首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
The leopard cat (Prionailurus bengalensis), a member of the felidae family, is a threatened animal in South Korea. In terms of protecting endangered felids, nuclear transfer (NT) is a potentially valuable technique for assuring the continuation of species with dwindling numbers. In the present experiment, nuclear and microtubule remodeling and the in vitro developmental potential of enucleated domestic cat oocytes reconstructed with nuclei of somatic cells from either domestic cat fibroblast (DCF) or leopard cat fibroblast (LCF) were evaluated. Microtubule aster is allocated to de-condensed chromatin following nuclear transfer (3h after activation) of fibroblast cells from both domestic and leopard cats, suggesting the introduction of a somatic cell centrosome. The transferred fibroblast nuclei formed a large, swollen, pronuclear-like structure in most reconstructed oocytes, in the cat or leopard cat. At 18h following nuclear transfer, mitosis occurred, and according to the photo (F) it appears that spindle microtubules and two asters were observed. The percentages of blastocyst formation from nuclear transfer embryos derived from domestic cat fibroblasts (4/46, 8.6%) were not significantly different than those for nuclear transfer embryos constructed with leopard cat fibroblasts (4/52, 7.6%). These results indicate that nuclear and microtubule remodeling processes and in vitro developmental ability are similar in reconstructed cat oocytes following transfer of nuclei from either domestic or leopard cats.  相似文献   

2.
Premature chromosome condensation (PCC) was believed to promote nuclear reprogramming and to facilitate cloning by somatic cell nuclear transfer (NT) in mammalian species. However, it is still uncertain whether PCC is necessary for the successful reprogramming of an introduced donor nucleus in cattle. In the present study, fused NT embryos were subjected to immediate activation (IA, simultaneous fusion and activation), delayed activation (DA, activation applied 4 h postfusion), and IA with aged oocytes (IAA, activation at the same oocyte age as group DA). The morphologic changes, such as nuclear swelling, the occurrence of PCC, and microtubule/aster formation, were analyzed in detail by laser-scanning confocal microscopy. When embryos were subjected to IA in both IA and IAA groups, the introduced nucleus gradually became swollen, and a pronuclear-like structure formed within the oocyte, but PCC was not observed. In contrast, delaying embryo activation resulted in 46.5%-91.2% of NT embryos exhibiting PCC. This PCC was observed beginning at 4 h postcell fusion and was shown as one, two, or multiple chromosomal complexes. Subsequently, a diversity of pronuclear-like structures existed in NT embryos, characterized as single, double, and multiple nuclei. In the oocytes exhibiting PCC, the assembled spindle structure was observed to be an interactive mass, closely associated with condensed chromosomes, but no aster had formed. Regardless of whether they were subjected to IA, IAA, or DA treatments, if the oocytes contained pronuclear-like structures, either one or two asters were observed in proximity to the nuclei. A significantly higher rate of development to blastocysts was achieved in embryos that were immediately activated (IA, 59.1%; IAA, 40.7%) than in those for which activation was delayed (14.2%). The development rate was higher in group IA than in group IAA, but it was not significant (P = 0.089). Following embryo transfer, there was no statistically significant difference in the pregnancy rates (Day 70) between two of the groups (group IA, 11.7%, n = 94 vs. group DA, 12.3%, n = 130; P > 0.05) or live term development (group IA, 4.3% vs. group DA, 4.6%; P > 0.05). Our study has demonstrated that the IA of bovine NT embryos results in embryos with increased competence for preimplantational development. Moreover, PCC was shown to be unnecessary for the reprogramming of a transplanted somatic genome in a cattle oocyte.  相似文献   

