首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In contrast to its constrictor effects on peripheral arteries, 20-hydroxyeicosatetraenoic acid (20-HETE) is an endothelial-dependent dilator of pulmonary arteries (PAs). The present study examined the hypothesis that the vasodilator effects of 20-HETE in PAs are due to an elevation of intracellular calcium concentration ([Ca(2+)](i)) and the release of nitric oxide (NO) from bovine PA endothelial cells (BPAECs). BPAECs express cytochrome P-450 4A (CYP4A) protein and produce 20-HETE. 20-HETE dilated PAs preconstricted with U-46619 or norepinephrine and treated with the cytochrome P-450 inhibitor 17-octadecynoic acid and the cyclooxygenase inhibitor indomethacin. The dilator effect of 20-HETE was blocked by the NO synthase inhibitor N(omega)-nitro-L-arginine methyl ester (L-NAME) or by removal of endothelium. 20-HETE significantly increased [Ca(2+)](i) and NO production in BPAECs. 20-HETE-induced NO release was blunted by removal of extracellular calcium, as well as NO synthase inhibitors (L-NAME). These results suggest that 20-HETE dilates PAs at least in part by increasing [Ca(2+)](i) and NO release in BPAECs.  相似文献   

2.
We have demonstrated that VEGF-induced dilation of bovine pulmonary arteries is associated with activation of cytochrome P-450 family 4 (CYP4) enzymes and eNOS. We hypothesized that VEGF and the CYP4 product 20-HETE would trigger common downstream pathways of intracellular signaling to activate eNOS. We treated bovine pulmonary artery endothelial cells (BPAECs) with 20-HETE (1 microM) or VEGF (8.3 nM) and examined three molecular events known to activate eNOS: 1) phosphorylation at serine 1179, 2) phosphorylation of protein kinase B (Akt), which subsequently phosphorylates eNOS, and 3) association of eNOS with 90-kDa heat shock protein (Hsp90). Both 20-HETE and VEGF increase the phosphorylation of eNOS at serine 1179 and Akt at serine 473. The CYP4 inhibitor dibromododecynyl methyl sulfonamide (DDMS) blocks VEGF-induced phosphorylation of eNOS. VEGF had no effect on the binding of Hsp90 with eNOS, whereas 20-HETE decreased the association of the protein partners. Inhibition of Akt-phosphatidylinositol 3-kinase with wortmannin blocks both 20-HETE and VEGF-induced relaxation of pulmonary arteries, supporting the functional contribution of Akt phosphorylation to the vasoactive actions of both agents. Treatment with radicicol had no effect on 20-HETE-induced relaxation of pulmonary arteries, consistent with an absence of effect on association of Hsp90 to eNOS, whereas radicicol partially blocked VEGF-evoked relaxations, possibly secondary to effects on endpoints other than Hsp90 association with eNOS. In conclusion, VEGF and 20-HETE share eNOS activation pathways, including phosphorylation of serine 1179 and phosphorylation of Akt. Unlike aortic endothelial cells, eNOS activation in BPAECs by either VEGF or 20-HETE does not appear to require increased association of Hsp90.  相似文献   

3.
Reactive oxygen species (ROS) signal vital physiological processes including cell growth, angiogenesis, contraction, and relaxation of vascular smooth muscle. Because cytochrome P-450 family 4 (CYP4)/20-hydroxyeicosatetraenoic acid (20-HETE) has been reported to enhance angiogenesis, pulmonary vascular tone, and endothelial nitric oxide synthase function, we explored the potential of this system to stimulate bovine pulmonary artery endothelial cell (BPAEC) ROS production. Our data are the first to demonstrate that 20-HETE increases ROS in BPAECs in a time- and concentration-dependent manner as detected by enhanced fluorescence of oxidation products of dihydroethidium (DHE) and dichlorofluorescein diacetate. An analog of 20-HETE elicits no increase in ROS and blocks 20-HETE-evoked increments in DHE fluorescence, supporting its function as an antagonist. Endothelial cells derived from bovine aortas exhibit enhanced ROS production to 20-HETE quantitatively similar to that of BPAECs. 20-HETE-induced ROS production in BPAECs is blunted by pretreatment with polyethylene-glycolated SOD, apocynin, inhibition of Rac1, and a peptide-based inhibitor of NADPH oxidase subunit p47(phox) association with gp91. These data support 20-HETE-stimulated, NADPH oxidase-derived, and Rac1/2-dependent ROS production in BPAECs. 20-HETE promotes translocation of p47(phox) and tyrosine phosphorylation of p47(phox) in a time-dependent manner as well as increased activated Rac1/2, providing at least three mechanisms through which 20-HETE activates NADPH oxidase. These observations suggest that 20-HETE stimulates ROS production in BPAECs at least in part through activation of NADPH oxidase within minutes of application of the lipid.  相似文献   

