首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) induces CYP1A1 gene expression as determined by increased CYP1A1 mRNA levels and ethoxyresorufin O-deethylase (EROD) activity in mouse Hepa 1c1c7, rat hepatoma H-4II E and human Hep G2 cancer cell lines. In contrast, treatment of these cell lines with either alpha-naphthoflavone (alpha NF) or 6-methyl-1,3,8-trichlorodibenzofuran (MCDF) at concentrations as high as 10(-6) M resulted in only minimal induction of CYP1A1 mRNA levels or EROD activity. Cotreatment of the cells with 10(-9) M TCDD plus different concentrations (10(-8)-10(-6) M) of MCDF or alpha NF resulted in a concentration-dependent decrease in TCDD-induced CYP1A1 mRNA levels and EROD activity in the three cell lines. Moreover, using 10(-9) M [3H]TCDD, it was shown that the alpha NF- and MCDF-mediated antagonism of TCDD-induced CYP1A1 gene expression was paralleled by a decrease in levels of the nuclear [3H]TCDD-Ah receptor complex as determined by velocity sedimentation analysis of the nuclear extracts. The binding of nuclear extracts from the treated cells to a synthetic consensus dioxin responsive element (DRE) (a 26-mer) was determined by gel retardation studies using 32P-DRE. In cells treated with 10(-9) M TCDD or TCDD plus 10(-8)-10(-6) M alpha NF, the concentration-dependent decrease in TCDD-induced CYP1A1 gene expression by alpha NF was also paralleled by decreased levels of a retarded band associated with the nuclear Ah receptor-DRE complex. In contrast, the results of the gel shift assay of nuclear extracts treated with 10(-9) M TCDD or TCDD plus 10(-8)-10(-6) M MCDF indicated that there were relatively high levels of nuclear MCDF-Ah receptor complex in the cells co-treated with TCDD plus the antagonist but this was not accompanied by induced CYP1A1 gene expression. The results suggest that alpha NF and possibly MCDF compete with TCDD for cytosolic Ah receptor binding sites; however, MCDF may also inhibit the induction response by competing for and/or partially inactivating genomic binding sites.  相似文献   

5.
6.
7.
8.
9.
10.
11.
12.
13.
Cultured mouse hepatoma Hepa-1c1c7 cells were treated with either bisphenol A or 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) or in combination to assess the role of bisphenol A in the process of Cyp1a-1 induction. Treatment of Hepa-1c1c7 cultures with 2,3,7, 8-tetrachlorodibenzo-p-dioxin (TCDD) induced Cyp1a-1, as determined by analysis of 7-ethoxyresorufin O-deethylase (EROD) activities. Bisphenol A alone did not affect the activity of Cyp1a-1-specific EROD; in contrast, TCDD-induced EROD activities were markedly reduced in the concomitant treatment of TCDD and bisphenol A in a dose-dependent manner. Treatment with tamoxifen, an antiestrogen that acts through the estrogen receptor, did not affect the suppressive effects of bisphenol A on TCDD-induced EROD activity. TCDD-induced Cyp1a-1 mRNA levels were markedly suppressed in the concomitant treatment of TCDD and bisphenol A consistent with their effects on EROD activity. Transient transfection assay using dioxin-response element (DRE)-linked luciferase revealed that bisphenol A reduced transformation of the aryl hydrocarbons (Ah) receptor to a form capable of specifically binding to the DRE sequence in the promoter of the Cyp1a-1 gene. These results suggest the down-regulation of the Cyp1a-1 gene expression by bisphenol A in Hepa-1c1c7 cells might be antagonism of the DRE binding potential of nuclear Ah receptor but not mediated through estradiol receptor.  相似文献   

14.
15.
C3H/1OT1/2 clone 8 mouse fibroblasts (C3H/1OT1/2 cells) exhibit induction of aryl hydrocarbon hydroxylase (cytochrome P1-450) when exposed in culture to benzo(a)pyrene, benz(a)anthracene or 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), but do not display the induction response when treated with 3-methylcholanthrene (MCA), the classical inducer of cytochrome P1-450. Induction of cytochrome P1-450 is regulated by the Ah receptor which initially binds inducing chemicals in the cytoplasm, after which the inducer x receptor complex translocates into the nucleus. Cytosolic and nuclear forms of the Ah receptor can be detected in C3H/1OT1/2 cells using [3H]TCDD as the radioligand in culture, but specific Ah receptor binding is not detectable within C3H/1OT1/2 cells incubated with [3H]MCA. In contrast, in Hepa-1c1 cells, which exhibit cytochrome P1-450 induction when treated with MCA, cytosolic and nuclear Ah receptor can be detected by incubation of the cells either with [3H]MCA or with [3H]TCDD. Nonradioactive MCA is able to compete with [3H]TCDD for Ah receptor sites in C3H/1OT1/2 cells, but the relative potency of MCA as a competitor is lower within C3H/1OT1/2 cells than in C3H/1OT1/2 cytosol during extracellular incubation. Specific binding of [3H]MCA to Ah receptor can be detected by incubation of [3H]MCA with C3H/1OT1/2 cytosol outside the cell. The selective loss of response to MCA as a cytochrome P1-450 inducer (while retaining response to other inducers) appears to be due to defective interaction of MCA with the Ah receptor within the intracellular environment. The specific molecular alteration which makes the MCA x receptor complex ineffective within C3H/1OT1/2 cells is unknown. Some fibroblast lines other than C3H/1OT1/2 also selectively fail to respond to MCA; thus, this variation in Ah receptor function may not be due to a mutational change in the Ah regulatory gene which codes for the Ah receptor.  相似文献   

