首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The metal-reducing bacterium Shewanella oneidensis MR-1 displays remarkable anaerobic respiratory plasticity, which is reflected in the extensive number of electron transport components encoded in its genome. In these studies, several cell components required for the reduction of vanadium(V) were determined. V(V) reduction is mediated by an electron transport chain which includes cytoplasmic membrane components (menaquinone and the tetraheme cytochrome CymA) and the outer membrane (OM) cytochrome OmcB. A partial role for the OM cytochrome OmcA was evident. Electron spin resonance spectroscopy demonstrated that V(V) was reduced to V(IV). V(V) reduction did not support anaerobic growth. This is the first report delineating specific electron transport components that are required for V(V) reduction and of a role for OM cytochromes in the reduction of a soluble metal species.  相似文献   

2.
When grown under anaerobic conditions, Shewanella putrefaciens MR-1 synthesizes multiple outer membrane (OM) cytochromes, some of which have a role in the use of insoluble electron acceptors (e.g., MnO2) for anaerobic respiration. The cytochromes OmcA and OmcB are localized to the OM and the OM-like intermediate-density membrane (IM) in MR-1. The components necessary for proper localization of these cytochromes to the OM have not been identified. A gene replacement mutant (strain MTRB1) lacking the putative OM protein MtrB was isolated and characterized. The specific cytochrome content of the OM of MTRB1 was only 36% that of MR-1. This was not the result of a general decline in cytochrome content, however, because the cytoplasmic membrane (CM) and soluble fractions were not cytochrome deficient. While OmcA and OmcB were detected in the OM and IM fractions of MTRB1, significant amounts were mislocalized to the CM. OmcA was also detected in the soluble fraction of MTRB1. While OmcA and OmcB in MR-1 fractions were resistant to solubilization with Triton X-100 in the presence of Mg2+, Triton X-100 readily solubilized these proteins from all subcellular fractions of MTRB1. Together, these data suggest that MtrB is required for the proper localization and insertion of OmcA and OmcB into the OM of MR-1. The inability of MTRB1 to properly insert these, and possibly other, proteins into its OM likely contributes to its marked deficiency in manganese(IV) and iron(III) reduction. While the localization of another putative OM cytochrome (MtrF) could not be directly determined, an mtrF gene replacement mutant exhibited wild-types rates of Mn(IV) and Fe(III) reduction. Therefore, even if MtrF were mislocalized in MTRB1, it would not contribute to the loss of metal reduction activity in this strain.  相似文献   

3.

Background  

Shewanella oneidensis MR-1 uses several electron acceptors to support anaerobic respiration including insoluble species such as iron(III) and manganese(IV) oxides, and soluble species such as nitrate, fumarate, dimethylsulfoxide and many others. MR-1 has complex branched electron transport chains that include components in the cytoplasmic membrane, periplasm, and outer membrane (OM). Previous studies have implicated a role for anaerobically upregulated OM electron transport components in the use of insoluble electron acceptors, and have suggested that other OM components may also contribute to insoluble electron acceptor use. In this study, the role for an anaerobically upregulated 35-kDa OM protein (Omp35) in the use of anaerobic electron acceptors was explored.  相似文献   