4.
20-Hydroxyeicosatetraenoic acid (20-HETE) is a cytochrome P-450 4A (CYP4A) metabolite of arachidonic acid (AA) in human and rabbit lung microsomes and is a dilator of isolated human pulmonary arteries (PA). However, little is known regarding the contribution of P-450 metabolites to pulmonary vascular tone. We examined 1) the effect of two mechanistically distinct omega- and omega1-hydroxylase inhibitors on perfusion pressures in isolated rabbit lungs ventilated with normoxic or hypoxic gases, 2) changes in rabbit PA ring tone elicited by 20-HETE or omega- and omega1-hydroxylase inhibitors, and 3) expression of CYP4A protein in lung tissue. A modest increase in perfusion pressure (55 +/- 11% above normoxic conditions) was observed in isolated perfused lungs during ventilation with hypoxic gas (FI(O(2)) = 0.05). Inhibitors of 20-HETE synthesis, 17-oxydecanoic acid (17-ODYA) or N-methylsulfonyl-12,12-dibromododec-11-enamide (DDMS), increased baseline perfusion pressure above that of vehicle and amplified hypoxia-induced increases in perfusion pressures by 92 +/- 11% and 105 +/- 11% over baseline pressures, respectively. 20-HETE relaxed phenylephrine (PE)-constricted PA rings. Treatment with 17-ODYA enhanced PE-induced contraction of PA rings, consistent with inhibition of a product that promotes arterial relaxation, whereas 6-(20-propargyloxyphenyl)hexanoic acid (PPOH), an epoxygenase inhibitor, blunted contraction to PE. Conversion of AA into 20-HETE was blocked by 17-ODYA, DDMS, and hypoxia. CYP4A immunospecific protein confirms expression of CYP4A in male rabbit lung tissue. Our data suggest that endogenously produced 20-HETE could modify rabbit pulmonary vascular tone, particularly under hypoxic conditions.  相似文献   

5.
Ye H  Bi HR  Lü CL  Tang XB  Zhu DL 《生理学报》2005,57(5):612-618
15-羟二十碳四烯酸(15-hydroxyeicosatetraenoic acid,15-HETE)在低氧性肺血管收缩中起着重要作用,低氧肺动脉高压下调内皮型。氧化氮合酶(endothelial nitric oxide synthase,eNOS),使一氧化氮(nitric oxide,NO)的产量下降,但目前尚无关于15-HETE与eNOS/NO相互作用研究的报道。我们通过Wistar大鼠肺动脉环张力、牛肺动脉内皮细胞NO产量、总eNOS表达及eNOS磷酸化测定等方法对15-HETE与eNOS/NO的相互作用进行研究。首先分离人鼠肺动脉,分为eNOS抑制剂L-NAME组(0.1mmol/L)、去缸管内皮组与内皮完整组,用15-HETE作用夫鼠离体肺动脉环,测定肺动脉张力。结果表明,L-NAME组、去除内皮组与内皮完整组分别比较,15-HETE对血管的收缩作用增强,且都有统计学意义(P〈0.05)。培养牛肺动脉内皮细胞,分别用15-HETE、15-脂氧酶(15-lipoxygenase,15-LO)抑制剂[(cinnamyl 3,4-dihydroxy-[alpha]-cyanocinnamate,CDC)和(nordihydroguiairetic acid,YDGA)]处理细胞,通过Greiss方法检测亚硝酸盐含量,间接测定NO产量,与对照组比较,1μmol/L 15-HETE明显降低肺动脉内皮细胞NO水平(P〈0.05),10μmol/L CDC和0.1mmol/L NDGA显著增加NO水平(分别是P〈0.05,P〈0.01);通过Western blot检测不同时间(5,10,15,20,30,60min)eNOS的表达情况,结果显示,15-HETE的不同作用时间,没有引起eNOS表达的明显不同;用苏氨酸495位点磷酸化eNOS(Thr495)抗体进行免疫沉淀,再用总eNOS抗体和15-LO抗体通过Western blot检测磷酸化型含量,问接测定eNOS活性,结果表明15-HETE增强Thr495磷酸化型eNOS含量。由于Thr495为eNOS抑制性磷酸化位点,因此15-HETE降低eNOS活性。这些数据表明:15-HETE的缩血管作用有eNOS/NO参与,15-HETE可以通过磷酸化Thr495位点降低eNOS活性,并且首次发现磷酸化eNOS(Thr495)和15-LO之间存在蛋白质相互作用。  相似文献   

