首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Functional significance of the central helix in calmodulin   总被引:6,自引:0,他引:6  
The 3-A crystal structure of calmodulin indicates that it has a polarized tertiary arrangement in which calcium binding domains I and II are separated from domains III and IV by a long central helix consisting of residues 65-92. To investigate the functional significance of the central helix, mutated calmodulins were engineered with alterations in this region. Using oligonucleotide-primed site-directed mutagenesis, Thr-79 was converted to Pro-79 to generate CaMPM. CaMPM was further mutated by insertion of Pro-Ser-Thr-Asp between Asp-78 and Pro-79 to yield CaMIM. Calmodulin, CaMPM, and CaMIM were indistinguishable in their ability to activate calcineurin and Ca2+-ATPase. All mutated calmodulins would also maximally activate cGMP-phosphodiesterase and myosin light chain kinase, however, the concentrations of CaMPM and CaMIM necessary for half-maximal activation (Kact) were 2- and 9-fold greater, respectively, than CaM23. Conversion of the 2 Pro residues in CaMIM to amino acids that predict retention of helical secondary structure did not restore normal calmodulin activity. To investigate the nature of the interaction between mutated calmodulins and target enzymes, synthetic peptides modeled after the calmodulin binding region of smooth and skeletal muscle myosin light chain kinase were prepared and used as inhibitors of calmodulin-dependent cGMP-phosphodiesterase. The data suggest that the different kinetics of activation of myosin light chain kinase by CaM23 and CaMIM are not due to differences in the ability of the activators to bind to the calmodulin binding site of this enzyme. These observations are consistent with a model in which the length but not composition of the central helix is more important for the activation of certain enzymes. The data also support the hypothesis that calmodulin contains multiple sites for protein-protein interaction that are differentially recognized by its multiple target proteins.  相似文献   

2.
Calcium- and integrin-binding protein (CIB) binds to the 20-residue alphaIIb cytoplasmic domain of platelet alphaIIbbeta3 integrin. Amino acid sequence similarities with calmodulin (CaM) and calcineurin B (CnB) allowed the construction of homology-based models of calcium-saturated CIB as well as apo-CIB. In addition, the solution structure of the alphaIIb cytoplasmic domain in 45% aqueous trifluoroethanol was solved by conventional two-dimensional NMR methods. The models indicate that the N-terminal domain of CIB possesses a number of positively charged residues in its binding site that could interact with the acidic carboxy-terminal LEEDDEEGE sequence of alphaIIb. The C-terminal domain of CIB seems well-suited to bind the sequence WKVGFFKR, which forms a well-structured alpha helix; this is analogous to calmodulin and calcineurin B, which also bind alpha helices. Similarities between the C-terminal domains of CIB and calmodulin suggest that binding of CIB to the cytoplasmic domain of alphaIIb may be affected by fluctuations in the intracellular calcium concentration.  相似文献   

3.
4.
Integrin adhesion receptors appear to be regulated by molecules that bind to their cytoplasmic domains. We previously identified a 22-kDa, EF-hand-containing protein, CIB, which binds to the alpha(IIb) cytoplasmic tail of the platelet integrin, alpha(IIb)beta(3). Here we describe regions within CIB and alpha(IIb) that interact with one another. CIB binding to alpha(IIb) cytoplasmic tail peptides, as measured by intrinsic tryptophan fluorescence, indicates a CIB-binding site within a hydrophobic, 15-amino acid, membrane-proximal region of alpha(IIb). This region is analogous to the alpha-helical targets of other EF-hand-containing proteins, such as calcineurin B or calmodulin. A homology model of CIB based upon calcineurin B and recoverin indicated a conserved hydrophobic pocket within the C-terminal EF-hand motifs of CIB as a potential integrin-binding site. CIB engineered to contain alanine substitutions in the implicated regions retained wild type secondary structure as determined by circular dichroism, yet failed to bind alpha(IIb) in 11 of 12 cases, whereas CIB mutated within the N terminus retained binding activity. Thus, specific hydrophobic residues in the C terminus of CIB appear necessary for CIB binding to alpha(IIb). The identification of essential interacting regions within alpha(IIb) and CIB provides tools for further probing potential interrelated functions of these proteins.  相似文献   