4.
When grown under anaerobic conditions, Shewanella putrefaciens MR-1 synthesizes multiple outer membrane (OM) cytochromes, some of which have a role in the use of insoluble electron acceptors (e.g., MnO2) for anaerobic respiration. The cytochromes OmcA and OmcB are localized to the OM and the OM-like intermediate-density membrane (IM) in MR-1. The components necessary for proper localization of these cytochromes to the OM have not been identified. A gene replacement mutant (strain MTRB1) lacking the putative OM protein MtrB was isolated and characterized. The specific cytochrome content of the OM of MTRB1 was only 36% that of MR-1. This was not the result of a general decline in cytochrome content, however, because the cytoplasmic membrane (CM) and soluble fractions were not cytochrome deficient. While OmcA and OmcB were detected in the OM and IM fractions of MTRB1, significant amounts were mislocalized to the CM. OmcA was also detected in the soluble fraction of MTRB1. While OmcA and OmcB in MR-1 fractions were resistant to solubilization with Triton X-100 in the presence of Mg2+, Triton X-100 readily solubilized these proteins from all subcellular fractions of MTRB1. Together, these data suggest that MtrB is required for the proper localization and insertion of OmcA and OmcB into the OM of MR-1. The inability of MTRB1 to properly insert these, and possibly other, proteins into its OM likely contributes to its marked deficiency in manganese(IV) and iron(III) reduction. While the localization of another putative OM cytochrome (MtrF) could not be directly determined, an mtrF gene replacement mutant exhibited wild-types rates of Mn(IV) and Fe(III) reduction. Therefore, even if MtrF were mislocalized in MTRB1, it would not contribute to the loss of metal reduction activity in this strain.  相似文献   

5.
Shewanella putrefaciens is a facultative anaerobe that can use metal oxides as terminal electron acceptors during anaerobic respiration. Two proteins, MtrB and Cct, have been identified that are specifically involved in metal reduction. Analysis of S. putrefaciens mutants deficient in metal reduction led to the identification of two additional proteins that are involved in this process. MtrA is a periplasmic decahaem c-type cytochrome that appears to be part of the electron transport chain, which leads to Fe(III) and Mn(IV) reduction. MtrC is an outer membrane decahaem c-type cytochrome that appears to be required for the activity of the terminal Fe(III) reductase. Membrane fractions of mutants deficient in MtrC exhibited a decreased level of Fe(III) reduction compared with the wild type. We suggest that MtrC may be a component of the terminal reductase or may be required for its assembly.  相似文献   

6.
In gram-negative bacteria, numerous cell functions, including respiration-linked electron transport, have been ascribed to the cytoplasmic membrane. Gram-negative bacteria which use solid substrates (e.g., oxidized manganese or iron) as terminal electron acceptors for anaerobic respiration are presented with a unique problem: they must somehow establish an electron transport link across the outer membrane between large particulate metal oxides and the electron transport chain in the cytoplasmic membrane. When the metal-reducing bacterium Shewanella putrefaciens MR-1 is grown under anaerobic conditions and membrane fractions are purified from cells lysed by an EDTA-lysozyme-polyoxyethylene cetyl ether (Brij 58) protocol, approximately 80% of its membrane-bound cytochromes are localized in its outer membrane. These outer membrane cytochromes could not be dislodged by treatment with chaotropic agents or by increased concentrations of the nonionic detergent Brij 58, suggesting that they are integral membrane proteins. Cytochrome distribution in cells lysed by a French press protocol confirm the localization of cytochromes to the outer membrane of anaerobically grown cells. This novel cytochrome distribution could play a key role in the anaerobic respiratory capabilities of this bacterium, especially in its ability to mediate manganese and iron reduction.  相似文献   

7.
Vibrio cholerae lives in different habitats, varying from aquatic ecosystems to the human intestinal tract. The organism has acquired a set of electron transport pathways for aerobic and anaerobic respiration that enable adaptation to the various environmental conditions. We have inactivated the V. cholerae ccmE gene, which is required for cytochrome c biogenesis. The resulting strain is deficient of all c-type cytochromes and allows us to characterize the physiological role of these proteins. Under aerobic conditions in rich medium, V. cholerae produces at least six c-type cytochromes, none of which is required for growth. Wild-type V. cholerae produces active fumarate reductase, trimethylamine N-oxide reductase, cbb3 oxidase, and nitrate reductase, of which only the fumarate reductase does not require maturation of c-type cytochromes. The reduction of nitrate in the medium resulted in the accumulation of nitrite, which is toxic for the cells. This suggests that V. cholerae is able to scavenge nitrate from the environment only in the presence of other nitrite-reducing organisms. The phenotypes of cytochrome c-deficient V. cholerae were used in a transposon mutagenesis screening to search for additional genes required for cytochrome c maturation. Over 55,000 mutants were analyzed for nitrate reductase and cbb3 oxidase activity. No transposon insertions other than those within the ccm genes for cytochrome c maturation and the dsbD gene, which encodes a disulphide bond reductase, were found. In addition, the role of a novel CcdA-like protein in cbb3 oxidase assembly is discussed.  相似文献   