16.
We have examined enzyme activities and mRNA levels corresponding to aldehyde dehydrogenase-3 genes encoding cytosolic (ALDH3c) and microsomal (ALDH3m) forms. In contrast to negligible activities in the intact mouse liver, both ALDH3c and ALDH3m enzyme activities are inducible by benzo[a]pyrene and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in mouse hepatoma Hepa-1c1c7 cell cultures. Constitutive mRNA levels of ALDH3c are virtually absent, whereas those of ALDH3m are substantial; using Hepa-1 mutant lines, we show that both ALDH3c and ALDH3m are TCDD-inducible by an Ah receptor-dependent mechanism. Basal mRNA levels of ALDH3c, but not those of ALDH3m, are strikingly elevated in untreated mutant cells lacking a functional CYP1A1 enzyme; low ALDH3c basal mRNA levels can be restored by introduction of a functional murine CYP1A1 or human CYP1A2 enzyme into these mutant cells. These data suggest that the TCDD induction process is distinct from the CYP1A1/CYP1A2 metabolism-dependent repression of constitutive gene expression; we suggest that this latter property classifies the Aldh-3c gene, but not the Aldh-3m gene, as a member of the murine [Ah] battery.  相似文献   

17.
The Ah receptor, a soluble cytoplasmic receptor that regulates induction of cytochrome P450IA1 and mediates toxic effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), was detected and characterized in the continuous human liver cell line Hep G2. The mean concentration of specific binding sites for TCDD was 112 +/- 26 (SEM) fmol/mg cytosol protein as determined in eight separate cytosol preparations in the presence of sodium molybdate. This is equivalent to 14,000 binding sites per cell, approximately 40% of the sites per cell found in the mouse hepatoma line Hepa-1. The cytosolic Ah receptor from Hep G2 cells sedimented at 9 S and was specific for those halogenated and nonhalogenated aromatic compounds known to be agonists for the Ah receptor in rodent tissues and cells. Specific binding in the 9 S region was detected with both [3H]TCDD and 3-[3H]methylcholanthrene. 3-[3H]Methylcholanthrene did not bind to any component besides that at approximately 9 S. Phenobarbital, dexamethasone, and estradiol did not compete with [3H]TCDD for binding to the Hep G2 Ah receptor. Specific binding of [3H]triamcinolone acetonide to glucocorticoid receptor could also be demonstrated in Hep G2 cytosol. The apparent equilibrium dissociation constant (Kd) for binding of [3H]TCDD to Hep G2 Ah receptor was 9 nM by Woolf plot analysis, about an order of magnitude weaker than the affinity of [3H]TCDD for the mouse Hepa-1 Ah receptor or for the C57BL/6 murine hepatic Ah receptor. [3H]TCDD.Ah receptor complex, which was extracted from nuclei of Hep G2 cells incubated with [3H]TCDD at 37 degrees C in culture, sedimented at approximately 6 S under conditions of high ionic strength. Aryl hydrocarbon hydroxylase (AHH) activity was significantly induced after 24 h of incubation with polycyclic aromatic hydrocarbons: the EC50 for AHH induction was 5.3 microM for benz(a)anthracene and 1.3 microM for 3-methylcholanthrene. Modification of the preparative technique for cell cytosol, especially inclusion of 20 mM sodium molybdate in homogenizing and other buffers, was necessary to detect cytosolic Hep G2 Ah receptor. Hep G2 cells appear to conserve drug-metabolizing activity associated with cytochrome P450IA1 as well as the receptor mechanism which regulates its induction.  相似文献   

18.
19.
UDP-glucuronosyltransferase 1A1 (UGT1A1) plays an important physiological role by contributing to the metabolism of endogenous substances such as bilirubin in addition to xenobiotics and drugs. The UGT1A1 gene has been shown to be inducible by nuclear receptors steroid xenobiotic receptor (SXR) and the constitutive active receptor, CAR. In this report, we show that in human hepatoma HepG2 cells the UGT1A1 gene is also inducible with aryl hydrocarbon receptor (Ah receptor) ligands such as 2,3,7,8-tetrachlodibenzo-p-dioxin (TCDD), beta-naphthoflavone, and benzo[a]pyrene metabolites. Induction was monitored by increases in protein and catalytic activity as well as UGT1A1 mRNA. To examine the molecular interactions that control UGT1A1 expression, the gene was characterized and induction by Ah receptor ligands was regionalized to bases -3338 to -3287. Nucleotide sequence analysis of this UGT1A1 enhancer region revealed a xenobiotic response element (XRE) at -3381/-3299. The dependence of the XRE on UGT1A1-luciferase activity was demonstrated by a loss of Ah receptor ligand inducibility when the XRE core region (CACGCA) was deleted or mutated. Gel mobility shift analysis confirmed that TCDD induction of nuclear proteins specifically bound to the UGT1A1-XRE, and competition experiments with Ah receptor and Arnt antibodies demonstrated that the nuclear protein was the Ah receptor. These observations reveal that the Ah receptor is involved in human UGT1A1 induction.  相似文献   

20.
The lack of aryl hydrocarbon (benzo[a]pyrene) hydroxylase (AHH) (EC 1.14.14.1) induction by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in a clone of rat hepatoma (HTC cl-1) cells is not caused by the lack of nuclear Ah receptor or by a deficiency in the activity of NADPH-cytochrome c (P-450) reductase. Treatment of HTC cl-1 cell line with TCDD for 18 h in culture resulted in a reproducible 500-600% increase in reductase activity without concomitant expression in AHH activity. These data suggests that TCDD induces cytochrome c reductase activity and that the lack of inducible AHH activity in rat hepatoma cells could reflect a defect in the structural gene (s) encoding for cytochrome P1-450, or an Ah receptor with a faulty DNA binding domain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号