5.
Gene therapy is defined as the delivery of a functional gene for expression in somatic tissues with the intent to cure a disease. Thus, highly efficient gene transfer is essential for gene therapy. Receptor-mediated gene delivery can offer high efficiency in gene transfer, but several technical difficulties need to be solved. In this study, we first examined the DNA binding regions of the human DNA topoisomerase I (Topo I), using agarose gel mobility shift assay, in order to identify sites of noncovalent binding of human DNA Topo I to plasmid DNA. We identified four DNA binding regions in human DNA Topo I. They resided in aa 51–200, 271–375, 422–596, and 651–696 of the human DNA Topo I. We then used one of the four regions as a DNA binding protein fragment in the construction of a DNA delivery vehicle. Based on the known functional property of each Pseudomonas exotoxin A (PE) domain and human DNA Topo I, we fused the receptor binding and membrane translocation domains of PE with a highly positively charged DNA binding region of the N-terminal 198 amino acid residues of human DNA Topo I. The resulting recombinant protein was examined for DNA binding in vitro and transfer efficiency in cultured cells. The results show that this DNA delivery protein is a general DNA delivery vehicle without DNA sequence, topology, and cell-type specificity. The DNA delivery protein could be used to target genes of interest into cells for genetic and biochemical studies. Therefore, this technique can potentially be applied to cancer gene therapy. Received: 19 July 1999 / Received revision: 10 September 1999 / Accepted: 24 September 1999  相似文献   

6.
P239, a truncated construct of the hepatitis E virus (HEV) ORF2 protein, has been proven able to bind with a chaperone, Grp78, in both an in vitro co-immune precipitation test and an in vivo cell model. We previously solved the crystal structure of E2s—the C-terminal domain of p239 involved in host interactions. In the present study, we built a 3D structure of Grp78 using homology modeling methods, and docked this molecule with E2s using the Zdockpro module of the InsightII software package. The modeled Grp78 structure was deemed feasible by profile 3D evaluation and molecular dynamic simulations. The docking result consists of six clusters of distinct complexes and C035 was selected as the most reasonable. The interacting interface of the predicted complex is comprised of the Grp78 linker region and nucleotide binding domain along with the E2s groove region and surrounding loops. Using energy, hydrogen bond and solvent accessible surface analyses, we identified a series of key residues that may be involved in the Grp78:E2s interaction. By comparing with the known structure of the Hsp70:J complex, we further concluded that the interaction of Grp78 and E2s could interrupt binding of Grp78 with the J domain, and in turn diminish or even eliminate the binding ability of the Grp78 substrate binding domain. The predicted series of key residues also provides clues for further research that should improve our understanding of the fundamental molecular mechanisms of HEV infection.  相似文献   

7.
Polyclonal and monoclonal antibodies (MABs) to human laminin-binding protein (LBP) can efficiently block the penetration of some alphaand flaviviruses into the cell. A panel of 13 types of MABs to human recombinant LBP was used for more detailed study of the mechanism of this process. Competitive analysis has shown that MABs to LBP can be divided into six different competition groups. MABs 4F6 and 8E4 classified under competition groups 3 and 4 can inhibit the replication of Venezuelan equine encephalitis virus (VEEV), which is indicative of their interaction with the receptor domain of LBP providing for binding with virions. According to enzyme immunoassay and immunoblotting data, polyclonal anti-idiotypic antibodies to MABs 4F6 and 8E4 modeling paratopes of the LBP receptor domain can specifically interact with VEEV E2 protein and tick-borne encephalitis virus (TBEV) E protein. Mapping of binding sites of MABs 4F6 and 8E4 with LBP by constructing short deletion fragments of the human LBP molecule has shown that MAB 8E4 interacts with the fragment of amino acid residues 187–210, and MAB 4F6 interacts with the fragment of residues 263–278 of LBP protein, which is represented by two TEDWS peptides separated by four amino acid residues. This suggested that the LBP receptor domain interacting with VEEV E2 and TBEV E viral proteins is located at the C-terminal fragment of the LBP molecule. A model of the spatial structure of the LBP receptor domain distally limited by four linear loops (two of which are represented by experimentally mapped regions of amino acid residues 187–210 and 263–278) as well as the central β-folded region turning into the α-helical site including residues 200–216 of the LBP molecule and providing for the interaction with the laminin-1 molecule has been proposed.  相似文献   