8.
1. Proteus mirabilis formed fumarate reductase under anaerobic growth conditions. The formation of this reductase was repressed under conditions of growth during which electron transport to oxygen or to nitrate is possible. In two of three tested chlorate-resistant mutant strains of the wild type, fumarate reductase appeared to be affected. 2. Cytoplasmic membrane suspensions isolated from anaerobically grown P. mirabilis oxidized formate and NADH with oxygen and with fumarate, too. 3. Spectral investigation of the cytoplasmic membrane preparation revealed the presence of (probably at least two types of) cytochrome b, cytochrome a1 and cytochrome d. Cytochrome b was reduced by NADH as well as by formate to approximately 80%. 4. 2-n-Heptyl-4-hydroxyquinilone-N-oxide and antimycin A inhibited oxidation of both formate and NADH by oxygen and fumarate. Both inhibitors increased the level of the formate/oxygen steady state and the formate/fumarate steady state. 5. The site of inhibition of the respiratory activity by both HQNO and antimycin A was located at the oxidation side of cytochrome b. 6. The effect of ultraviolet-irradiation of cytoplasmic membrane suspensions on oxidation/reduction phenomena suggested that the role of menaquinone is more exclusive in the formate/fumarate pathway than in the electron transport route to oxygen. 7. Finally, the conclusion has been drawn that the preferential route for electron transport from formate and from NADH to fumarate (and to oxygen) includes cytochrome b as a directly involved carrier. A hypothetical scheme for the electron transport in anaerobically grown P. mirabilis is presented.  相似文献   

9.
Several strains of Rhodobacter capsulatus have been shown to possess a nitric oxide reductase activity (reaction product nitrous oxide) after anaerobic phototrophic growth, but not after aerobic growth. The reductase is associated with the cytoplasmic membrane and electrons can reach the enzyme via the cytochrome bc1 complex. However, use of appropriate strains has shown that neither the latter, cytochrome c2 nor cytochrome c' is essential for the reduction of nitric oxide. Inhibition by myxothiazol of nitric oxide reduction in a strain that lacks a cytochrome c2 establishes that in phototrophically grown R. capsulatus the cytochrome bc1 complex is able to transfer electrons to an acceptor that is alternative to cytochrome c2. Electron transport to nitric oxide from NADH or succinate generated a membrane potential. When isoascorbate plus 2,3,5,6-tetramethyl-p-phenylenediamine (DAD) was the electron donor a membrane potential was not generated. This observation implies that nitric oxide is reduced at the periplasmic surface of the membrane and that the reductase is not proton translocating.  相似文献   

10.
11.
Abstract Recent discoveries relating to pathways of anaerobic electron transport in the Rhodospirillaceae are reviewed. The main emphasis is on the organism Rhodobacter capsulatus ** but comparisons are made with Rhodobacter sphaeroides ** f. sp. denitrificans and Rhodopseudomonas palustris . The known electron acceptors for anaerobic respiration in Rhodobacter capsulatus are trimethylamine- N -oxide (TMAO), dimethyl sulphoxide (DMSO), nitrate and nitrous oxide. In each case respiration generates a proton electrochemical gradient and in some cases can support growth on non-fermentable carbon sources. However, the principal objective of this review is to discuss the possibility that, apart from a role in energy conservation, anaerobic respiration in the photosynthetic bacteria may have a special function in maintaining redox balance during photosynthetic metabolism. Thus the electron acceptors mentioned above may serve as auxiliary oxidants: (a) to maintain an optimal redox poise of the photosynthetic electron transport chain; (b) to provide a sink for electrons during phototrophic growth on highly reduced carbon substrates.
Molecular properties of the nitrate reductase, nitrous oxide reductase and a single enzyme responsible for reduction of TMAO and DMSO are discussed. These enzymes are all located in the periplasm. Electrons destined for all three enzymes can originate from the rotenone-sensitive NADH dehydrogenase but do not proceed through the antimycin- and myxothiazol-sensitive cytochrome b/c1 complex. It is likely, therefor, that the pathways of anaerobic respiration overlap with the cyclic photosynthetic electron transport chain only at the level of the ubiquinone pool. Redox components which might be involved in the terminal branches of anaerobic respiration are discussed.  相似文献   

