首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We examined the effects of two enkephalin metabolites, des-tyr-[leu]enkephalin and tyr-gly-gly, on one-way active avoidance conditioning in mice. These metabolites are products of the two major enkephalin hydrolyzing enzymes in plasma, aminopeptidase and angiotensin converting enzyme. Like [leu]enkephalin from which it may be formed, tyr-gly-gly impaired avoidance acquisition, and its dose-response function for this effect was U-shaped. Also like [leu]enkephalin, tyr-gly-gly did not alter locomotor activity. On the other hand, des-tyr-[leu]enkephalin, at the doses tested, was without effect on avoidance conditioning but produced decreased locomotion. These data suggest that the tyrosine end of the enkephalin molecule may be important for its effects on conditioning. Because of their low opioid potencies, it is unlikely that the behavioral actions of tyr-gly-gly and des-tyr-[leu]enkephalin are mediated through opioid receptors.  相似文献   

2.
We reported previously that D-Pen2-[D-Pen5]enkephalin (DPDE), a delta-opioid receptor selective analog of Leu-enkephalin, impairs acquisition of an automated jump-up avoidance response in rats and acquisition of a one-way active avoidance response in mice. In the present study we investigated the effects of DPDPE on one-way avoidance conditioning in rats. The rats received two escape-only trials on day 1 and eight additional training trials on day 2. DPDPE (1.16 micrograms/kg IP) administered prior to training on day 2 impaired acquisition of the avoidance response. On the other hand, DPDPE (0.332 microgram/kg IP) administered following presentation of the two escape-only trials on day 1 significantly enhanced retention, as measured by improved one-way active avoidance performance on day 2. These results indicate that activation of delta-opioid receptors by DPDPE has a modulatory effect on acquisition and retention of aversively motivated performance.  相似文献   

3.
Three N-glycoconjugates of the general formula H-Tyr-Gly-Gly-Phe-Leu-NH-R (R = carbohydrate residue) were synthesized in order to determine the influence of some carbohydrate molecules (6-amino-6-deoxy-D-glucopyranose, 2-amino-2-deoxy-D-glucopyranose, beta-D-glucopyranosylamine) on the biological activity, conformation, and stability of the opioid pentapeptide [Leu5]enkephalin. For the preparation of this compound different methods of peptide synthesis (active ester and mixed anhydride) were investigated. In comparison with [Leu5]enkephalin, all three N-glycoconjugates showed higher potency in the guinea pig ileum assay and lower potency in the mouse vas deferens assay, indicating a decrease in delta opioid receptor selectivity.  相似文献   

4.
To understand better how [Leu]enkephalin (LE) acts to modulate learning and memory in rats, the plasma uptake, disappearance, and metabolism of LE were investigated following its intraperitoneal administration. Concentrations of [3H]-LE and its radioactive metabolites were determined by thin layer chromatography in plasma samples withdrawn from rats at various times after injection of peptide. As measured in rats receiving an IP injection of a dose of LE (3 micrograms/kg) that impairs active avoidance conditioning, the LE was very rapidly metabolized, with greater than 95% of plasma [3H] in the form of metabolites by 1 min after injection. Despite this rapid metabolism, low but measurable quantities of intact LE were detectable in plasma at all sampling times. Consistent with a greater potency of D-Ala2-[D-Leu5]enkephalin (DADLE) than of LE in modulating avoidance conditioning, DADLE was less rapidly metabolized than was LE following its IP administration. The metabolism of DADLE and LE in vivo was more rapid than it was in plasma in vitro, suggesting a role for membrane bound enzymes in the metabolism of IP-administered enkephalins. The data demonstrate that, despite a rapid hydrolysis of LE in vivo, sufficient LE is present in plasma following IP administration of a behaviorally active dose to support a role of circulating intact LE in the modulation of avoidance conditioning.  相似文献   