8.
Carruthers NJ  Stemmer PM 《Biochemistry》2008,47(10):3085-3095
Calcineurin is a Ca (2+)/calmodulin-activated Ser/Thr phosphatase important in cellular actions resulting in memory formation, cardiac hypertrophy, and T-cell activation. This enzyme is subject to oxidative inactivation by superoxide at low micromolar concentrations and by H 2O 2 at low millimolar concentrations. On the basis of the hypothesis that oxidation of Met residues in calmodulin-binding domains inhibits binding to calmodulin, purified calcineurin was used to study the susceptibility of Met residues to oxidation by H 2O 2. The rate for oxidation of Met 406 in the calmodulin-binding domain was determined to be 4.4 x 10 (-3) M (-1) s (-1), indicating a high susceptibility to oxidation. Functional repercussions of Met 406 oxidation were evaluated using native enzyme and a calcineurin mutant in which Met 406 was exchanged for Leu. Measurement of fluorescent calmodulin binding demonstrated that oxidation of Met 406 results in a 3.3-fold decrease in the affinity of calmodulin for calcineurin. Calcineurin activation exhibited a loss in cooperativity with respect to calmodulin following Met 406 oxidation as shown by a reduction in the Hill slope from 1.88 to 0.86. Maximum phosphatase activity was unaffected by Met oxidation. Changes in the calcineurin-calmodulin interaction were accompanied by a 40% loss in the ability of calmodulin to stimulate binding of immunophilin/immunosuppressant to calcineurin. All effects on calmodulin binding to the native enzyme by the treatment with H 2O 2 could be reversed by treating the enzyme with methionine sulfoxide reductase. These results indicate that the calmodulin-binding domain of calcineurin is susceptible to oxidation at Met 406 and that oxidation disrupts calmodulin binding and enzyme activation. Oxidation-dependent decreases in the affinity of calmodulin for calcineurin can potentially modulate calmodulin-dependent signaling and calmodulin distribution.  相似文献   

9.
The genes of the heavy and light chain variable region (VH, VL) of Z12 antibody against hTNF-α were cloned, and according to the translated sequence of amino acids, the spatial structures of VH and VL domains were modeled by using homology-based modeling method, followed by constructing the whole three-dimensional structure of Fv fragment. The complex model of Fv interacting with hTNF-α was gained with computer-guided molecular docking method, based on which, it was predicted that the epitope recognized by Z12 was from 141 to 146 of hTNF-α. hTNF-α molecule was divided into two fragments of N-terminal region from 1 to 91 and C-terminal region from 92 to 157 with prokaryotic expression. The measured results suggested that the antigenic epitope recognized by Z12 antibody was located in the C-terminal region 92–157 of hTNF-α, proving the predicted result reliable preliminarily. Further experimental results showed that after hTNF-α 141–146 residues were deleted, Z12 antibody almost lost the ability to recognize the mutant, suggesting that the amino acid residues from 141 to 146 of hTNF-α were specially recognized by Z12 antibody.  相似文献   

10.
Myosin 1c (Myo1c) plays a key role in supporting motile events that underlie cell migration, vesicle trafficking, insulin-stimulated glucose uptake and hearing. Here, we present the crystal structure of the human Myo1c motor in complex with its light chain calmodulin. Our structure reveals tight interactions of the motor domain with calmodulin bound to the first IQ motif in the neck region. Several of the calmodulin residues contributing to this interaction are also involved in Ca2 + binding. Contact residues in the motor domain are linked to the central β-sheet and the HO helix, suggesting a mechanism for communicating changes in Ca2 + binding in the neck region to the actin and nucleotide binding regions of the motor domain. The structural context and the chemical environment of Myo1c mutations that are involved in sensorineural hearing loss in humans are described and their impact on motor function is discussed. We show that a construct consisting of the motor domain of Myo1c and the first IQ motif is sufficient to establish a tight interaction with 14-3-3β (KD = 0.9 μM) and present the model of a double-headed Myo1c–14-3-3 complex. This complex has been implicated in the exocytosis of glucose transporter 4 storage vesicles during insulin-stimulated glucose uptake.  相似文献   

