首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Control and manipulation of gene expression during tomato fruit ripening   总被引:8,自引:0,他引:8  
Ripening is a complex developmental process involving changes in the biochemistry, physiology and gene expression of the fruit. It is an active process characterised by changes in all cellular compartments. cDNA cloning has been used as an approach to analyse changes in gene expression during fruit ripening. This has revealed that several genes are switched on specifically during fruit ripening, including one encoding polygalacturonase (PG), a major cell wall protein. These cDNA clones have been used to study the expression of the genes in normal and ripening mutant fruits, and under environmental stress conditions.The PG gene has been isolated and it has been demonstrated that 1450 bases 5 of the coding region are sufficient for the tissue- and development-specific expression of a bacterial marker gene in transgenic tomatoes. Antisense RNA techniques have been developed to generate novel mutant tomatoes in which the biochemical function of this enzyme and its involvement in fruit softening has been tested.  相似文献   

4.
5.
The amount of tomato fruit β-fructofuranosidase extractable from the cell walls during ripening parallelled the changes in activity of the enzyme. Using the techniques of radioimmunoassay, double immunodiffusion analysis and immunotitration, no differences in immunological properties of β-fructofuranosidase between the various stages of fruit ripening were detected.  相似文献   

6.
The activities of four mitochondrial enzymes were studied in four stages of ripening tomato fruit. The highest enzyme activity was recorded for malate dehydrogenase followed by cytochrome c oxidase. Succinate dehydrogenase and NADH oxidase levels were low and could only be determined in the green stage of the fruit. However, peaks of various enzyme activities coincided in identical mitochondrial fractions on the sucrose density gradient. Moreover, the levels of malate dehydrogenase and cytochrome c oxidase were constant during the ripening process while the other two enzymes, succinate dehydrogenase and NADH oxidase, declined. This might indicate that mitochondria retain some of their essential functions through the ripening process.  相似文献   

7.
Using theArabidopsis ethylene receptorETR1 as a probe, we have isolated a tomato homologue (tETR) from a ripening cDNA library. The predicted amino acid sequence is 70% identical toETR1 and homologous to a variety of bacterial two component response regulators over the histidine kinase domain. Sequencing of four separate cDNAs indicates that tETR lacks the carboxyl terminal response domain and is identical to that encoded by the tomatoNever ripe gene. Ribonuclease protection showed tETR mRNA was undetectable in unripe fruit or pre-senescent flowers, increased in abundance during the early stages of ripening, flower senescence, and in abscission zones, and was greatly reduced in fruit of ripening mutants deficient in ethylene synthesis or response. These results suggest that changes in ethylene sensitivity are mediated by modulation of receptor levels during development.  相似文献   

8.
The carbon dioxide and ethylene concentrations in tomato fruit ( Lycopersicon esculentum cv. Castelmart) and their stage of ripeness (characteristic external color changes) were periodically measured in fruit attached to and detached from the plant. An external collection apparatus was attached to the surface of individual tomato fruit to permit non-destructive sampling of internal gases. The concentration of carbon dioxide and ethylene in the collection apparatus reached 95% of the concentration in the fruit after 8 h. Gas samples were collected every 24 h. A characteristic climacteric surge in carbon dioxide (2-fold) and ethylene (10-fold) concentration occurred coincident with ripening of detached tomato fruit. Fruit attached to the plant exhibited a climacteric rise in ethylene (20-fold) concentration during ripening, but only a linear increase in carbon dioxide concentration. The carbon dioxide concentration increases in attached fruit during ripening, but the increase is a continuation of the linear increase seen in both attached and detached fruit before ripening and does not exhibit the characteristic pattern normally associated with ripening climacteric fruit. In tomato fruit, it appears that a respiratory climacteric per se, which has been considered intrinsic to the ripening of certain fruit, may not be necessary for the ripening of "climacteric" fruit at all, but instead may be an artifact of using harvested fruit.  相似文献   

9.
10.
11.
The lipid composition of tomato fruit and its mitochondrial fraction were examined at various stages of fruit ripeness. Phosphatidyl choline, phosphatidyl ethanolamine, monogalactosyl diglyceride, digalactosyl diglyceride and phosphatidyl inositol were found to be the major lipids of tomato pericarp at all stages of ripeness. Mitochondrial lipids resembled those of the parent tissue except for the absence of monogalactosyl diglyceride and a greater percentage of diphosphatidyl glycerol and phosphatidic acid. Changes in the lipid-protein ratio of mitochondria were noted with ripening.  相似文献   

12.
In the years since we last reviewed the use of mutants to study tomato fruit ripening ( Grierson et al. 1987 ), considerable information has been gained by the cloning, sequencing and identification of many mRNAs implicated in this developmental process. Genes involved in cell wall degradation, colour change and ethylene synthesis have been cloned, and antisense techniques have been developed and used to produce genetically engineered mutant fruit deficient in these aspects of ripening (see Gray et al. 1992 ). Recently, a previously cloned ripening gene has been used to complement a naturally occurring fruit colour mutant, yellow flesh ( Fray & Grierson 1993a ), and a ripening impaired mutant, ripening inhibitor, has been used to identify several new ripening-related mRNAs ( Picton et al. 1993b ). The chromosomal region bearing the ripening inhibitor mutation has been subjected to high-resolution mapping ( Churchill, Giovannoni & Tanksley 1993 ) and chromosome walking experiments are in progress to identify this gene.  相似文献   