5.
In order to assess the individual effects of each of the 3-methyl groups in residue 2 of [D-Pen2, D-Pen5]enkephalin on binding affinity to mu and delta opioid receptors, (2S,3S)methylcysteine ((3S)Me-D-Cys) and (2S,3R)methylcysteine ((3R)Me-D-Cys) were synthesized and incorporated into the analogs, [(3S)Me-D-Cys2, D-Pen5] enkephalin and [(3R)Me-D-Cys2, D-Pen5]enkephalin. Of these analogs, [(3S)Me-D-Cys2, D-Pen5]enkephalin appears from 1H n.m.r. spectra to assume a conformation similar to those of [D-Pen2, D-Pen5]enkephalin and the less delta receptor-selective, but more potent, [D-Cys2, D-Pen5]enkephalin. Assessment of binding affinity to mu and delta receptors revealed that [(3S)Me-D-Cys2, D-Pen5]enkephalin exhibits delta receptor affinity intermediate between [D-Pen2, D-Pen5]enkephalin and [D-Cys2, D-Pen5]enkephalin while its mu receptor affinity is similar to that of [D-Cys2, D-Pen5]enkephalin. These results suggest that, for [D-Pen2, D-Pen5]enkephalin, adverse steric interactions between the D-Pen2 pro-R methyl group and the mu receptor binding site lead to the low mu receptor binding affinity observed for this analog. By contrast, both the pro-R and pro-S D-Pen2 methyl groups lead to minor steric interactions which contribute to the somewhat lower delta receptor affinity of this compound.  相似文献   

6.
A cystamine-enkephalin dimer, containing two molecules of [D-Ala2, Leu5] enkephalin cross-linked at the COOH-terminal leucine residue with cystamine, (NH2-CH2-CH2-S-)2, has been synthesized in order to examine directly the dimerization effect of an enkephalin molecule on the opiate receptor interactions. In a comparison of potencies against [3H]-[D-Ala2,D-Leu5] enkephalin (3H-DADLE) and [3H]-[D-Ala2,MePhe4,Gly-ol5] enkephalin (3H-DAGO) as delta and mu tracers, respectively, enkephalin dimer showed a very high affinity, especially for the delta opiate receptors. Dimer was almost threefold more potent than DADLE, which is one of the most utilized delta ligand to date. When the binding affinity of cystamine-dimer was compared with that of its reduced thiol-monomer, namely [D-Ala2,Leu5,cysteamine6] enkephalin, the increment in affinity was four to fivefold for both delta and mu receptors. The results strongly indicate that the dimeric enkephalin is more potent presumably due to the simultaneous interaction with the two binding sites of the opiate receptors.  相似文献   

7.
The conformation of [Leu5]enkephalin has been studied by 1H-NMR spectroscopy in media more like the actual environment in which the agonist-receptor interaction takes place than water, i.e. in three cryoprotective mixtures (dimethylformamide/water, methanol/water and ethylene glycol/water), in aqueous SDS and in two neat solvents, dimethylformamide and acetonitrile, whose dielectric constants (36.7 and 37.5) are intermediate between that of water and that of the lipid phase. In all cases examined, contrary to the studies in water or dimethylsulfoxide, we were able to detect numerous nuclear Overhauser effects, indicating that the media employed favour well-defined structures and/or reduce the internal motions of the peptide. Data from both organic solvents and cryoprotective mixtures suggest a 4----1 beta turn as the most probable structure of [Leu5]enkephalin in solution, whereas in SDS/H2O micelles the structural picture appears completely different, suggesting the presence of a 5----2 beta turn. The existence of two different preferred conformations of enkephalins may possibly be related to their ability to be effective towards both mu and delta opioid receptors.  相似文献   