11.
The investigation of the recombinant bovine lactoferrin-derived antimicrobial protein (rBLfA) demonstrates that the inter-lobe region of bovine lactoferrin contributes to iron binding stability and antimicrobial activity against Staphylococcus aureus. rBLfA containing N-lobe (amino acid residues 1–333) and inter-lobe region (residues 334–344) was expressed in Pichia pastoris at shaking flask and fermentor level. The recombinant intact bovine lactoferrin (rBLf) and N-lobe (rBLfN) were expressed in the same system as control. The physical–chemical parameters of rBLfA, rBLfN and rBLf including amino acid residues, molecular weight, isoelectric point, net positive charge and instability index were computed and compared. The simulated tertiary structure and the calculated surface net charge showed that rBLfA maintained original structure and exhibited a higher cationic feature than rBLf and rBLfN. The three proteins showed different iron binding stability and antimicrobial activity. rBLfA released iron in the pH range of 7.0–3.5, whereas rBLfN lost its iron over the pH range of 7.0–4.0 and iron release from rBLf occurred in the pH range of 5.5–3.0. However, the minimum inhibition concentration of rBLfA against S. aureus ATCC25923 was 6.5 μmol/L, compared with 12.5 and 25 μmol/L that of rBLfN and rBLf, respectively. These results revealed that S. aureus was more sensitive to rBLfA than rBLfN and rBLf. It appeared that the strong cationic character of inter-lobe region related positively to the higher anti-S. aureus activity.  相似文献   

12.
Knowledge of the three-dimensional structures of protein targets from genomic data has the potential to accelerate researches pertaining to drug discovery. Human β2 adrenergic receptor is a G-protein-coupled receptor with seven transmembrane helices, and is important in pharmaceutical targeting on pulmonary and cardiovascular diseases. The human β2 adrenergic receptor has been found to play a very important role in the pathogenesis of high altitude pulmonary edema (HAPE). In the present study, a high quality of protein 3D structure has been predicted for the human β2 adrenergic receptor sequence with primary accession number P07550. Homologous template protein sequence with known 3D structure was identified and the template-query protein sequence validation was done by multiple sequence alignment method. The homology model was performed through Modeller and depended on the quality of the sequence alignment by BLAST, template structure and the consolidated result performed by Gene silico meta-server. The statistical verification of the generated model was evaluated by PROCHECK which revealed that the structure modeled through Modeller to be of good quality with 84.1% of residues in the most favored region. Docking studies were carried out after modeling with two well known ligands namely Salmeterol and Nifedipine, and the fitness score revealed that Salmeterol has a higher fitness score than Nifedipine. Estimation of binding affinity by X-Score revealed that Salmeterol had −10.40 binding affinity while Nifedipine showed −9.62 binding affinity. From the present study, it can be concluded that the generated model of human β2 adrenergic receptor can be used for further studies related to this receptor and Salmeterol was found to have a high binding affinity with human β2 adrenergic receptor.  相似文献   

13.
    
Eighteen consecutive uniform overlapping synthetic peptides that spanned the entire extracellular part (residues 1–210) of the α-chain ofTorpedo californica acetylcholine receptor were screened for binding activity of125I-labeled cobratoxin. Five toxin-binding regions were localized within residues 1–10, 32–41, 100–115, 122–150, and 182–198. The five toxin-binding regions may be distinct sites or, alternatively, different faces in one or more sites.  相似文献   

14.
A S Manalan  C B Klee 《Biochemistry》1987,26(5):1382-1390
In affinity selection, calcineurin selects from a population of randomly modified calmodulins those species with which it prefers to interact. The method shows that acetylation of lysines affects calmodulin so as to interfere with its ability to interact with calcineurin. Monoacetylation of any lysine of calmodulin reduces its affinity for calcineurin by 5-10-fold. Multiple acetylations amplify the loss of affinity; none of the modifications are imcompatible with activity. The lack of selectivity of calcineurin against any particular modified lysine indicates that the loss of affinity reflects changes induced by the removal of the charged groups and suggests an important role for electrostatic interactions in the cooperative structural transitions which calmodulin undergoes upon binding its target proteins or calcium. In the presence of calcineurin, a large and specific decrease in the rate of acetylation of Lys-75 and -148 of calmodulin is observed. The reactivity of the same residues is greatly increased in the presence of calcium alone [Giedroc, D. P., Sinha, S. K., Brew, K., & Puett, D. (1985) J. Biol. Chem. 260, 13406-13413]. Lys-75, located in the central helix, and the C-terminal Lys-148 [Babu, Y. S., Sacks, J. S., Greenhouse, T. J., Bugg, C. E., Means, A. R., & Cook, W. J. (1985) Nature (London) 315, 37-40] may act as sensors of the calmodulin allosteric transitions. Their reactivity changes in opposite directions in response to calcium-induced or calcineurin-induced structural changes. The reactivity of other residues such as Lys-21, decreased in the presence of calcineurin but not calcium, is also affected by a conformational change which is induced specifically by calcineurin.  相似文献   