12.
Campylobacter species are rich in c-type cytochromes, including forms which bind carbon monoxide. The role of the various forms of cytochromes in Campylobacter fetus has been examined in cell-free preparations by using physiological electron donor and acceptor systems. Under anaerobic conditions, NADPH reduced essentially all of the cytochrome c in crude cell extracts, whereas the reduction level with succinate was 50 to 60%. The carbon monoxide spectrum with NADPH was predominated by the cytochrome c complex; evidence of a cytochrome o type was seen in the succinate-reduced extracts and in membrane fractions. Succinate-reduced cytochrome c was oxidized by oxygen via a cyanide-sensitive, membrane-associated system. NADPH-reduced cytochrome c was oxidized by a cyanide-insensitive system. Partially purified carbon monoxide-binding cytochrome c, isolated from the cytoplasm, could serve as electron acceptor for NADPH-cytochrome c oxidoreductase; the reduced cytochrome was oxidized by oxygen by a cyanide-insensitive system present in the cytoplasmic fraction. Horse heart cytochrome c was also reducible by NADPH and by succinate; the reduced cytochrome was oxidized by a cyanide-sensitive system in the membrane fraction. NADPH and NADH oxidase activities were observed aerobically and under anaerobic conditions with fumarate. NADPH was more active than NADH. NADP was also more effective than NAD as an electron acceptor for the coenzyme A-dependent pyruvate and alpha-ketoglutarate dehydrogenase activities found in crude extracts. These dehydrogenases used methyl viologen and metronidazole as electron acceptors; they could be loci for oxygen inhibition of growth. It is proposed that energy provision via the high-potential cytochrome c oxidase system in the cytoplasmic membrane is limited by oxygen-sensitive primary dehydrogenases and that the carbon monoxide-binding cytochrome c may have a role as an oxygen scavenger.  相似文献   

13.
14.
The steady-state levels of aerobic and anaerobic reduction of cytochrome b5 by ascorbic acid and the initial rates of cytochrome b5 reduction in the presence of ascorbic acid and of anaerobic cytochrome P-450 reduction in the presence of NADH were used to calculate the rate constants for cytochrome b5 oxidation. The rate constant for cytochrome b5 autooxidation in the membrane is equal to that for isolated cytochrome b5, i. e., 5 X 10(-3) s-1 (37 degrees C). The rate constant for the second cytochrome b5 oxidation reaction in the membrane, i. e., electron transfer to cytochrome P-450, is equal to 140 X 10(-3) s-1 (37 degrees C).  相似文献   

15.
The interaction of NADPH-cytochrome c reductase with oxygen, artificial acceptors and cytochrome P-450 is investigated. It is found that generation of oxygen anion-radicals (O2-), determined from the reaction of adrenaline oxidation into adrenochrome, proceeds independently on the reactions of interaction with artificial "anaerobic" acceptors-cytochrome c, dichlorophenolindophenol. Propylgallate competitively inhibits the reaction of adrenaline oxidation by isolated DADPH-cytochrome c reductase and non-competitively suppress the reaction of cytochrome c reduction. In contrast to the process of electron transfer on cytochrome c, there is a direct correlation between the rate of cytochrome P-450 reduction and the rate of adrenaline oxidation in liver microsomes. Hexobarbital increases V of the adrenaline oxidation reaction and does not affect the Km value, while metirapon, a metabolic inhibitor, decreases the Vmax and does not change Km. On the basis of the data obtained it is suggested that the reactions of NADPH-cytochrome c reductase interaction with oxygen and artificial "anaerobic" acceptors are connected with different redox-states of flavoprotein or with different flavine coenzymes, and that the electron transport on cytochrome P-450 and directly on oxygen takes place in interrelated redox-states of flavoprotein.  相似文献   