8.
Analogs of opioid pentapeptide [D-Ala2,Leu5]enkephalin were prepared using two kinds of N-methylation reactions, namely quaternization and amide-methylation. Quaternization reaction with CH3I-KHCO3 in methanol was applied to the deprotected N-terminal group of the pentapeptide derivatives affording trimethylammonium group-containing analogs. [Me3+Tyr1,D-Ala2,Leu5]enkephalin and its amide were found to show opioid activity on guinea pig ileium assay only slightly lower than the parent unmethylated peptides. Application of amide-methylation reaction using CH3I-Ag2O in DMF to the protected pentapeptide yielded a pentamethyl derivative in which all of the five N atoms were methylated. Deprotection of the derivative gave pentamethyl analogs of [D-Ala2,Leu5]enkephalin, which showed no significant activity on the guinea pig ileum assay and opiate-receptor binding assay.  相似文献   

9.
A variety of data support the existence of an opioid receptor complex composed of distinct but interacting mu cx and delta cx binding sites, where "cx" indicates "in the complex." The ability of subantinociceptive doses of [Leu5]enkephalin and [Met5]enkephalin to potentiate and attenuate morphine-induced antinociception, respectively, is thought to be mediated via their binding to the delta cx binding site. [D-Pen2,D-Pen5]Enkephalin also modulates morphine-induced antinociception, but has very low affinity for the delta cx binding site in vitro. In the present study, membranes were depleted of their delta ncx binding sites by pretreatment with the site-directed acylating agent, (3S,4S)-(+)-trans-N-[1-[2-(4-isothiocyanato)phenyl)-ethyl]-3-methy l-4- piperidyl]-N-phenylpropaneamide hydrochloride, which permits selective labeling of the delta cx binding site with [3H][D-Ala2,D-Leu5]enkephalin. The major findings of this study are that with this preparation of rat brain membranes: a) there are striking differences between the delta cx and mu binding sites; and b) both [D-Pen2,D-Pen5]enkephalin and [D-Pen2,L-Pen5]enkephalin exhibit high affinity for the delta cx binding site.  相似文献   

10.
The synthesis of some [Leu5]enkephalin derivatives is described in which D-glucose has been linked to the opioid pentapeptide through the ester bond involving the carboxyl function at the C-terminal with C-1 or C-6 of the D-glucopyranose moiety. Enkephalin derivatives were assayed for opioid activity and found to be full agonists in bioassays based on inhibition of electrically evoked contractions of the guinea pig ileum (GPI) and of the mouse vas deferens (MVD). The obtained results suggest that the opioid activity of the tested glucoconjugates depend upon the ester bond position in the molecule. Whereas 1-O conjugate 5 was somewhat more potent than [Leu5]enkephalin in the GPI assay, the 6-O conjugates, with the exception of 1-O-benzyl derivative 11, were considerably less potent. All enkephalin derivatives were delta-receptor selective; in particular, the acetylated analog 8 was three times more delta-receptor selective than [Leu5]enkephalin.  相似文献   

11.
Isolated hepatocytes from fed rats were used to study the effects of the opioid peptide [Leu]enkephalin on intracellular free cytosolic Ca2+ ([Ca2+]i) and inositol phosphate production. By measuring the fluorescence of the intracellular Ca2+-selective indicator quin-2, [Leu]enkephalin was found to increase [Ca2+]i rapidly from a resting value of 0.219 microM to 0.55 microM. The magnitude of this response was comparable with that produced by maximally stimulating concentrations of either vasopressin (100 nM) or phenylephrine (10 microM). The opioid-peptide-mediated increase in [Ca2+]i showed a dose-dependency comparable with the activation of phosphorylase, but it preceded the increase in phosphorylase alpha activity. Addition of [Leu]enkephalin to hepatocytes prelabelled with myo-[2-3H(n)]inositol resulted in a significant stimulation of inositol phosphate production. At 10 min after hormone addition, there were increases in the concentrations of inositol mono-, bis- and tris-phosphate fractions of 12-, 9- and 14-fold respectively. No effect was apparent on the glycerophosphoinositol fraction. The effect of 10 microM-[Leu]enkephalin on inositol phosphate production was significantly greater than that obtained with 10 microM-phenylephrine, but marginally smaller than that induced by 100 nM-vasopressin. However, at these concentrations all three agonists gave a comparable increase in [Ca2+]i and activation of phosphorylase a. These data provide evidence for [Leu]enkephalin acting via a mechanism involving a mobilization of Ca2+ as a result of increased phosphatidylinositol turnover.  相似文献   

