be the best compromise.  相似文献   

9.
Summary Cattle manure was composted aerobically with various bulking agents (rice straw, vermiculite, sawdust or waste paper) at a constant incubation temperature of 60 °C. Increased quinone content (IQC) was used to assess microbial biomass in the composted material. IQC was proportional to mass reduction (MR) (R = 0.812) and cumulative O2 consumption (COC) (R = 0.810) irrespective of the bulking agent used, indicating that the yield of quinone was constant. Quinone yields were 0.44 ± 0.03 μmol quinone/g MR and 0.34 ± 0.02 μmol quinone/g COC. The material that was decomposed by microorganisms was considered to be mainly cattle manure. Bulking agents were not degraded within the 14 day trial period and did not affect microbial succession because composting runs with various bulking agents exhibited similar quinone yields.  相似文献   

10.
Yue B  Chen TB  Gao D  Zheng GD  Liu B  Lee DJ 《Bioresource technology》2008,99(16):7450-7457
In this study, a settlement measurement device was used to track the settlement of different layers in composting piles, and time courses of settlement velocity, bulk density distribution, and effective bulk density were investigated. Settlement is divided into two stages: the physical compressive settlement and the mass loss settlement. At the end of the former stage, bulk density (rho') and pile height (h) follow rho'=Ah(B), where A is a fitting parameter for the initial bulk density of the composting material, and B is the compression parameter. The physical compressibilities of composting mixtures are night-soil sludge and garden refuse (1:1) >sewage sludge and cornstalks (5:4) >night-soil sludge and garden refuse (2:3) >sewage sludge and bark (1:1). Adding the proportion of bulking agent in the proper extent effectively retarded composting settlement. Bark exhibits a better supporting capability than cornstalk does as a bulking agent.  相似文献   

11.
Wang K  Li W  Guo J  Zou J  Li Y  Zhang L 《Bioresource technology》2011,102(9):5528-5532
Spatial differences and temporal changes in biological activity characteristics were investigated in a static reactor using intermittent aeration during the sewage sludge composting process. Pumice was proposed as a bulking agent in the composting of sewage sludge. Variations in temperature, moisture, oxygen level, volatile solids, specific oxygen uptake rate (SOUR) and dehydrogenase activity (DHA) were determined during 28 days of composting. The peak temperature in the upper region of the reactor was 10 °C higher than that at the bottom. The moisture level in the middle region was significantly higher than that of other positions. Analysis of SOUR and DHA indicated that the lowest level of sludge stability was at the bottom region. These spatial and temporal differences in biochemical dynamics in the static system could extend the composting period and affect product uniformity.  相似文献   

12.
Herein, we conducted a study toward understanding the impact of composting of the diesel-contaminated soil with some locally available bulking agents (rice husks (RHs), sawdust (SD), and wood chips (WCs)). In order to ascertain the effectiveness of petroleum degradation by the process assayed, we compared the protocols with monitored natural attenuation (MNA). The overall degradation pattern was modeled with non-linear regression by comparing the experimental data with first and second-order kinetic equations. At the end of the six-week study, the amount of total petroleum hydrocarbon removed from contaminated soil was 98.26 ± 1.33% (amendment with SD + RHs + WCs), 96.89 ± 1.20 (RHs amendment), 96.55 ± 1.29% (amendment with SD), 90.01 ± 0.22% (WCs amendment), and 85.02 ± 0.21% (MNA). The degradation of TPH trends followed a second-order kinetic model for all the four compost treatments while the MNA was found to follow a first-order (slower) degradation pattern. In general, the results of the parameter estimate showed that amendment with mixture of the three bulking agents was 1.08 (8%) slower (k2 = (1.289 ± 0.16) × 10?5 (g mg?1 d?1), r2 = 0.991) than SD amendment alone (k2 = (1.392 ± 0.14) × 10?5 (g mg?1 d?1), r2 = 0.995). However, the mixture of the bulking agents was found to be 1.67, 1.41, and 2.4 times faster than amendments with WCs, rice, and MNA, respectively. The phytotoxicity test revealed that all the compost treatments except WCs resulted in germination index of ≥80% after six weeks of bioremediation tests. The outcome of the current investigation confirms the effectiveness of bulking agents (especially when combined) in the supply of nutrients for the bioremediation of diesel-impacted soil.  相似文献   