6.
The 15-hydroxyeicosatetraenoic acid (15-HETE), a lipid metabolite and vasoconstrictor, plays an important role in hypoxic contraction of pulmonary arteries (PAs) through working on smooth muscle cells (SMCs). Previous studies have shown that vascular endothelium is also involved in PAs tone regulation. However, little is known as to how the pulmonary artery endothelial cells (PAECs) are related to the 15-HETE-induced vasoconstriction and that which intracellular signaling systems are critical. To test this hypothesis, we examined PAs constriction in isolated rat PAs rings, the expression and activity of endothelial nitric oxide synthase (eNOS) with western blot, and nitric oxide (NO) production using the DAF-FM DA fluorescent indicator. The results showed that the 15-HETE-induced PAs constriction was diminished in endothelium-intact rings. In the presence of the eNOS inhibitor L-NAME, vasoconstrictor responses to KCl were greater than the control. The activation of eNOS was activated by Ca2? released from intracellular stores and the PI3K/Akt pathway. Phosphorylations of the eNOS at Ser-1177 and Akt at Ser-473 were necessary for their activity. A prolonged 15-HETE treatment (30 min) led to a decrease in NO production by phosphorylation of eNOS at Thr-495, leading to augmentation of PAs constriction. Therefore, 15-HETE initially inhibited the PAs constriction through the endothelial NO system, and both Ca2? and the PI3K/Akt signaling systems are required for the effects of 15-HETE on PAs tone regulation.  相似文献   

7.
Nitric oxide (NO), generated from L-arginine by endothelial nitric oxide synthase (eNOS), is a key endothelial-derived factor whose bioavailability is essential to the normal function of the endothelium. Endothelium dysfunction is characterized by loss of NO bioavailability because of either reduced formation or accelerated degradation of NO. We have recently reported that overexpression of vascular cytochrome P-450 (CYP) 4A in rats caused hypertension and endothelial dysfunction driven by increased production of 20-hydroxyeicosatetraenoic acid (20-HETE), a major vasoconstrictor eicosanoid in the microcirculation. To further explore cellular mechanisms underlying CYP4A-20-HETE-driven endothelial dysfunction, the interactions between 20-HETE and the eNOS-NO system were examined in vitro. Addition of 20-HETE to endothelial cells at concentrations as low as 1 nM reduced calcium ionophore-stimulated NO release by 50%. This reduction was associated with a significant increase in superoxide production. The increase in superoxide in response to 20-HETE was prevented by N(G)-nitro-L-arginine methyl ester, suggesting that uncoupled eNOS is a source of this superoxide. The response to 20-HETE was specific in that 19-HETE did not affect NO or superoxide production, and, in fact, the response to 20-HETE could be competitively antagonized by 19(R)-HETE. 20-HETE had no effect on phosphorylation of eNOS protein at serine-1179 or threonine-497 following addition of calcium ionophore; however, 20-HETE inhibited association of eNOS with 90-kDa heat shock protein (HSP90). In vivo, impaired acetylcholine-induced relaxation in arteries overexpressing CYP4A was associated with a marked reduction in the levels of phosphorylated vasodilator-stimulated phosphoprotein, an indicator of bioactive NO, that was reversed by inhibition of 20-HETE synthesis or action. Because association of HSP90 with eNOS is critical for eNOS activation and coupled enzyme activity, inhibition of this association by 20-HETE may underlie the mechanism, at least in part, by which increased CYP4A expression and activity cause endothelial dysfunction.  相似文献   