12.
Insertion of bulky tertiobutyl groups into the sequence of [D-Ser2,Leu5]enkephalyl-Thr6 leads to a conformationally induced large increase in selectivity toward rat brain delta-opioid binding sites, as shown by the ratio of apparent affinities for mu and delta receptors of [D-Ser2(O-tert-butyl),Leu5]enkephalyl-Thr6,KI(mu)/KI(delta) = 130, and [D-Ser2(O-tert-butyl),Leu5]enkephalyl-Thr6 (O-tert-butyl),KI(mu)/KI(delta) = 280. In addition to a selectivity similar to that of the cyclic compounds [D-Pen2, D-Pen5]enkephalin and [D-Pen2,L-Pen5]enkephalin, the affinity of [3H][D-Ser2(O-tert-butyl),Leu5]enkephalyl-Thr6 for the delta sites of rat brain membranes is significantly better (KD = 2.2 nM) than that of [3H][D-Pen2,D-Pen5]enkephalin (KD approximately 8.5 nM). Therefore, [3H][D-Ser2(O-tert-butyl),Leu5]enkephalyl-Thr6 seems to be the most appropriate delta-probe currently available for binding studies. Moreover, the lipophilic and protected peptide [D-Ser2(O-tert-butyl),Leu5]enkephalyl-Thr6(O-tert-butyl) behaves as the most specific ligand for the delta-opioid binding sites and appears appropriate for in vivo investigations. The inactive analogue [D-Thr2(O-tert-butyl),Leu5]enkephalyl-Thr6 might serve as a negative control in biochemical or pharmacological studies.  相似文献   

13.
Several lines of data support the existence of two classes of delta receptors: the delta cx binding site, which is the delta binding site of the mu-delta opioid receptor complex, and the delta ncx, which is the noncomplexed delta receptor. [D-Ala2,Leu5,Cys6]Enkephalin (DALCE) is an extended analog of [Leu5]enkephalin, which has been shown to bind irreversibly to delta receptors via the terminal cysteine by formation of a disulfide bond with the receptor. In vivo studies have shown that DALCE produces short-lived antinociceptive actions, followed by long-term antagonism of delta receptor-mediated antinociception. The major goal of the present study was to examine the effect of DALCE on the delta cx and delta ncx binding sites in vitro and in vivo. Intracerebroventricular administration of 40 micrograms DALCE failed to decrease [3H][D-Ala2,D-Leu5]enkephalin binding to the delta cx and delta ncx binding sites. Pretreatment of membranes with DALCE in vitro greatly reduced the Bmax of the delta ncx binding site, without significantly altering the Bmax of the delta cx binding site. These findings suggest that when administered in vivo, DALCE fails to distribute uniformly throughout the brain, and that it therefore binds covalently to opioid receptors mostly in the periventricular regions. Viewed collectively, these data support the hypothesis that DALCE acts as a selective delta ncx antagonist, and that the delta ncx binding site, which is sensitive to DALCE, is most likely synonymous with the recently described delta 1 receptor.  相似文献   