3.
It is still unclear whether nuclear envelope breakdown and premature chromosome condensation are essential for the reprogramming of the donor nucleus following somatic nuclear transfer. To address this, we determined the ability of delayed-activated or simultaneously activated porcine oocytes to undergo nuclear remodelling and development following somatic cell nuclear transfer. A small microtubule aster was observed in association with decondensed chromatin following nuclear transfer, suggesting the introduction of a somatic cell centrosome. In the delayed-activated condition, most fibroblast nuclei divided into two chromosome masses and two pronuclear-like structures following transfer into oocytes. In contrast, fibroblast nuclei in the simultaneously activated condition formed a large, swollen, pronuclear-like structure. Microtubule asters were organised in the vicinity of the nucleus regardless of the number of nuclei. More reconstructed oocytes developed to the blastocyst stage in the delayed-activated condition than in the simultaneously activated condition (p < 0.05). Nine piglets were born from two recipient sows following transfer of delayed-activated reconstructed oocytes, while none developed to full term in the simultaneously activated condition. Fingerprint analysis showed that the PCR-RFLP patterns of the nine offspring were identical to that of the donor pig. These results suggest that the activation of recipient oocytes during nuclear transfer probably relates to the nuclear remodelling process, which can affect the ability of embryos created by somatic cell nuclear transfer to develop.  相似文献   

4.
The present study was conducted to examine the relationship between nuclear remodeling and subsequent embryonic development in nuclear transplant mouse embryos. Metaphase II oocytes were enucleated without staining and fused with transferred donor nuclei from two-, four-, or eight-cell embryos. Fusion and oocyte activation were performed by means of electric fields. High rates of enucleation (89.1%), fusion (88.0–91.6%), and activation (95.2–96.9%) were obtained using this system. Nuclear remodeling was characterized by premature chromosome condensation (PCC), followed by various pronuclear-like formations upon oocyte activation. Development to blastocysts was obtained from both PCC (17.9%) and non-PCC (NPCC; 52.9%) embryos fused with the two-cell nuclei. However, development to term was obtained only in PCC embryos with a single pronucleus-like structure and a polar body (12.5%). In vitro development of nuclear transplant embryos with four- and eight-cell nuclei was limited. All the NPCC embryos examined had tetraploid chromosome constitutions, but chromosome constitutions of PCC embryos varied. Only 37.5% of the PCC embryos had diploid chromosome constitutions. The results indicated that the development of nuclear transplant embryos is affected by the types of nuclear remodeling and that oocyte activation in relation to their chromosome constitutions. The results also indicated that the PCC of the donor nucleus in nonactivated cytoplasm is important for the development of the nuclear transplant embryos. © 1994 Wiley-Liss, Inc.  相似文献   

5.
The behavior of microtubules was studied in hybrids formed between mouse oocytes arrested in metaphase II or activated parthenogenetically and mouse embryo interphase blastomeres. In all cases the interphase blastomere's network of microtubules disassembles rapidly after fusion with oocytes. Introduction of interphase cytoplasm and nuclei to metaphase oocytes during fusion induces the polymerization of new microtubules in the cytoplasm and in the meiotic spindle. The degree and the duration of this facilitated polymerization of microtubules was positively correlated with the volume of blastomeres used for fusion. The blastomere nuclei induce the formation of microtubular frames, which become more evident when the chromatin undergoes premature condensation. Finally, spindle-like structures are formed around the prematurely condensed chromosomes. In hybrids activated around the time of fusion, the blastomere nuclei undergo pronuclear-like transformation. These hybrids develop an interphase network of microtubules typical for activated oocytes. These results are discussed with regards to the cell cycle control of microtubule behavior.  相似文献   

6.
The influence of the stage of the cell cycle of donor nuclei on the development of mouse oocytes enucleated at telophase I was examined. After nuclear transplantation and activation, a high proportion of the oocytes remodelled a nucleus, emitted a polar body and formed a pronuclear-like nucleus. Most of the reconstituted embryos that received an interphase nucleus 30-32 h or 34-36 h after treatment with human chorionic gonadotrophin (hCG) arrested at the 2-cell stage. The reconstituted embryos were able to develop to blastocysts when nuclei from late 2-cell embryos (44-46 and 48-50 h after hCG) were transferred to the oocytes. The resulting blastocysts were transferred to recipients and ten live young were obtained from the embryos that formed a pronuclear-like nucleus after extrusion of a polar body. Thus, the developmental ability of the reconstituted embryos was critically influenced by the stage of the cell cycle of the donor nuclei.  相似文献   