13.
填充料和通气对污泥堆肥过程的影响   总被引:20,自引:3,他引:17  
试验研究了不同配比的以料和通气状况对污泥堆肥起始升温的影响。结果表明,填充料含是量高的配比升温速度明显比填充料含量低的配比快;高填充料配比的堆体(填充料占堆料的1/2~1/3)在超始升温阶段可以不进行氢气的供给;低填充料的配比和加入回流堆肥的配比(填充料占堆料的1/4~1/9),由于堆体的孔隙少,则必须进行通气量的调节。  相似文献   

14.
Long term fed-batch composting experiments were conducted for 200 days using two types of bulking agents; woodchip and PET flake, with periodic compost withdrawal through a washing process. The bacterial communities of composting materials in the two different bulking agents were also investigated by 16S rRNA gene clone analysis. The decomposition rate in both composting reactors was 86.1% and 88.2% of the total organic load, respectively. The control experiment of dead-end operation without compost withdrawal by washing process could not be maintained for more than 102 days because of its low performance. The reactor with compost withdrawal, however, improved the decomposition rate in the composting process, and could be applied in the long run. There was a significant difference in the bacterial community between the FBC reactor with woodchip and another with PET flake as the bulking agent though the decomposition rates were similar. The reactor with woodchip as the bulking agent consisted of 95% Bacillales while the PET flake reactor contained 54% of total bacteria count. In addition, Lactobacillales was dominant at 38% in the PET flake reactor and the bacterial community in general significantly differed from the woodchip reactor. Furthermore, there was a difference in the species composition in the Bacillales and the bacterial community showed a significant difference at the species level between the two reactors. Although bacterial community differed, the decomposition rates between the two reactors were similar and PET flake showed greater viability than woodchip as a bulking agent due to its high abrasion resistance and non-biodegradability.  相似文献   

15.
The aim of this study was to investigate the composting of separated pig manure solids with or without a variety of bulking agents at a low initial C/N ratio (12.5-23.3). Compost stability was investigated using an oxygen uptake rate (OUR) test and compost maturity was investigated using a germination index test. All treatments showed typical patterns of compost temperature. Temperatures above 60 °C were achieved by Day 2, followed by a thermophilic phase (50-60 °C), which lasted for 1 to 2 weeks followed by a cooling phase. The stability of one of treatments which did not contain any bulking agent - OUR of 25 mmol O2 kg−1 OM hour−1 - was negatively affected by its initial high water content (69%). The addition of a bulking agent and initial water content below 60% were necessary to compost the separated solid fraction of pig manure at a low initial C/N ratio.  相似文献   

16.
Rotary drum composting of vegetable waste and tree leaves   总被引:2,自引:0,他引:2  
High rate composting studies on institutional waste, i.e. vegetable wastes, tree leaves, etc., were conducted on a demonstration-scale (3.5 m3) rotary drum composter by evaluating changes in some physico-chemical and biological parameters. During composting, higher temperature (60–70 °C) at inlet zone and (50–60 °C) at middle zone were achieved which resulted in high degradation in the drum. As a result, all parameters including TOC, C/N ratio, CO2 evolution and coliforms were decreased significantly within few days of composting. Within a week period, quality compost with total nitrogen (2.6%) and final total phosphorus (6 g/kg) was achieved; but relatively higher final values of fecal coliforms and CO2 evolution, suggested further maturation. Thus, two conventional composting methods namely windrow (M1) and vermicomposting (M2) tried for maturation of primary stabilized compost. By examining these methods, it was suggested that M2 was found suitable in delivering fine grained, better quality matured compost within 20 days of maturation period.  相似文献   