15.
The binding properties of the protein–inhibitor complex of human immunodeficiency virus type 1 (HIV-1) protease with the inhibitor TMC-126 are investigated by combining computational alanine scanning (CAS) mutagenesis with binding free-energy decomposition (BFED). The calculated results demonstrate that the flap region (residues 38–58) and the active site region (residues 23–32) in HIV-1 protease contribute 63.72% of the protease to the binding of the inhibitor. In particular, the mechanisms for the interactions of key residues of these species are fully explored and analyzed. Interestingly, the regression analyses show that both CAS and BFED based on the generalized Born model yield similar results, with a correlation coefficient of 0.94. However, compared to CAS, BFED is faster and can decompose the per-residue binding free-energy contributions into backbone and side-chain contributions. The results obtained in this study are useful for studying the binding mechanism between receptor and ligand and for designing potent inhibitors that can combat diseases.  相似文献   

16.
The prion protein (PrP) is a metalloprotein with an unstructured region covering residues 60–91 that bind two to six Cu(II) ions cooperatively. Cu can bind to PrP regions C-terminally to the octarepeat region involving residues His111 and/or His96. In addition to Cu(II), PrP binds Zn(II), Mn(II) and Ni(II) with binding constants several orders of magnitudes lower than those determined for Cu. We used for the first time surface plasmon resonance (SPR) analysis to dissect metal binding to specific sites of PrP domains and to determine binding kinetics in real time. A biosensor assay was established to measure the binding of PrP-derived synthetic peptides and recombinant PrP to nitrilotriacetic acid chelated divalent metal ions. We have identified two separate binding regions for binding of Cu to PrP by SPR, one in the octarepeat region and the second provided by His96 and His111, of which His96 is more essential for Cu coordination. The octarepeat region at the N-terminus of PrP increases the affinity for Cu of the full-length protein by a factor of 2, indicating a cooperative effect. Since none of the synthetic peptides covering the octarepeat region bound to Mn and recombinant PrP lacking this sequence were able to bind Mn, we propose a conformational binding site for Mn involving residues 91–230. A novel low-affinity binding site for Co(II) was discovered between PrP residues 104 and 114, with residue His111 being the key amino acid for coordinating Co(II). His111 is essential for Co(II) binding, whereas His96 is more important than His111 for binding of Cu(II).  相似文献   

17.
The Ca(2+)-dependent activation of calcineurin phosphatase activity is regulated by an autoinhibitory element (residues 457-482) located 43 residues COOH-terminal of the calmodulin-binding domain (residues 390-414). Removal of residues 457-482 does not result in full Ca(2+)/calmodulin-independent activity. Full activity in the absence of Ca(2+) requires the removal of residues 420-457. In the present study the presence of additional autoinhibitory elements within residues 420-457 was tested using two calcineurin A subunit COOH-terminal region constructs containing residues 420-511 (AI(420-511)) or 328-511 (AI(328-511)). Using recombinant, Ca(2+)/calmodulin-independent calcineurin, AI(420-511) and AI(328-511) were three- to fourfold more potent inhibitors of calcineurin phosphatase activity than the synthetic calcineurin autoinhibitory peptide(457-482). Calmodulin reversed the inhibition of calcineurin phosphatase activity by AI(328-511) but not AI(420-511). Kinetic studies indicated that AI(420-511) exhibited mixed-type inhibition and that the enzyme/substrate/inhibitor complex is partially active. These results indicate that (i) additional autoinhibitory elements are present within residues 420-457, (ii) calmodulin-binding to the autoinhibitory domain neutralizes the inhibitory function of the 420-457 autoinhibitory segment, (iii) the full-length autoinhibitory domain is a mixed-type inhibitor of calcineurin phosphatase activity, and (iv) the enzyme/substrate/inhibitor complex is partially catalytically active.  相似文献   