14.
Binding characteristics of a new, conformationally constrained, halogenated enkephalin analogue, [3H]-[D-penicillamine2, pCl-Phe4, D-penicillamine5]enkephalin ([3H]pCl-DPDPE), were determined using homogenized rat brain tissue. Saturation binding studies at 25 degrees C determined a dissociation constant (Kd) of 328 +/- 27.pM and a receptor density (Bmax) of 87.2 +/- 4.2 fmol/mg protein. Kinetic studies demonstrated biphasic association for [3H]pCl-DPDPE, with association rate constants of 5.05 x 10(8) +/- 2.5 x 10(8) and 0.147 +/- 10(8) +/- 0.014 x 10(8) M-1 min-1. Dissociation was monophasic with a dissociation rate constant of 2.96 x 10(-3) +/- 0.25 x 10(-3) min-1. The average Kd values determined by these kinetic studies were 8.4 +/- 2.7 pM and 201 +/- 4 pM. Competitive inhibition studies demonstrated that [3H]pCl-DPDPE has excellent selectively for the delta opioid receptor. [3H]pCl-DPDPE binding was inhibited by low concentrations of ligands selective for delta opioid receptor relative to the concentrations required by ligands selective for mu and kappa sites. These data show that [3H]pCl-DPDPE is a highly selective, high affinity ligand which should be useful in characterizing the delta opioid receptor.  相似文献   

15.
The experiments reported in this paper address the hypothesis that [3H]leucine enkephalin labels both mu and delta receptors. As reported by other workers, this peptide dissociates from rat brain membranes in a biphasic manner. This is consistent with a two site binding model which hypothesizes that the peptide labels both opioid mu and delta receptors from which it dissociates at different rates. To test this hypothesis, we determined the dissociation of bound ligand from rat brain membranes incubated to equilibrium with [3H]leucine enkephalin in the absence and presence of 100 nM morphine. The data were not significantly different. We conclude that the biphasic off-kinetics of [3H]leucine enkephalin is not evidence for a two-site binding model.  相似文献   

16.
Tissues of the reproductive tract have been shown to contain mRNAs coding for pro-opiomelanocortin (POMC), pro-enkephalin and pro-dynorphin. However, the amounts of immunoreactive opioid peptides in these tissues are low, and in the case of the enkephalins and dynorphin, the molecular species responsible for the immunoreactivities have not been characterized. The chromatographic properties of dynorphin and enkephalin immunoreactivities in extracts of guinea pig and rat testis have therefore been determined. Dynorphin A and dynorphin B immunoreactivity was heterogeneous, with a significant amount attributable to high-molecular-weight forms. About 20% of the dynorphin A immunoreactivity, and about 40% of the dynorphin B immunoreactivity, in guinea pig testis extracts behaved as authentic dynorphin A or B, respectively during fractionation by ion exchange, gel filtration and high-performance liquid chromatography. Both high- and low-molecular-weight forms of [Leu5]enkephalin immunoreactivity were also present, with roughly 50-70% of the immunoreactivity attributable to low-molecular-weight forms. In extracts of guinea pig testis only a small part of this immunoreactivity eluted as authentic [Leu5]enkephalin during high-performance liquid chromatography. In rat testis most of the low-molecular-weight [Leu5]enkephalin immunoreactivity behaved as the authentic peptide. These results confirm that opioid peptides are produced in guinea pig and rat testis, and demonstrate that immunoreactive forms of the peptides similar to those found in brain and pituitary are present in the tissue.  相似文献   

17.
The range of delta-selectivity of linear and cyclic analogues of enkephalin in rat brain was found to be: [D-Pen2, L-Pen5] enkephalin (DPLPE) greater than [D-Pen2, D-Pen5] enkephalin (DPDPE) greater than [D-Thr2, Leu5] enkephalyl-Thr6 (DTLET) greater than [D-Ser2, Leu5] enkephalyl-Thr6 (DSLET). Saturation experiments performed with [3H]DPDPE and [3H]DTLET in NG108-15 cells and rat brain showed similar binding capacities for both the ligands, but the delta-affinity of [3H]DTLET (KD approximately 1.2 nM) was much better than that of [3H]DPDPE (KD approximately 7.2 nM). The rather low delta-affinity of DPDPE induced high experimental errors cancelling the benefit of its better delta-selectivity. Binding experiments in rat or guinea-pig brains showed, in both cases, the better delta-selectivity of [3H]DTLET compared to [3H]DSLET. The former peptide remains at this time the most appropriate radioactive probe for binding studies of delta-receptor.  相似文献   