7.
Birth of mice after nuclear transfer by electrofusion using tail tip cells   总被引:36,自引:0,他引:36  
Mice have been successfully cloned from cumulus cells, fibroblast cells, embryonic stem cells, and immature Sertoli cells only after direct injection of their nuclei into enucleated oocytes. This technical feature of mouse nuclear transfer differentiates it from that used in domestic species, where electrofusion is routinely used for nuclear transfer. To examine whether nuclear transfer by electrofusion can be applied to somatic cell cloning in the mouse, we electrofused tail tip fibroblast cells with enucleated oocytes, and then assessed the subsequent in vitro and in vivo development of the reconstructed embryos. The rate of successful nuclear transfer (fusion and nuclear formation) was 68.8% (753/1094) and the rate of development into morulae/blastocysts was 40.8% (260/637). After embryo transfer, seven (six males and one female; 2.5% per transfer) normal fetuses were obtained at 17.5-21.5 dpc. These rates of development in vitro and in vivo are not significantly different from those after cloning by injection (44.7% to morulae/blastocysts and 4.8% to term). These results indicate that nuclear transfer by electrofusion is practical for mouse somatic cell cloning and provide an alternative method when injection of donor nuclei into recipient oocytes is technically difficult.  相似文献   

8.
Metaphase II and activated mouse oocytes were fused with 8-cell blastomeres, and morphological changes in the transferred nuclei were followed using light and electron microscopy. In metaphase II oocytes, blastomere nuclei underwent premature chromosome condensation (PCC) typical for S-phase nuclei: chromatin pulverization. Then an abortive spindle was formed without evident microtubule organizing centers. Blastomere chromosomes condensed to a lesser degree than meiotic chromosomes and lacked mature functional, trilaminar kinetochores. After parthenogenetic activation of these oocytes, blastomere chromosomes followed, in synchrony with oocyte chromatin, a similar route of changes (anaphase, telophase) and then reformed interphase nuclei of the pronuclear type. Remodeling of 8-cell nucleus thus occurred, but the integrity of the chromatin set was frequently disturbed by formation of micronuclei. If blastomere fusion with oocytes was done close to activation (either before or after parthenogenetic stimulation), the chances of remodeling of the nuclei decreased, because PCC was not regularly induced in all oocytes. In hybrids produced 60 min or later after oocyte activation, blastomere nuclei were maintained in interphase without any structural modifications. Multiple experiments in the mouse have shown that the nuclei from 8-cell stage transferred to enucleated oocytes and egg cells are not capable of substituting for pronuclear functions. Possible reasons for impaired functional reprogramming of 8-cell nucleus in the mouse are discussed in light of our present findings on the morphology of nuclei transferred before and after oocyte activation.  相似文献   

9.
In this study, taxol was used as a tool to study the correlation of microtubule assembly with chromosomes, gamma-tubulin and phosphorylated mitogen-activated protein (MAP) kinase in pig oocytes at different maturational stages. Taxol treatment did not affect meiotic resumption and chromosome condensation but inhibited/disrupted chromosome alignment at the metaphase plate and bipolar spindle formation and thus meiotic progression. Microtubules were co-localized with chromosomes and were found to emanate from the chromosomes in taxol-treated oocytes, suggesting that chromosomes may serve as a source of microtubule organization. In addition, the concentric emanation of microtubules within the chromosome-surrounded area in taxol-treated oocytes suggests that microtubule emanation from the chromosomes may be directed by other microtubule-organizing material. The formation of one large spindle or >/=2 spindles in oocytes after taxol removal shows that minus end microtubule-organizing material can be normally located on both sides of chromosomes only when the chromosomes are aligned on the metaphase plate. The co-localization of gamma-tubulin and phosphorylated MAP kinase with microtubule assembly in both control and taxol-treated oocytes suggests that these two proteins are associated microtubule-nucleating material in pig oocytes. However, Western blot analysis showed that neither cytoplasmic microtubule aster formation nor extensive microtubule assembly in the chromosome region induced by taxol was caused by super-activation of MAP kinase. Taxol also induced microtubule assembly depending on chromosome distribution in the first polar body. The results suggest that chromosomes are always co-localized with microtubules and that emanation of microtubules from the chromosomes may be regulated/directed by microtubule-organizing material including gamma-tubulin and phosphorylated MAP kinase in pig oocytes.  相似文献   