8.
This study investigated the role of changes in the expression of the cytochrome P-450 4A (CYP450-4A) enzymes that produce 20-hydroxyeicosatetraenoic acid (20-HETE) in modulating the responses of rat mesenteric resistance arteries to norepinephrine (NE) and reduced Po(2) after short-term (3-day) changes in dietary salt intake. The CYP450-4A2, -4A3, and -4A8 isoforms were all detected by RT-PCR in arteries obtained from rats fed a high-salt (HS, 4% NaCl) diet, whereas only the CYP450-4A3 isoform was detected in vessels from rats fed a low-salt (LS, 0.4% NaCl) diet. Expression of the 51-kDa CYP450-4A protein was significantly increased by a HS diet. Inhibiting 20-HETE synthesis with 30 muM N-methylsulfonyl-12,12-dibromododec-11-enamide (DDMS) reduced the vasoconstrictor response to NE in arteries obtained from rats fed either a LS or HS diet, but NE sensitivity after DDMS treatment was significantly lower in vessels from rats on a HS diet. DDMS treatment also restored the vasodilator response to reduced Po(2) that was impaired in arteries from rats on a HS diet. These findings suggest that 1) a HS diet increases the expression of CYP450-4A enzymes in the mesenteric vasculature, 2) 20-HETE contributes to the vasoconstrictor response to NE in mesenteric resistance arteries, 3) the contribution of 20-HETE to the vasoconstrictor response to NE is greater in rats fed a HS diet than in rats fed a LS diet, and 4) upregulation of the production of 20-HETE contributes to the impaired dilation of mesenteric resistance arteries in response to hypoxia in rats fed a HS diet.  相似文献   

9.
The vasodilatory effect of 20-hydroxyeicosatetraenoic acid (20-HETE) on lung arteries is opposite to the constrictor effect seen in cerebral and renal vessels. These observations raise questions about the cellular localization of 20-HETE-forming isoforms in pulmonary arteries and other tissues. Using in situ hybridization, we demonstrate for the first time CYP4A (a family of cytochrome P-450 enzymes catalyzing formation of 20-HETE from the substrate arachidonic acid) mRNA in pulmonary arterial endothelial and smooth muscle cells, bronchial smooth muscle and bronchial epithelial cells, type I epithelial cells, and macrophages in adult male rat lungs. Moreover, we detect CYP4A protein in rat pulmonary arteries and bronchi as well as cultured endothelial cells. Finally, we identify endogenously formed 20-HETE by using fluorescent HPLC techniques, as well as the capacity to convert arachidonic acid into 20-HETE in pulmonary arteries, bronchi, and endothelium. These data show that 20-HETE is an endogenous product of several pulmonary cell types and is localized to tissues that optimally position it to modulate physiological functions such as smooth muscle tone or electrolyte flux.  相似文献   

10.
The present study determined the role of 20-hydroxyeicosatetraenoic acid [20-HETE; produced by omega-hydroxylation of arachidonic acid via cytochrome P-450 (CP450) 4A enzymes] in regulating myogenic activation of skeletal muscle resistance arteries from normotensive (NT) and hypertensive (HT) Dahl salt-sensitive (SS) rats. Gracilis arteries (GA) were isolated from each rat and viewed via television microscopy, and changes in vessel diameter with altered transmural pressure were measured with a video micrometer. Under control conditions, GA from both groups exhibited strong, endothelium-independent myogenic activation. Treatment of GA with 17-octadecynoic acid (17-ODYA; inhibitor of CP450 4A enzymes) did not alter myogenic activation in NT rats, but impaired this response in HT animals. Treatment of GA from HT rats with dibromo-dodecynyl-methylsulfimide (DDMS; inhibitor of 20-HETE production) impaired myogenic activation, as did application of 20-hydroxyeicosa-6(Z),15(Z)-dienoic acid, an antagonist for 20-HETE receptors. Application of iberiotoxin, a Ca(2+)-activated potassium (K(Ca)) channel inhibitor, restored myogenic activation from HT rats treated with DDMS. These results suggest that myogenic activation of skeletal muscle resistance arteries from NT Dahl-SS rats does not depend on CP450, whereas myogenic activation of these vessels in HT Dahl-SS rats is partly a function of 20-HETE production, inhibiting K(Ca) channels through a receptor-mediated process.  相似文献   

