首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We examined whether ANG II and TNF-alpha cooperatively induce vascular inflammation using the expression of monocyte chemoattractant protein (MCP)-1 as a marker of vascular inflammation. ANG II and TNF-alpha stimulated MCP-1 expression in a synergistic manner in vascular smooth muscle cells. ANG II-induced MCP-1 expression was potently inhibited to a nonstimulated basal level by blockade of the p38-dependent pathway but only partially inhibited by blockade of the NF-kappaB-dependent pathway. In contrast, TNF-alpha-induced MCP-1 expression was potently suppressed by blockade of NF-kappaB activation but only modestly suppressed by blockade of p38 activation. ANG II- and TNF-alpha-induced activation of NF-kappaB- and p38-dependent pathways was partially inhibited by pharmacological inhibitors of ROS production. Furthermore, ANG II- and TNF-alpha-stimulated MCP-1 expression was partially suppressed by ROS inhibitors. We also examined whether endogenous ANG II and TNF-alpha cooperatively promote vascular inflammation in vivo using a wire injury model of the rat femoral artery. Blockade of both ANG II and TNF-alpha further suppressed neointimal formation, macrophage infiltration, and MCP-1 expression in an additive manner compared with blockade of ANG II or TNF-alpha alone. These results suggested that ANG II and TNF-alpha synergistically stimulate MCP-1 expression via the utilization of distinct intracellular signaling pathways (p38- and NFkappaB-dependent pathways) and that these pathways are activated in ROS-dependent and -independent manners. These results also suggest that ANG II and TNF-alpha cooperatively stimulate vascular inflammation in vivo as well as in vitro.  相似文献   

2.
Angiotensin II (ANG II) promotes neointimal growth in the balloon-injured rat carotid artery. However, the mechanism by which ANG II stimulates neointimal growth during vascular injury is not known. In cultured vascular smooth muscle cells, ANG II activates Akt through cytosolic phospholipase A2 (cPLA2)-dependent phospholipase D2 (PLD2). This study was conducted to determine whether ANG II-induced neointimal thickening is mediated via cPLA2- and PLD2-activated Akt in balloon-injured rat carotid arteries. ANG II-stimulated neointimal growth was inhibited by exposure of the injured carotid arteries to an adenovirus containing a dominant negative Akt mutant (intima-to-media ratio from 3.01 +/- 0.31 to 1.44 +/- 0.14, P < 0.01) or a retrovirus containing cPLA2 small interfering RNA (siRNA; intima-to-media ratio from 3.01 +/- 0.31 to 1.16 +/- 0.36, P < 0.001) or PLD2 siRNA (intima-to-media ratio from 3.01 +/- 0.31 to 1.33 +/- 0.11, P < 0.001). The effect of cPLA2 and PLD2 siRNA to reduce the ANG II-induced increase in neointimal thickening was associated with reduced expression of cPLA2 and PLD2 as determined by immunohistochemical analysis in injured carotid arteries. Western blot analysis showed that Akt phosphorylation that was increased by ANG II was inhibited in injured carotid arteries 2 days after exposure to cPLA2 or PLD2 siRNA or in injured arteries isolated after exposure to these agents for 30 min and then placed in tissue culture media for 24 h in the presence of these agents. These data suggest that the ANG II-induced neointimal growth is mediated by the activation of Akt through a mechanism dependent on cPLA2 and PLD2 activation in balloon-injured rat carotid arteries.  相似文献   

3.
4.
Jin X  Fu GX  Li XD  Zhu DL  Gao PJ 《PloS one》2011,6(9):e23558
Osteopontin is known to play important roles in various diseases including vascular disorders. However, little is known about its expression and function in vascular adventitial fibroblasts. Adventitial fibroblasts have been shown to play a key role in pathological vascular remodeling associating with various vascular disorders. In this study, we measured activation of Osteopontin and its biological functions in cultured adventitial fibroblasts and injured rat carotid injury arteries induced by balloon angioplasty. Our results showed that angiotensin II and aldosterone increased Osteopontin expression in adventitial fibroblasts in a time- and concentration-dependent manner. MAPKs and AP-1 pathways were involved in Osteopontin upregulation. In addition, Adventitial fibroblast migration stimulated by Angiotensin II and aldosterone required OPN expression. Perivascular delivery of antisense oligonucleotide for Osteopontin suppressed neointimal formation post-injury. We concluded that upregulation of Osteopontin expression in adventitial fibroblasts might be important in the pathogenesis of vascular remodeling after arterial injury.  相似文献   