16.
Pseudomonas aeruginosa strains deficient in the genes for cytochrome c1, a subunit of the cytochrome bc1 complex, or the tetraheme membrane protein NapC, which is similar to NirT of Pseudomonas stutzeri, were constructed and their growth was investigated. The cytochrome c1 mutant could not grow under anaerobic conditions with nitrite as an electron acceptor and did not reduce nitrite in spite of its producing active nitrite reductase. NirM (cytochrome c551) and azurin, which are the direct electron donors for nitrite reductase, were reduced by succinate in the presence of the membrane fraction from the wild-type strain as a mediator but not in the presence of that from the cytochrome c1 mutant. These results indicated that cytochrome bc1 complex was necessary for electron transfer from the membrane quinone pool to nitrite reductase. The NapC mutant grew anaerobically at the expense of nitrite, indicating that NapC was not necessary for nitrite reduction.  相似文献   

17.
A polyvinyl alcohol (PVA) oxidase-deficient mutant of Pseudomonas sp. strain VM15C, strain ND1, was shown to possess PVA dehydrogenase, in which pyrroloquinoline quinone (PQQ) functions as a coenzyme. The mutant grew on PVA and required PQQ for utilization of PVA as an essential growth factor. Incubation of the membrane fraction of the mutant with PVA caused cytochrome reduction of the fraction. Furthermore, it was found that in spite of the presence of PVA oxidase, the membrane fraction of strain VM15C grown on glucose without PQQ required PQQ for cytochrome reduction during incubation with PVA. The results provide evidence that PVA dehydrogenase couples with the electron transport chain of PVA-degrading bacteria but that PVA oxidase does not.  相似文献   

18.
19.
Biogenesis of the outer membrane (OM) in Gram‐negative bacteria, which is essential for viability, requires the coordinated transport and assembly of proteins and lipids, including lipopolysaccharides (LPS) and phospholipids (PLs), into the membrane. While pathways for LPS and OM protein assembly are well‐studied, how PLs are transported to and from the OM is not clear. Mechanisms that ensure OM stability and homeostasis are also unknown. The trans‐envelope Tol‐Pal complex, whose physiological role has remained elusive, is important for OM stability. Here, we establish that the Tol‐Pal complex is required for PL transport and OM lipid homeostasis in Escherichia coli. Cells lacking the complex exhibit defects in lipid asymmetry and accumulate excess PLs in the OM. This imbalance in OM lipids is due to defective retrograde PL transport in the absence of a functional Tol‐Pal complex. Thus, cells ensure the assembly of a stable OM by maintaining an excess flux of PLs to the OM only to return the surplus to the inner membrane. Our findings also provide insights into the mechanism by which the Tol‐Pal complex may promote OM invagination during cell division.  相似文献   

20.
The hydroxylation of CMP-N-acetylneuraminic acid (CMP-NeuAc) in the formation of CMP-N-glycolylneuraminic acid requires several components which comprise an electron transport system. A protein, which replaces one of the components, was purified to homogeneity from a horse erythrocyte lysate. Based on its partial amino acid sequence and immunological cross-reactivity, this protein was identified as soluble cytochrome b5 lacking the membrane domain of microsomal cytochrome b5. The electron transport system involved in CMP-NeuAc hydroxylation was reconstituted, and then characterized using the purified horse soluble cytochrome b5 and a fraction from mouse liver cytosol. The hydroxylation reaction requires a reducing reagent, DTT being the most effective. Either NADH or NADPH was used as an electron donor, but the activity with NADPH amounted to about 74% of that with NADH. The hydroxylation was inhibited by salts and azide due to interruption of the electron transport from NAD(P)H to cytochrome b5 and in the terminal enzyme reaction, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号