11.
This study was conducted to test the hypothesis that the cytochrome P-450 (CYP450) metabolite 20-hydroxyeicosatetraenoic acid (20-HETE) contributes to the afferent arteriolar response to P2 receptor activation. Afferent arteriolar responses to ATP, the P2X agonist, alpha,beta-methylene ATP and the P2Y agonist UTP were determined before and after treatment with the selective CYP450 hydroxylase inhibitor, N-methylsulfonyl-12,12-dibromododec-11-enamide (DDMS) or the 20-HETE antagonist, 20-hydroxyeicosa-6(Z),15(Z)-dienoic acid (20-HEDE). Stimulation with 1.0 and 10 microM ATP elicited an initial preglomerular vasoconstriction of 12 +/- 1% and 45 +/- 4% and a sustained vasoconstriction of 11 +/- 1% and 11 +/- 2%, respectively. DDMS or 20-HEDE significantly attenuated the sustained afferent arteriolar constrictor response to ATP. alpha,beta-Methylene ATP (1 microM) induced a rapid initial afferent vasoconstriction of 64 +/- 3%, which partially recovered to a stable diameter 10 +/- 1% smaller than control. Both DDMS and 20-HEDE significantly attenuated the initial vasoconstriction and abolished the sustained vasoconstrictor response to alpha,beta-methylene ATP. UTP decreased afferent diameter by 50 +/- 5% and 20-HEDE did not change this response. In addition, the ATP-induced increase in the intracellular Ca2+ concentration in preglomerular microvascular smooth muscle cells was significantly attenuated by 20-HEDE. Taken together, these results are consistent with the hypothesis that the CYP450 metabolite 20-HETE participates in the afferent arteriolar response to activation of P2X receptors.  相似文献   

12.
The 15-hydroxyeicosatetraenoic acid (15-HETE), a lipid metabolite and vasoconstrictor, plays an important role in hypoxic contraction of pulmonary arteries (PAs) through working on smooth muscle cells (SMCs). Previous studies have shown that vascular endothelium is also involved in PAs tone regulation. However, little is known as to how the pulmonary artery endothelial cells (PAECs) are related to the 15-HETE-induced vasoconstriction and that which intracellular signaling systems are critical. To test this hypothesis, we examined PAs constriction in isolated rat PAs rings, the expression and activity of endothelial nitric oxide synthase (eNOS) with western blot, and nitric oxide (NO) production using the DAF-FM DA fluorescent indicator. The results showed that the 15-HETE-induced PAs constriction was diminished in endothelium-intact rings. In the presence of the eNOS inhibitor L-NAME, vasoconstrictor responses to KCl were greater than the control. The activation of eNOS was activated by Ca2+ released from intracellular stores and the PI3K/Akt pathway. Phosphorylations of the eNOS at Ser-1177 and Akt at Ser-473 were necessary for their activity. A prolonged 15-HETE treatment (30?min) led to a decrease in NO production by phosphorylation of eNOS at Thr-495, leading to augmentation of PAs constriction. Therefore, 15-HETE initially inhibited the PAs constriction through the endothelial NO system, and both Ca2+ and the PI3K/Akt signaling systems are required for the effects of 15-HETE on PAs tone regulation.  相似文献   

13.
Altered nitric oxide (NO) production could contribute to the pathogenesis of hypoxia-induced pulmonary hypertension. To determine whether parameters of lung NO are altered at an early stage of hypoxia-induced pulmonary hypertension, newborn piglets were exposed to room air (control, n = 21) or 10% O(2) (hypoxia, n = 19) for 3-4 days. Some lungs were isolated and perfused for measurement of exhaled NO output and the perfusate accumulation of nitrite and nitrate (NOx-), the stable metabolites of NO. Pulmonary arteries (20-600-microm diameter) and their accompanying airways were dissected from other lungs and incubated for NOx- determination. Abundances of the nitric oxide synthase (NOS) isoforms endothelial NOS and neural NOS were assessed in homogenates of PAs and airways. The perfusate NOx- accumulation was similar, whereas exhaled NO output was lower for isolated lungs of hypoxic, compared with control, piglets. The incubation solution NOx- did not differ between pulmonary arteries (PAs) of the two groups but was lower for airways of hypoxic, compared with control, piglets. Abundances of both eNOS and nNOS proteins were similar for PA homogenates from the two groups of piglets but were increased in airway homogenates of hypoxic compared with controls. The NO pathway is altered in airways, but not in PAs, at an early stage of hypoxia-induced pulmonary hypertension in newborn piglets.  相似文献   