5.
Previous studies showed that the cardiac sympathetic afferent reflex (CSAR) is enhanced in dogs and rats with chronic heart failure (CHF) and that central ANG II type 1 receptors (AT(1)R) are involved in this augmented reflex. The aim of this study was to determine whether intracerebroventricular administration and microinjection of antisense oligodeoxynucleotides targeted to AT(1)R mRNA would attenuate the enhanced CSAR and decrease resting renal sympathetic nerve activity (RSNA) in rats with coronary ligation-induced CHF. The CSAR was elicited by application of bradykinin to the epicardial surface of the left ventricle. Reflex responses to epicardial administration of bradykinin were enhanced in rats with CHF. The response to bradykinin was determined every 50 min after intracerebroventricular administration (lateral ventricle) or microinjection (into paraventricular nucleus) of antisense or scrambled oligonucleotides to AT(1)R mRNA. AT(1)R mRNA and protein levels in the paraventricular nucleus were significantly reduced 5 h after administration of antisense. Antisense significantly decreased resting RSNA and normalized the enhanced CSAR responses to bradykinin in rats with CHF. Scrambled oligonucleotides did not alter resting RSNA or the enhanced responses to bradykinin in rats with CHF. No significant effects were found in sham-operated rats after administration of either antisense or scrambled oligonucleotides. These results strongly suggest that central AT(1)R mRNA antisense reduces expression of AT(1)R protein and normalizes the augmentation of this excitatory sympathetic reflex and that genetic manipulation of protein expression can be used to normalize the sympathetic enhancement in CHF.  相似文献   

6.
Our purpose was to address the role of NAPDH oxidase-derived superoxide anion in the vascular response to ANG II. Blood pressure, aortic superoxide anion, 3-nitrotyrosine, and medial cross-sectional area were compared in wild-type mice and in mice that overexpress human superoxide dismutase (hSOD). The pressor response to ANG II was significantly less in hSOD mice. Superoxide anion levels were increased twofold in ANG II-treated wild-type mice but not in hSOD mice. 3-Nitrotyrosine increased in aortic endothelium and adventitia in wild-type but not hSOD mice. In contrast, aortic medial cross-sectional area increased 50% with ANG II in hSOD mice, comparable to wild-type mice. The lower pressor response to ANG II in the mice expressing hSOD is consistent with a pressor role of superoxide anion in wild-type mice, most likely because it reacts with nitric oxide. Despite preventing the increase in superoxide anion and 3-nitrotyrosine, the aortic hypertrophic response to ANG II in vivo was unaffected by hSOD.  相似文献   

7.
Although NAD(P)H oxidase-derived superoxide (O(2)(-)) is increased during the development of angiotensin II (ANG II)-dependent hypertension, vascular regulation at the protein level has not been reported. We have shown that four major components of NAD(P)H oxidase are located primarily in the vascular adventitia as a primary source of vascular O(2)(-). Here we compare vascular levels of O(2)(-) and NAD(P)H oxidase in normotensive and ANG II-infused hypertensive mice and show that, after 7 days of ANG II infusion (750 microg. kg(-1). day(-1) ip) in C57B1/6 mice, systolic blood pressure was increased compared with that after sham infusion, concomitant with increased O(2)(-) in the thoracic aorta as measured using lucigenin (25 microM)-enhanced chemiluminescence. Both p67(phox) and gp91(phox) were detectable by Western blotting in aortic homogenates, and we observed increased protein levels of NAD(P)H oxidase subunits. These ANG II-induced increases were normalized by simultaneous treatment with the AT(1) receptor antagonist losartan. Moreover, the primary location of these subunits was the adventitia as detected immunohistochemically. Our results suggest that ANG II-induced increases in O(2)(-) are due to increased adventitial NAD(P)H oxidase activity, brought about by the heightened expression and interaction of its components.  相似文献   

8.