10.
Chromatin and microtubule organisation was determined in maturing and activated porcine oocytes following intracytoplasmic sperm injection in order to obtain insights into the nature of sperm chromatin decondensation and microtubule nucleation activity. Sperm chromatin was slightly decondensed at 8 h following injection into germinal vesicle stage oocytes. Sperm-derived microtubules were not seen in these oocytes. Following injection into metaphase I (MI)-stage oocytes, sperm chromatin went to metaphase in most cases. A meiotic-like spindle was seen in the sperm metaphase chromatin. In a few MI-stage oocytes, sperm chromatin decondensed at 8 h after injection, and a small sperm aster was seen. Sperm injection into oocytes at 5 h following activation failed to yield pronuclear formation. Maternally derived microtubules were organised near the female chromatin in these oocytes, and seemed to move condensed male chromatin closer to the female pronucleus. At 18 h after sperm injection into pre-activated oocytes, a condensed sperm nucleus was located in close proximity to the female pronucleus. These results suggest that the sperm nuclear decondensing activity and microtubule nucleation abilities of the male centrosome are cell cycle dependent. In the absence of a functional male centrosome, microtubules of female origin take over the role of microtubule nucleation for nuclear movement.  相似文献   

11.
Development of pig embryos by nuclear transfer of cultured fibroblast cells   总被引:1,自引:0,他引:1  
Pig fibroblast cells were transferred to enucleated oocytes by micromanipulation and electrofusion. The donor cells used for nuclear transfer were synchronized in presumptive G0 by serum starvation. In the first experiment, nuclear transfer was performed with fibroblasts that had either a smooth or a rough surface. A significant difference (p < 0.05) in the percentage of chromosome condensation (39.5%, 15/38 and 16.6%, 5/30) and nuclear formation (36.8%, 14/38 and 16.3%, 8/49) was found between the reconstructed embryos derived from the cells with smooth surface and with rough surfaces, respectively. The percentage of chromosome condensation (42.5%, 17/40 and 19.6%, 11/56) and nuclear formation (38.3%, 23/60 and 18.8%, 9/48) were higher (p < 0.05) in reconstructed embryos derived from small (15 microm) donor cells compared to large donor cells (20 microm), respectively. The percentage nuclei at 3 different time points (3, 6, and 9 hours in culture medium) was higher (p = 0.003) in the reconstructed embryos activated by thimerosal and dithiothreitol (20%, 36%, and 41.3%) compared to those without activation treatment (0%, 11.8%, and 22.2%). In addition, there was an increased percentage with nuclei as the time in culture increased from 3 to 9 hours (p = 0.029). The percentages of chromosome condensation (34.6%; 9/26) and nuclear formation (33.3%; 9/27) in nuclear transfer embryos were similar. The rate of blastocysts/morulae development (14.0%; 6/43) was low. However, 2 cavitated embryos (presumptive blastocysts) with 14 and 11 nuclei and 1 morula with 8 nuclei were obtained. This together with the above evidence indicate that the nuclei from pig fibroblast cells can be partially reprogrammed, which suggests that transfer of nuclei from fibroblast cells to in vitro matured oocytes resulting in production of identical or genetically altered pigs may be possible.  相似文献   