14.
Cytochrome P-450-4A1 (CYP4A1) is an omega-hydroxylase that catalyzes the metabolism of arachidonic acid to 20-hydroxyeicosatetraenoic acid (20-HETE). The goal of this study was to determine the vasomotor consequences of vascular overexpression of CYP4A1. Isolated rat gracilis muscle arterioles transfected ex vivo with an expression plasmid containing CYP4A1 cDNA expressed more CYP4A protein than vessels transfected with the control plasmid. In arterioles pressurized to 80 mmHg, the internal diameter of vessels transfected with CYP4A1 cDNA (55 +/- 3 microm) was surpassed (P < 0.05) by that of vessels transfected with control plasmid (97 +/- 4 microm). Treatment with a CYP4A inhibitor (N-methylsulfonyl-12,12-dibromododec-11-enamide; DDMS) or with an antagonist of 20-HETE actions [20-hydroxyeicosa-6(Z),15(Z)-dienoic acid; 20-HEDE] elicited robust dilation of arterioles transfected with CYP4A1 cDNA, whereas the treatment had little or no effect in vessels transfected with control plasmid. Examination of the intraluminal pressure-internal diameter relationship revealed that pressure increments over the range of 40-100 mmHg elicited a more intense (P < 0.05) myogenic constrictor response in arterioles transfected with CYP4A1 cDNA than in those with control plasmid. Arterioles transfected with CYP4A1 cDNA also displayed enhanced sensitivity to the constrictor action of phenylephrine. Treatment with DDMS or 20-HEDE greatly attenuated the constrictor responsiveness to both constrictor stimuli in vessels overexpressing CYP4A1, whereas the treatment had much less effect in control vessels. These data suggest that CYP4A1 overexpression promotes constriction of gracilis muscle arterioles by intensifying the responsiveness of vascular smooth muscle to constrictor stimuli. This effect of CYP4A1 overexpression appears to be mediated by a CYP4A1 product.  相似文献   

15.
Cytochrome P-450 (CYP) omega-hydroxylases and their arachidonic acid (AA) metabolite, 20-hydroxyeicosatetraenoic acid (20-HETE), produce a detrimental effect on ischemia-reperfusion injury in canine hearts, and the inhibition of CYP omega-hydroxylases markedly reduces myocardial infarct size expressed as a percentage of the area at risk (IS/AAR, %). In this study, we demonstrated that a specific CYP omega-hydroxylase inhibitor, N-methylsulfonyl-12,12-dibromododec-11-enamide (DDMS), markedly reduced 20-HETE production during ischemia-reperfusion and reduced myocardial infarct size compared with control [19.5 +/- 1.0% (control), 9.6 +/- 1.5% (0.40 mg/kg DDMS), 4.0 +/- 2.0% (0.81 mg/kg DDMS), P < 0.01]. In addition, 20-hydroxyeicosa-6(Z),15(Z)-dienoic acid (20-HEDE, a putative 20-HETE antagonist) significantly reduced myocardial infarct size from control [10.3 +/- 1.3% (0.032 mg/kg 20-HEDE) and 5.9 +/- 1.9% (0.064 mg/kg 20-HEDE), P < 0.05]. We further demonstrated that one 5-min period of ischemic preconditioning (IPC) reduced infarct size to a similar extent as that observed with the high doses of DDMS and 20-HEDE, and the higher dose of DDMS given simultaneously with IPC augmented the infarct size reduction [9.9 +/- 2.8% (IPC) to 2.5 +/- 1.4% (0.81 mg/kg DDMS), P < 0.05] to a greater degree than that observed with either treatment alone. These results suggest an important negative role for endogenous CYP omega-hydroxylases and their product, 20-HETE, to exacerbate myocardial injury in canine myocardium. Furthermore, for the first time, this study demonstrates that the effect of IPC and the inhibition of CYP omega-hydroxylase synthesis (DDMS) or its actions (20-HEDE) may have additive effects in protecting the canine heart from ischemia-reperfusion injury.  相似文献   