Background

It is now evident that inflammation after vascular injury has significant impact on the restenosis after revascularization procedures such as angioplasty, stenting, and bypass grafting. However, the mechanisms that regulate inflammation and repair after vascular injury are incompletely understood. Here, we report that vascular injury-mediated cytokine expression, reactive oxygen species (ROS) production, as well as subsequent neointimal formation requires Toll-like receptor-2 (TLR-2) mediated signaling pathway in vivo.

Methods and results

Vascular injury was induced by cuff-placement around the femoral artery in non-transgenic littermates (NLC) and TLR-2 knockout (TLR-2KO) mice. After cuff-placement in NLC mice, expression of TLR-2 was significantly increased in both smooth muscle medial layer and adventitia. Interestingly, we found that inflammatory genes expression such as tumor necrosis factor-α, interleukin-1β (IL-1β), IL-6, and monocyte chemoattractant protein-1 were markedly decreased in TLR-2KO mice compared with NLC mice. In addition, ROS production after vascular injury was attenuated in TLR-2KO mice compared with NLC mice. Since we observed the significant role of endogenous TLR-2 activation in regulating inflammatory responses and ROS production after vascular injury, we determined whether inhibition of endogenous TLR-2 activation can inhibit neointimal proliferation after vascular injury. Neointimal hyperplasia was markedly suppressed in TLR-2KO mice compared with WT mice at both 2 and 4 weeks after vascular injury.

Conclusions

These findings suggested that endogenous TLR-2 activation might play a central role in the regulation of vascular inflammation as well as subsequent neointimal formation in injured vessels.  相似文献   

9.
Epidemiological and animal studies suggest a role for cytomegalovirus (CMV) in restenosis. Previously, we demonstrated that proliferating smooth muscle cells (SMCs) in the injured arterial wall are particularly susceptible to CMV-induced effects. Therefore, we hypothesised that, depending on the time point of infection after vascular injury, CMV infection may affect cell proliferation either in the media or in the neointima, thereby aggravating the process of restenosis. In the present study, we focused on the individual layers of the arterial wall by evaluating, besides the neointima-to-media ratio, the medial and neointimal area and cellularity in the rat femoral artery. Vascular injury was photochemically induced in rat femoral arteries. Immediately or 14 days thereafter, rats were infected with rat CMV (RCMV) or mock infected. The presence of RCMV in the vascular wall was determined at 3, 5, 14 and 35 days after infection by quantitative real-time PCR. When rats were infected immediately after injury, a significant increase was seen only in the medial but not in the neointimal cross-sectional area. On the other hand, when rats were infected 14 days after the initial injury, a significant increase was only seen in the neointimal area, thereby confirming our hypothesis that RCMV infection primary affects proliferating SMCs. As the mean number of SMCs per microm2 in both cell layers was unchanged despite an increase in cross-sectional area, this implies that RCMV stimulated SMC proliferation. Furthermore, these vascular effects were observed without the virus being abundantly present in the vascular wall, suggesting that inflammatory and immune-mediated responses to RCMV infection are more important in aggravating the response to vascular injury than the virus itself.  相似文献   