17.
A compost production system was employed to supply uniform material for controlled experiments of factorial design. Over a 96-h composting period, the cumulative amount of CO2 evolved was maximal at 56 to 60°C, an aeration rate that left an O2 residual of 10 or 18% in the exhaust gas and a moisture content of 60% wet weight. Carbon dioxide evolution was submaximal at 64°C and higher.  相似文献   

18.
Saccharification of five cellulosic wastes, i.e. rice husks, wheat bran, corn cobs, wheat straw and rice straw by three cellulytic fungi, i.e. Aspergillus glaums MN1, Aspergillus oryzae MN2 and Penicillium purpurogenum MN3, during solid-state fermentation (SSF) was laboratory studied. Rice husks, wheat bran, and corn cobs were selected as inducers of glucose production in the tested fungi. An incubation interval of 10 days was optimal for glucose production. Maximal activities of the cellulases FP-ase, CMC-ase, and p-glucosidase were detected during SSF of rice husks by P. purpurogenum; however, a-amylase activity (7.2 U/g) was comparatively reduced. Meanwhile, the productivities of FP-ase, CMC-ase, and β-glucosidase were high during SSF of rice husks by A glaucus; however, they decreased during SSF of corn cobs by P. purpurogenum. Addition of rock phosphate (RP) (75 mg P2O5) decreased the pH of SSF media. (NH4)2SO4 was found to be less inducer of cellulytic enzymes, during SSF of rice husks by A. glaucus or A. oryzae; it also induced phytase production and solubilization of RP. The organic acids associated with saccharification of the wastes studied have also been investigated. The highest concentration of levulinic acid was detected (46.15 mg/g) during SSF of corn cobs by P. purpurogenum. Likewise, oxalic acid concentration was 43.20 mg/g during SSF of rice husks by P. purpurogenum.  相似文献   

19.
Summary Inhibitory effects of an anti-microbial agent on a model activated sludge system were examined. Using microbial counts and14CO2 evolution from radiolabeled starch and cellulose, inhibitory effects of small concentration increments of HgCl2 could be monitored as could the rapid recovery of microbial viability after 24 h. Mercury dissipation accounted for part of this recovery but bacterial resistance to mercury is also implicated.  相似文献   

20.
The establishment of sustainable soil waste management practices implies minimizing their environmental losses associated with climate change (greenhouse gases: GHGs) and ecosystems acidification (ammonia: NH3). Although a number of management strategies for solid waste management have been investigated to quantify nitrogen (N) and carbon (C) losses in relation to varied environmental and operational conditions, their overall effect is still uncertain. In this context, we have analyzed the current scientific information through a systematic review. We quantified the response of GHG emissions, NH3 emissions, and total N losses to different solid waste management strategies (conventional solid storage, turned composting, forced aerated composting, covering, compaction, addition/substitution of bulking agents and the use of additives). Our study is based on a meta‐analysis of 50 research articles involving 304 observations. Our results indicated that improving the structure of the pile (waste or manure heap) via addition or substitution of certain bulking agents significantly reduced nitrous oxide (N2O) and methane (CH4) emissions by 53% and 71%, respectively. Turned composting systems, unlike forced aerated composted systems, showed potential for reducing GHGs (N2O: 50% and CH4: 71%). Bulking agents and both composting systems involved a certain degree of pollution swapping as they significantly promoted NH3 emissions by 35%, 54%, and 121% for bulking agents, turned and forced aerated composting, respectively. Strategies based on the restriction of O2 supply, such as covering or compaction, did not show significant effects on reducing GHGs but substantially decreased NH3 emissions by 61% and 54% for covering and compaction, respectively. The use of specific additives significantly reduced NH3 losses by 69%. Our meta‐analysis suggested that there is enough evidence to refine future Intergovernmental Panel on Climate Change (IPCC) methodologies from solid waste, especially for solid waste composting practices. More holistic and integrated approaches are therefore required to develop more sustainable solid waste management systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号