16.
Mechanisms that maintain high pulmonary vascular resistance (PVR) and oppose vasodilation in the fetal lung are poorly understood. In fetal lambs, increased pulmonary artery pressure evokes a potent vasoconstriction, suggesting that a myogenic response contributes to high PVR in the fetus. In adult systemic circulations, the arachidonic acid metabolite 20-hydroxyeicosatetraenoic acid (20-HETE) has been shown to modulate the myogenic response, but its role in the fetal lung is unknown. We hypothesized that acute increases in pulmonary artery pressure release 20-HETE, which causes vasoconstriction, or a myogenic response, in the fetal lung. To address this hypothesis, we studied the hemodynamic effects of N-methylsufonyl-12,12-dibromododec-11-enamide (DDMS), a specific inhibitor of 20-HETE production, on the pulmonary vasoconstriction caused by acute compression of the ductus arteriosus (DA) in chronically prepared fetal sheep. An inflatable vascular occluder around the DA was used to increase pulmonary artery pressure under three study conditions: control, after pretreatment with nitro-L-arginine (L-NA; to inhibit shear-stress vasodilation), and after combined treatment with both L-NA and a specific 20-HETE inhibitor, DDMS. We found that DA compression after L-NA treatment increased PVR by 44 +/- 12%. Although intrapulmonary DDMS infusion did not affect basal PVR, DDMS completely abolished the vasoconstrictor response to DA compression in the presence of L-NA (44 +/- 12% vs. 2 +/- 4% change in PVR, L-NA vs. L-NA + DDMS, P < 0.05). We conclude that 20-HETE mediates the myogenic response in the fetal pulmonary circulation and speculate that pharmacological inhibition of 20-HETE might have a therapeutic role in neonatal conditions characterized by pulmonary hypertension.  相似文献   

17.
The coupling of tissue blood flow to cellular metabolic demand involves oxygen-dependent adjustments in arteriolar tone, and arteriolar responses to oxygen can be mediated, in part, by changes in local production of 20-HETE. In this study, we examined the long-term effect of dietary salt on arteriolar oxygen responsiveness in the exteriorized, superfused rat spinotrapezius muscle and the role of 20-HETE in this responsiveness. Rats were fed either a normal-salt (NS, 0.45%) or high-salt (HS, 4%) diet for 4-5 wk. There was no difference in steady-state tissue Po(2) between NS and HS rats, and elevation of superfusate oxygen content from 0% to 10% caused tissue Po(2) to increase by the same amount in both groups. However, the resulting reductions in arteriolar diameter and blood flow were less in HS rats than NS rats. Inhibition of 20-HETE formation with N-methylsulfonyl-12,12-dibromododec-11-enamide (DDMS) or 17-octadecynoic acid (17-ODYA) attenuated oxygen-induced constriction in NS rats but not HS rats. Exogenous 20-HETE elicited arteriolar constriction that was greatly reduced by the large-conductance Ca(2+)-activated potassium (K(Ca)) channel inhibitors tetraethylammonium chloride (TEA) and iberiotoxin (IbTx) in NS rats and a smaller constriction that was less sensitive to TEA or IbTx in HS rats. Arteriolar responses to exogenous angiotensin II were similar in both groups but more sensitive to inhibition with DDMS in NS rats. Norepinephrine-induced arteriolar constriction was similar and insensitive to DDMS in both groups. We conclude that 20-HETE contributes to oxygen-induced constriction of skeletal muscle arterioles via inhibition of K(Ca) channels and that a high-salt diet impairs arteriolar responses to increased oxygen availability due to a reduction in vascular smooth muscle responsiveness to 20-HETE.  相似文献   