10.
Antisense strategies to inhibit restenosis.   总被引:8,自引:0,他引:8  
  相似文献   

11.
Phosphorothioate (PS) oligodeoxynucleotides (ODN) inhibit vascular smooth muscle cell proliferation through antisense and G-quartet aptameric mechanisms. PS-ODN such as the cytidine homopolymers, have been demonstrated to have non-G-quartet, nonsequence-specific inhibitory effects in a rat carotid balloon injury model of neointimal proliferation. We sought to test the efficacy of S-dC28, a cytidine homopolymer lacking G-quartets, on neointimal proliferation in the porcine coronary artery model of balloon injury. A total of 23 animals (11 controls, 12 treated) were subjected to balloon injury in a coronary artery, followed by infusion of control solution or S-dC28 via porous balloon, the Scimed Dispatch Coronary Infusion Catheter. After a mean interval of 49 days, the animals were killed, and the target coronary segments were examined histologically. S-dC28 did not significantly inhibit neointimal formation. Fluorescein isothiocyanate (FITC)-labeled S-dC28 was present in the intima and media immediately after administration but was present mainly within the adventitia 3 hours after administration. S-dC28, when delivered by a Scimed Dispatch Coronary Infusion Catheter (Maple Grove, MN), did not significantly affect neointimal proliferation after balloon injury in a porcine coronary artery model.  相似文献   

12.
Insulin resistance (IR) is associated with an increased risk of cardiovascular diseases. The obese Zucker rat (ZR) is a model of IR that shows markedly increased insulin and triglyceride concentrations without major changes in glucose. In this study, we evaluated the response of obese and lean ZR to carotid balloon injury and determined potential mechanisms and treatments. The neointima-to-media ratio of obese ZR was greater than that of lean ZR, starting at 14 days after injury, and persisted until at least day 30. An enhanced inflammatory response to balloon injury in the obese ZR was reflected by significantly higher ED1-positive macrophage cells in the injured vessel wall compared with that in lean ZR at 3, 7, and 14 days after balloon injury. Inflammatory mediators 12-lipoxygenase (12-LO) and STAT4 were studied in neointimal lesions. Expression of 12-LO RNA was increased beginning at day 7 and showed increases of 4.3-fold on day 14 and 7-fold on day 30 in obese ZR compared with lean animals. Staining of phosphorylated STAT4 (PSTAT4), the activated form of STAT4, in lesions from obese ZR was also increased compared with that in leans. We tested the effects of a novel anti-inflammatory agent, lisofylline (LSF), in the obese ZR. LSF markedly reduced neointimal formation in the obese ZR. LSF also reduced monocyte/macrophage infiltration into the vessel wall and the activation of PSTAT4. These studies suggest both the presence of an exaggerated injury response in the insulin-resistant obese ZR model and that inflammation plays a major role in mediating neointimal growth.  相似文献   

13.
Thrombin is a multifunctional serine protease with central functions in hemostasis, but demonstration of its role in the initiation and maintenance of cell proliferation which occurs following vascular injury is still lacking. To determine the role played by thrombin and its receptor in neointimal accumulation of smooth muscle cells in a rabbit carotid artery model, we have used an 18 mer antisense phosphorothioate oligonucleotide (ODN) directed against the translation initiation region of the human thrombin receptor gene. The antisense ODN inhibited in a dose-dependent manner thrombin- or thrombin receptor activating peptide-induced human aortic smooth muscle cell proliferation. The growth-inhibitory effect of thrombin receptor antisense ODN was preventable by an excess of sense oligomer and specific for thrombin. The suppression of growth was accompanied by a marked decrease of the level of thrombin receptor expression as evidenced by [125l]-thrombin binding to smooth muscle cells. Under the same experimental conditions, the corresponding sense ODN was inactive. The effect of the antisense ODN on intimal smooth muscle hyperplasia in rabbit carotid arteries subjected to endothelial injury was then investigated. The topical application of the antisense (500 μg/artery) but not the sense ODN dissolved in F127 pluronic gel around the injured artery resulted, 2 weeks after the application, in a dramatic reduction of the expression of the thrombin receptor mRNA and protein levels as determined by in situ hybridization and immunohistochemistry. However, intimal smooth muscle cell accumulation as estimated by an intimal to medial cross-sectional area ratio was reduced only by 2.7% (vs. 10.3% for the sense ODN), whereas r-hirudin (200 μg/kg/day, sc), a potent direct thrombin inhibitor significantly reduced the formation of neointima in denuded carotid arteries (35.4% inhibition, P = 0.03). J. Cell. Physiol. 170:106–114, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