13.
14.
15.
The effects of extended heat stress on polygalacturonase (PG; EC 3.2.1.15) and pectin methylesterase (PME; EC 3.1.1.11) gene expression at mRNA, protein and activity levels in ripening tomato fruits were investigated. Steady state levels of PG mRNA declined at temperatures of 27°C and above, and a marked reduction in PG protein and activity was observed at temperatures of 32°C and above. Exogenous ethylene treatment did not reverse heat stress-induced inhibition of PG gene expression. Transfer of heat-stressed fruits to 20°C partly restored PG mRNA accumulation, but the rate of PG mRNA accumulation declined exponentially with duration of heat stress. Heat stress-induced inhibition of PME mRNA accumulation was recoverable even after 14 days of heat stress. In fruits held at 34°C, both PG and PME protein and activity continued to accumulate for about 4 days, but thereafter PG protein and activity declined while little change was observed in PME protein and activity. In spite of increases in mRNA levels of both PG and PME during the recovery of heat-stressed fruit at 20°C, levels of PG protein and activity declined in fruits heat-stressed for four or more days while PME protein and activity levels remained unchanged. Collectively, these data suggest that PG gene expression is being gradually and irreversibly shut off during heat stress, while PME gene expression is much less sensitive to heat stress.  相似文献   

16.
Mitochondria were isolated from tomato (Lycopersicon esculentum L.) fruit at the mature green, orange-green and red stages and from fruit artificially suspended in their ripening stage. The specific activities of citrate synthase (EC 4.1.3.7), malate dehydrogenase (EC 1.1.1.37), NAD-linked isocitrate dehydrogenase (EC 1.1.1.41) and NAD-linked malic enzyme (EC 1.1.1.38) were determined. The specific activities of all these enzymes fell during ipening, although the mitochondria were fully functional as demonstrated by the uptake of oxygen. The fall in activity of mitochondrial malate dehydrogenase was accompanied by a similar fall in the activity of the cytosolic isoenzyme. Percoll-purified mitochondria isolated from mature green fruit remained intact for more than one week and at least one enzyme, citrate synthase, did not exhibit the fall in specific activity found in normal ripening fruit.  相似文献   

17.
Ethylene and polyamine metabolism, both sharing a common precursor, S-adenosylmethionine (SAM), were investigated during detached tomato (Lycopersicon esculentum Mill. nothovar F1 Lorena) fruit ripening. Putrescine (PUT) was found to be the major polyamine in the fruits, always over 100 nmols/g FW, while spermidine (SPD) was between 7% and 3% of the level of PUT. Spermine (SPM) was not detected at any stage of ripening. The level of PUT and SPD, did not change significantly during ripening in spite of the almost continuous synthesis of 1-aminocyclopropane-1-carboxylic acid (ACC), the ethylene precursor, and only at the last stage of ripening was a drastic decrease in SPD content observed. The results obtained show that the onset of ACC synthesis and its accumulation within the tissue is not a consequence of a decrease in SPD synthesis.  相似文献   

18.
A membrane-associated lipoxygenase from breaker-stage fruit of tomato (Lycopersicon esculentum Mill.) was purified and partially sequenced. Using degenerate oligonucleotides corresponding to portions of this sequence, a cDNA was amplified by PCR and used to screen a breaker fruit cDNA library. Two clones, tomloxA and tomloxB, were isolated and one of these (tomloxA) corresponded to the isolated protein. Genomic clones were isolated and sequence data from these were used to obtain the 5' ends of the cDNAs. The 2.8-kb cDNAs encode proteins that are similar in size and sequence to each other and to other plant lipoxygenases. DNA blot analysis indicated that tomato contains three or more genes that encode lipoxygenase. RNA blot analysis showed that tomloxA is expressed in germinating seeds as well as in ripening fruit, where it reached its peak during breaker stage. tomloxB appears to be fruit specific and is at its highest level in ripe fruit.  相似文献   

19.
Previous studies showed that the developmental program of calyces of a tomato cultivar ( Lycopersicon esculentum , cv. VFNT Cherry) changed in many aspects to that of fruit when cultured in vitro. The calyces turned red, produced ethylene, had increased tissue content of 1-aminocyclopropane-1-carboxylic acid, had increased levels of the mRNA of polygalacturonase and developed ultrastructural changes in their cell walls that were indistinguishable from those of ripe tomato fruit tissue. We report in the present study the synthesis of volatile flavor compounds, changes in sugar concentrations and color development in cultured calyces that are characteristic of ripening tomato fruit. These ripening parameters of in vitro-cultured tomato fruit were also compared to those of fruit grown in the greenhouse.  相似文献   

20.
To determine the relationship between invertase gene expression and glucose and fructose accumulation in ripening tomato fruit, fruit vacuolar invertase cDNA and genomic clones from the cultivated species, Lycopersicon esculentum cv. UC82B, and a wild species, Lycopersicon pimpinellifolium, were isolated and characterized. The coding sequences of all cDNA clones examined are identical. By comparison to the known amino acid sequence of mature L. esculentum fruit vacuolar invertase, a putative signal sequence and putative amino-terminal and carboxy-terminal propeptides were identified in the derived amino acid sequence. Of the residues 42% are identical with those of carrot cell wall invertase. A putative catalytic site and a five-residue motif found in carrot, yeast, and bacterial invertases are also present in the tomato sequence. Minor differences between the nucleotide sequences of the genomic clones from the two tomato species were found in one intron and in the putative regulatory region. The gene appears to be present in one copy per haploid genome. Northern analysis suggests a different temporal pattern of vacuolar invertase mRNA levels during fruit development in the two species, with the invertase mRNA appearing at an earlier stage of fruit development in the wild species. Nucleotide differences found in the putative regulatory regions may be involved in species differences in temporal regulation of this gene, which in turn may contribute to observed differences in hexose accumulation in ripening fruit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号