18.
Pulmonary arteries from the Madison (M) strain relax more in response to acetylcholine (ACh) than those from the Hilltop (H) strain of Sprague-Dawley rats. We hypothesized that differences in endothelial nitric oxide (NO) synthase (eNOS) expression and function, metabolism of ACh by cholinesterases, release of prostacyclin, or endothelium-derived hyperpolarizing factor(s) (EDHF) from the endothelium would explain the differences in the relaxation response to ACh in isolated pulmonary arteries. eNOS mRNA and protein levels as well as the NO-dependent relaxation responses to thapsigargin in phenylephrine (10(-6) M)-precontracted pulmonary arteries from the M and H strains were identical. The greater relaxation response to ACh in M compared with H rats was also observed with carbachol, a cholinesterase-resistant analog of ACh, a response that was not modified by pretreatment with meclofenamate (10(-5) M). N(omega)-nitro-L-arginine (10(-4) M) completely abolished carbachol-induced relaxation in H rat pulmonary arteries but not in M rat pulmonary arteries. Precontraction with KCl (20 mM) blunted the relaxation response to carbachol in M rat pulmonary arteries and eliminated differences between the M and H rat pulmonary arteries. NO-independent relaxation present in the M rat pulmonary arteries was significantly reduced by 17-octadecynoic acid (2 microM) and was completely abolished by charybdotoxin plus apamin (100 nM each). These findings suggest that EDHF, but not NO, contributes to the strain-related differences in pulmonary artery reactivity. Also, EDHF may be a metabolite of cytochrome P-450 that activates Ca(2+)-dependent K(+) channels.  相似文献   

19.
The aim of the present study was to provide a mechanistic insight into how 20-hydroxyeicosatetraenoic acid (20-HETE) relaxes distal human pulmonary arteries (HPAs). This compound is produced by omega-hydroxylase from free arachidonic acid. Tension measurements, performed on either fresh or 1 day-cultured pulmonary arteries, revealed that the contractile responses to 1 microM 5-hydroxytryptamine were largely relaxed by 20-HETE in a concentration-dependent manner (0.01-10 microM). Iberiotoxin pretreatments (10 nM) partially decreased 20-HETE-induced relaxations. However, 10 microM indomethacin and 3 microM SC-560 pretreatments significantly reduced the relaxations to 20-HETE in these tissues. The relaxing responses induced by the eicosanoid were likely related to a reduced Ca2+ sensitivity of the myofilaments since free Ca2+ concentration ([Ca2+])-response curves performed on beta-escin-permeabilized cultured explants were shifted toward higher [Ca2+]. 20-HETE also abolished the tonic responses induced by phorbol-ester-dibutyrate (a PKC-sensitizing agent). Western blot analyses, using two specific primary antibodies against the PKC-potentiated inhibitory protein CPI-17 and its PKC-dependent phosphorylated isoform pCPI-17, confirmed that 20-HETE interferes with this intracellular process. We also investigated the effect of 20-HETE on the activation of Rho-kinase pathway-induced Ca2+ sensitivity. The data demonstrated that 20-HETE decreased U-46619-induced Ca2+ sensitivity on arteries. Hence, this observation was correlated with an increased staining of p116(Rip), a RhoA-binding protein. Together, these results strongly suggest that the 20-hydroxyarachidonic acid derivative is a potent modulator of tone in HPAs in vitro.  相似文献   

20.
Cytochrome P450 4A/F (CYP4A/F) converts arachidonic acid (AA) to 20-HETE by ω-hydroxylation. The contribution of 20-HETE to the regulation of myogenic response, blood pressure, and mitogenic actions has been well summarized. This review focuses on the emerging role of 20-HETE in physiological and pathological vascularization. 20-HETE has been shown to regulate vascular smooth muscle cells (VSMC) and endothelial cells (EC) by affecting their proliferation, migration, survival, and tube formation. Furthermore, the proliferation, migration, secretion of proangiogenic molecules (such as HIF-1α, VEGF, SDF-1α), and tube formation of endothelial progenitor cells (EPC) are stimulated by 20-HETE. These effects are mediated through c-Src- and EGFR-mediated downstream signaling pathways, including MAPK and PI3K/Akt pathways, eNOS uncoupling, and NOX/ROS system activation. Therefore, the CYP4A/F-20-HETE system may be a therapeutic target for the treatment of abnormal angiogenic diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号