14.
Smooth muscle cell migration and proliferation are important events in the formation of intimal lesions associated with atherosclerosis and restenosis following balloon angioplasty. To make this possible, the smooth muscle cell has to change from a contractile to an activated repair cell with capacity to synthesize DNA and extracellular matrix components. There is now considerable evidence that the extracellular matrix has important functions in modulating the phenotypic properties of smooth muscle cells, but less is known about the role of the matrix metalloproteinases. The present study investigates the role of stromelysin in the modulation of rat aortic smooth muscle cell morphology and function following mechanical injury in vitro and in vivo. Antisense mRNA oligonucleotides were used to investigate the role of stromelysin expression in injury-induced phenotypic modulation and the subsequent migration and proliferation of vascular smooth muscle cells. Cultured rat aortic smooth muscle cells and balloon-injured rat carotid arteries were used as experimental models. Light- and electron microscopy were used to follow changes in smooth muscle cell phenotype and lesion formation and incorporation of 3H-thymidine to detect DNA synthesis. Injury-induced DNA synthesis and migration in vitro were inhibited by 72% and 36%, respectively, by adding stromelysin antisense oligonucleotides to the medium prior to injury. In primary cultures, 67% of the smooth muscle cells treated with stromelysin antisense were retained in a contractile phenotype as judged by analysis of cell fine structure, compared to 15% untreated cells and 40% in cells treated with mismatched oligonucleotides. Examination of the carotid arteries one week after balloon injury likewise demonstrated a larger fraction of contractile cells in the inner parts of the media in vessels treated with antisense oligonucleotides compared to those treated with mismatched oligonucleotides. The neointima was also distinctly thinner in antisense-treated than in mismatched-treated and control arteries at this time. These findings indicate that stromelysin mRNA antisense oligonucleotides inhibited phenotypic modulation of rat arterial smooth muscle cells and so caused a decrease in migration and proliferation and neointima formation in response to vessel wall injury.  相似文献   

15.
Nitric oxide (NO)-based therapies effectively inhibit neointimal hyperplasia in animal models of arterial injury and bypass grafting, but are not available clinically. We created a simple, effective, locally applied NO-eluting therapy to prevent restenosis after vascular procedures. We investigated the efficacy of perivascular delivery of two distinctly different diazeniumdiolate NO donors, 1-[2-(carboxylato)pyrrolidin-1-yl]diazen-1-ium-1,2-diolate (PROLI/NO) (short half-life) and diazeniumdiolated poly(acrylonitrile) (PAN/NO) (long half-life), in powder or gel form (30% poloxamer 407), at inhibiting neointimal hyperplasia using the rat carotid artery injury model. Two weeks postinjury, all of the NO-eluting therapies successfully reduced neointimal hyperplasia. However, most dramatically, PROLI/NO powder reduced intimal area by 91.2% (p<0.05) versus injury alone. PROLI/NO powder was noted to reduce the medial area (40.2% vs injury alone, p<0.05), whereas other groups showed no such effect. Three days postinjury, each NO treatment group significantly reduced cellular proliferation. However, inflammatory markers revealed a distinct pattern: PAN/NO groups displayed increased leukocyte infiltration (p<0.05), whereas PROLI/NO groups displayed less macrophage infiltration (p<0.05). In conclusion, perivascular delivery of diazeniumdiolate NO donors in powder or gel form effectively inhibits neointimal hyperplasia. Application of short-acting PROLI/NO powder most effectively inhibited neointimal hyperplasia and inflammation and may represent a simple, clinically applicable NO-eluting therapy to prevent neointimal hyperplasia and restenosis after open vascular interventions.  相似文献   