18.
Jang DJ  Ban B  Lee JA 《Molecules and cells》2011,32(6):511-518
IQ motif-containing GTPase-activating protein 1 (IQGAP1), which is a well-known calmodulin (CaM) binding protein, is involved in a wide range of cellular processes including cell proliferation, tumorigenesis, adhesion, and migration. Interaction of IQGAP1 with CaM is important for its cellular functions. Although each IQ domain of IQGAP1 for CaM binding has been characterized in a Ca2+-dependent or -independent manner, it was not clear which IQ motifs are physiologically relevant for CaM binding in the cells. In this study, we performed immunoprecipitation using 3xFLAGhCaM in mammalian cell lines to characterize the domains of IQGAP1 that are key for CaM binding under physiological conditions. Interestingly, using this method, we identified two novel domains, IQ(2.7–3) and IQ(3.5–4.4), within IQGAP1 that were involved in Ca2+-independent or -dependent CaM binding, respectively. Mutant analysis clearly showed that the hydrophobic regions within IQ(2.7–3) were mainly involved in apoCaM binding, while the basic amino acids and hydrophobic region of IQ(3.5–4.4) were required for Ca2+/CaM binding. Finally, we showed that IQ(2.7–3) was the main apoCaM binding domain and both IQ(2.7–3) and IQ(3.5–4.4) were required for Ca2+/CaM binding within IQ(1-2-3-4). Thus, we identified and characterized novel direct CaM binding motifs essential for IQGAP1. This finding indicates that IQGAP1 plays a dynamic role via direct interactions with CaM in a Ca2+-dependent or -independent manner.  相似文献   

19.
Binding of lysozyme with the antibiotics such as penicillin-G, penicillin-V and methicillin at different concentrations and pH was studied by equilibrium dialysis. Co-operative binding isotherms were observed at pH 5.0,7.0 and 9.0 with all the penicillins and the binding ratios decreased slightly with the increase of pH. The Gibbs free energy change calculated on the basis of Wyman’s binding potential concept decreased slightly with the increase of pH indicating slight decrease in the binding strength at higher pH in the case of all penicillins. The ultra-violet difference spectra of lysozyme-penicillin complexes showed a less intense peak in the region of 284–300 nm at pH 5.0. Only penicillin-G complex had a peak at pH 7.0 at these wavelengths with less intensity compared to that at pH 5.0. However, none of the penicillins showed discrete peaks in this region at pH 9.0. The appearance of peaks in the difference spectra of all these complexes at pH 5.0 and with only penicllin-G complex at pH 7.0 in the aromatic region indicated hydrophobic interactions with tryptophan residues as the binding sites. In addition, the ionic interactions with lysine residues in lysozyme were also occurring. The conformational changes induced by the binding of penicillins to lysozyme monitored by circular dichroism showed a slight decrease in the aromatic bands in the 320–250 nm region. However, in the 250–200 nm region, [θ]222nm values obtained at various concentrations of penicillins in the complex indicated an increased α-helical content generating a more ordered structure. These results led to the conclusion that both the hydrophobic and electrostatic interactions prevail in the binding of penicillins to lysozyme.  相似文献   

20.
Phosphoglucose isomerase (PGI; EC 5.3.1.9) is the second enzyme in glycolysis, where it catalyzes the isomerization of D-glucose-6-phosphate to D-fructose-6-phosphate. It is the same protein as autocrine motility factor, differentiation and maturation mediator, and neuroleukin. Here, we report a new X-ray crystal structure of rabbit PGI (rPGI) without ligands bound in its active site. The structure was solved at 1.8A resolution by isomorphous phasing with a previously solved X-ray crystal structure of the rPGI dimer containing 6-phosphogluconate in its active site. Comparison of the new structure to previously reported structures enables identification of conformational changes that occur during binding of substrate or inhibitor molecules. Ligand binding causes an induced fit of regions containing amino acid residues 209-215, 245-259 and 385-389. This conformational change differs from the change previously reported to occur between the ring-opening and isomerization steps, in which the helix containing residues 513-521 moves toward the bound substrate. Differences between the liganded and unliganded structures are limited to the region within and close to the active-site pocket.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号