18.
P W Schiller  B Eggimann  T M Nguyen 《Life sciences》1982,31(16-17):1777-1780
Analogs of dynorphin-(1-13) with modifications in the enkephalin segment were compared with correspondingly modified analogs of [Leu5]enkephalin in the guinea pig ileum (GPI) and mouse vas deferens (MVD) assay as well as in mu- and delta-receptor selective binding assays. The obtained results indicate that a) the enkephalin binding domain of the dynorphin (kappa) receptor has structural requirements which are distinct from those of the enkephalin binding site at the mu-receptor and b) the introduction of an identical conformational constraint in [Leu5]enkephalin and in the enkephalin segment of dynorphin-(1-13) produces a superpotent agonist in both cases. Fluorescence energy transfer measurements with the active [4-tryptophan]analogs of dynorphin-(1-13) and [Leu5]enkephalin and with dynorphin-(1-17) demonstrated a more extended conformation of the N-terminal tetrapeptide segment in [Trp4]dynorphin-(1-13) than in [Trp4, Leu5]enkephalin as well as the absence of an interaction between the N- and C-terminal segments of dynorphin-(1-17).  相似文献   

19.
Dimeric pentapeptide enkephalin: a novel probe of delta opiate receptors   总被引:1,自引:0,他引:1  
A dimeric pentapeptide enkephalin (DPE2) consisting of two molecules of [D-Ala 2, Leu 5] enkephalin linked at C-terminal leucine with ethylenediamine, (H-Tyr-D-Ala-Gly-Phe-Leu-NH-Ch2)2 is a bivalent ligand for the delta enkephalin receptors of rat brain and neuroblastoma-glioma hybrid (NG108-15) cells. This new enkephalin analog shows dramatically increased affinity in radioligand assays using whole brain membranes when delta but not mu specific radioligands are employed. When membranes from NG108-15 cells are used, the dimer shows greatly increased activity irrespective of the mu or delta specificity of the tracer. The dimer DPE2 shows a four-fold, "sodium shift" in its IC50 for competition with [3H]naloxone, suggestive of agonist behavior. Agonist activity was confirmed by demonstrating that DPE2 inhibits cyclic AMP production in prostaglandin E1 stimulated NG108-15 cells, and by demonstrating very high potency in the mouse vas deferens bioassay. DPE2 binds to the same delta sites as the delta-selective monomer [D-Ala2, D-Leu5] enkephalin, since the two ligands show complete crossdisplacement. Radiolabeled 3H-DPE2 shows a five-fold higher affinity constant, a 2.5-fold higher association rate constant, and a two-fold lower dissociation rate than the monomer. These results are consistent with the hypothesis that the dimeric pentapeptide enkephalin can bridge two delta receptors. This enkephalin dimer provides a valuable new probe of opiate receptors and their organization in cell membranes.  相似文献   

20.
Hydrolysis of [Leu]- and [Met]enkephalin was determined in whole rat plasma in vitro by using HPLC-ECD to measure Tyr, Tyr-Gly and Tyr-Gly-Gly formation. Although [Leu]- and [Met]enkephalin did not differ in Tyr or Tyr-Gly accumulation, the amount of Tyr-Gly-Gly resulting from [Met]enkephalin hydrolysis was greater than that resulting from [Leu]enkephalin hydrolysis, and [Met]enkephalin's half-life in plasma was slightly shorter than that of [Leu]enkephalin. By comparing metabolite formation in the presence and absence of peptidase inhibitors with high selectivity for their respective enzymes, these studies demonstrated that aminopeptidase M and angiotensin converting enzyme are the major peptidases that hydrolyze enkephalins in rat plasma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号