16.
Whether group VIA phospholipase A(2) (iPLA(2)β) is involved in vascular inflammation and neointima formation is largely unknown. Here, we report that iPLA(2)β expression increases in the vascular tunica media upon carotid artery ligation and that neointima formation is suppressed by genetic deletion of iPLA(2)β or by inhibiting its activity or expression via perivascular delivery of bromoenol lactone or of antisense oligonucleotides, respectively. To investigate whether smooth muscle-specific iPLA(2)β is involved in neointima formation, we generated transgenic mice in which iPLA(2)β is expressed specifically in smooth muscle cells and demonstrate that smooth muscle-specific expression of iPLA(2)β exacerbates ligation-induced neointima formation and enhanced both production of proinflammatory cytokines and vascular infiltration by macrophages. With cultured vascular smooth muscle cell, angiotensin II, arachidonic acid, and TNF-α markedly induce increased expression of IL-6 and TNF-α mRNAs, all of which were suppressed by inhibiting iPLA(2)β activity or expression with bromoenol lactone, antisense oligonucleotides, and genetic deletion, respectively. Similar suppression also results from genetic deletion of 12/15-lipoxygenase or inhibiting its activity with nordihydroguaiaretic acid or luteolin. Expression of iPLA(2)β protein in cultured vascular smooth muscle cells was found to depend on the phenotypic state and to rise upon incubation with TNF-α. Our studies thus illustrate that smooth muscle cell-specific iPLA(2)β participates in the initiation and early progression of vascular inflammation and neointima formation and suggest that iPLA(2)β may represent a novel therapeutic target for preventing cardiovascular diseases.  相似文献   

17.
Regulation of the PHAS-1-eukaryotic initiation factor-4E (eIF4E) complex is the rate-limiting step in the initiation of protein synthesis. This study characterized the upstream signaling pathways that mediate ANG II-dependent phosphorylation of PHAS-1 and eIF4E in vascular smooth muscle. ANG II-dependent PHAS-1 phosphorylation was maximal at 10 min (2.47 ± 0.3 fold vs. control). This effect was completely blocked by the specific inhibitors of phosphatidylinositol 3-kinase (PI3-kinase, LY-294002), mammalian target of rapamycin, and extracellular signal-regulated kinase 1/2 (ERK1/2, U-0126) or by a recombinant adenovirus encoding dominant-negative Akt. PHAS-1 phosphorylation was followed by dissociation of eIF4E. Increased ANG II-induced eIF4E phosphorylation was observed at 45 min (2.63 ± 0.5 fold vs. control), was maximal at 90 min (3.38 ± 0.3 fold vs. control), and was sustained at 2 h. This effect was blocked by inhibitors of the ERK1/2 and p38 mitogen-activated protein (MAP) kinase pathways, but not by PI3-kinase inhibition, and was dependent on PKC, intracellular Ca2+, and tyrosine kinases. Downregulation of proline-rich tyrosine kinase 2 (PYK2) by antisense oligonucleotides led to a near-complete inhibition of PHAS-1 and eIF4E phosphorylation in response to ANG II. Therefore, PYK2 represents a proximal signaling intermediate that regulates ANG II-induced vascular smooth muscle cell protein synthesis via regulation of the PHAS-1-eIF4E complex. tyrosine kinase; antisense oligonucleotides; protein synthesis  相似文献   

18.
Adenosine, acting on A(1)-receptors (A(1)-AR) in the nephron, increases sodium reabsorption, and also increases renal vascular resistance (RVR), via A(1)-ARs in the afferent arteriole. ANG II increases blood pressure and RVR, and it stimulates adenosine release in the kidney. We tested the hypothesis that ANG II-infused hypertension is potentiated by A(1)-ARs' influence on Na(+) reabsorption. Mean arterial pressure (MAP) was measured by radiotelemetry in A(1)-AR knockout mice (KO) and their wild-type (WT) controls, before and during ANG II (400 ng·kg(-1)·min(-1)) infusion. Baseline MAP was not different between groups. ANG II increased MAP in both groups, but on day 12, MAP was lower in A(1)-AR KO mice (KO: 128 ± 3 vs. 139 ± 3 mmHg, P < 0.01). Heart rates were significantly different during days 11-14 of ANG II. Basal sodium excretion was not different (KO: 0.15 ± 0.03 vs. WT: 0.13 ± 0.04 mmol/day, not significant) but was higher in KO mice 12 days after ANG II despite a lower MAP (KO: 0.22 ± 0.03 vs. WT: 0.11 ± 0.02 mmol/day, P < 0.05). Phosphate excretion was also higher in A(1)-AR KO mice on day 12. Renal expression of the sodium-dependent phosphate transporter and the Na(+)/glucose cotransporter were lower in the KO mice during ANG II treatment, but the expression of the sodium hydrogen exchanger isoform 3 was not different. These results indicate that the increase in blood pressure seen in A(1)-AR KO mice is lower than that seen in WT mice but was increased by ANG II nonetheless. The presence of A(1)-ARs during a low dose of ANG II-infusion limits Na(+) and phosphate excretion. This study suggests that A(1)-AR antagonists might be an effective antihypertensive agent during ANG II and volume-dependent hypertension.  相似文献   

19.
Myocardial cell death is an important contributor to the development of diabetic cardiomyopathy. It has been proposed that diabetes-mediated upregulation of the renin-angiotensin system leads to oxidative stress, the trigger for cardiomyocyte death and contractile dysfunction. However, the adverse effect of ANG II on the diabetic heart may extend beyond the development of the cardiomyopathy. ANG II also alters specific modulators of ischemic injury, such as PKC and calcium transport. Therefore, the present study examined the effect of ANG II on hyperglycemic preconditioning, a glucose-mediated condition associated with the elevation of PKC activity and alterations in calcium transport that render the cell resistant to hypoxia. Exposure of the glucose-treated cell to ANG II during the prehypoxic period blocked glucose-mediated cardioprotection. The reversal of hyperglycemic preconditioning was associated with enhanced accumulation of Ca(2+) during hypoxia, an effect prevented by inhibition of the Na(+)/ H(+) exchanger and the T-type Ca(2+) channel. The inhibitors of hypoxia-mediated Ca(2+) accumulation also blocked the reversal of hyperglycemic preconditioning by ANG II. Thus ANG II and glucose treatment exert opposite actions on the Na(+)/ H(+) exchanger and the T-type Ca(2+) channel. Because those transporters are involved in hypoxia-mediated apoptosis, they are logical candidates for the beneficial effects of high glucose and the adverse effects of ANG II on the hypoxic cardiomyocyte.  相似文献   

20.
We investigated whether phosphatidylinositol 3-kinase (PI3K) and 68-kDa Src associated during mitosis (SAM68) are involved in angiotensin II (ANG II) growth signaling in vascular smooth muscle cells (VSMCs) from spontaneously hypertensive rats (SHR). PI3K activity was assessed by measuring the phosphorylation of the regulatory subunit p85alpha and kinase activity of the catalytic 110-kDa subunit of PI3K. The PI3K-SAM68 interaction was assessed by coimmunoprecipitation, and SAM68 activity was evaluated by poly(U) binding. SAM68 expression was manipulated by SAM68 antisense oligonucleotide transfection. VSMC growth was evaluated by measuring [3H]leucine and [3H]thymidine incorporation as indexes of protein and DNA synthesis, respectively. ANG II increased the phosphorylation of p85alpha and kinase activity of the 110-kDa PI3K subunit in VSMCs from SHR and transiently increased p85alpha-SAM68 association. In Wistar-Kyoto (WKY) rat cells, ANG II increased SAM68 phosphorylation without influencing poly(U) binding. In SHR, ANG II did not influence SAM68 phosphorylation but increased SAM68 binding to poly(U). ANG II stimulated phosphoinositol phosphate synthesis by PI3K in SAM68 immunoprecipitates in both groups, with significantly enhanced effects in SHR. Inhibition of PI3K, using the selective inhibitor LY-294002, and downregulation of SAM68, by antisense oligonucleotides, significantly decreased ANG II-stimulated incorporation of [3H]leucine and [3H]thymidine in VSMCs, showing the functional significance of PI3K and SAM68. Our data demonstrate that PI3K and SAM68 are involved in ANG II signaling and that SAM68 is differentially regulated in VSMCs from SHR. These processes may contribute to the enhanced ANG II signaling and altered VSMC growth in SHR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号