12.
Bao S  Ushijima H  Hirose A  Aono F  Ono Y  Kono T 《Theriogenology》2003,59(5-6):1231-1239
The developmental capacity of reconstructed bovine oocytes that contained nuclei from growing stage oocytes, 70-119 microm in diameter, was assessed after fertilization in vitro. Nuclei from growing stage oocytes of adult ovaries were transferred to enucleated, fully grown germinal vesicle (GV) stage oocytes. After culture in vitro, the reconstructed oocytes matured, forming the first polar body and MII plate. To supply the ability to form pronuclei, the resultant MII plate was transferred to enucleated MII oocytes, which were obtained by in vitro culture of cumulus-oocyte complexes. After fertilization in vitro, 11-15% of the reconstructed oocytes developed to morulae and blastocysts. To assess the ability to develop to term, a total of 27 late morulae and blastocysts were transferred to 19 recipient cows. Of the three cows that subsequently became pregnant, one recipient, who received two embryos derived from reconstructed oocytes with a nucleus from oocytes 100 to 109 microm in diameter, continued the pregnancy to Day 278 of gestation. This pregnancy, however, was unexpectedly a triplet pregnancy that included a set of identical twins and resulted in the premature birth of the calves, followed by death from lack of post-parturient treatment. These results show that bovine oocyte genomes are capable of supporting term development before the oocytes grow to their full size, which suggests that growing stage oocytes can be directly used as a source of maternal genomes.  相似文献   

13.
The type of donor cell most suitable for producing cloned animals is one of the topics under debate in the field of nuclear transfer. To provide useful information to answer this question, G2/M- and G0/G1-stage fetal fibroblasts were used as donor cells for nuclear transfer. In vitro-matured oocytes derived from abattoir ovaries were used as recipient cytoplasts. In both groups, nuclear envelope breakdown and premature chromosome condensation were completed within 1-2 h after donor cells were injected into the cytoplasm of oocytes. Microtubules were organized around condensed chromosomes and formed a spindle within 1-1.5 h after activation. Decondensation of chromosomes could be seen within 2-4 h after activation. Reformation of the new nuclear envelope occurred 4-6 h after activation and was followed by nuclear swelling and formation of a pronucleus-like structure (PN) 8-12 h after activation. Most (80.6%) of the reconstructed oocytes derived from G2/M cells extruded polar body-like structures (PB). However, a much lower frequency of PB (21.7%) was observed in the reconstructed oocytes derived from G0/G1 donors. A variety of PN and PB combinations were observed in reconstructed oocytes derived from G2/M-stage donors, including 1PN+0PB, 1PN+1PB, 1PN+2PB, 2PN+0PB, 2PN+1PB, 2PN+2PB, and 3PN+1PB. Chromosomes of most embryos (10/13) derived from G2/M stage were diploid. The percentage of cleavage and blastocysts and the average nuclear number of blastocysts in the G2/M and G0/G1 groups were not different. These results demonstrate that the G2/M stage can be morphologically remodeled by cytoplasm of MII oocytes in pigs. To maintain normal ploidy, the extra chromosomes derived from G2/M-stage cells could be expelled by oocytes as a second polar body. G2/M-stage fibroblast nuclei could direct reconstructed embryos to develop to the blastocyst stage.  相似文献   

14.
Production of genetically identical non-human primates through somatic cell nuclear transfer (SCNT) can provide diseased genotypes for research and clarify embryonic stem cell potentials. Understanding the cellular and molecular changes in SCNT is crucial to its success. Thus the changes in the first cell cycle of reconstructed zygotes after nuclear transfer (NT) of somatic cells in the Long-tailed Macaque (Macaca fascicularis) were studied. Embryos were reconstructed by injecting cumulus and fibroblasts from M. fascicularis and M. silenus, into enucleated M. fascicularis oocytes. A spindle of unduplicated premature condensed chromosome (PCC spindle) from the donor somatic cell was formed at 2 hours after NT. Following activation, the chromosomes segregated and moved towards the two PCC spindle poles, then formed two nuclei. Twenty-four hours after activation, the first cell division occurred. A schematic of the first cell cycle changes following injection of a somatic cell into an enucleated oocyte is proposed. Ninety-three reconstructed embryos were transferred into 31 recipients, resulting in 7 pregnancies that were confirmed by ultrasound; unfortunately none progressed beyond 60 days.  相似文献   

15.
The present study characterized the profile of nuclear remodeling in nuclear transplant rabbit embryos and investigated the relationship between chromatin behavior after transfer and embryo development. The developmental potential and pattern of remodeling of donor nuclei from cleavage-, morula-, and blastocyst- (inner cell mass ICM, and trophectoderm, TE) stage donors were evaluated. In addition, we determined whether a modification in the synchrony between blastomere fusion and oocyte activation altered the profile of nuclear remodeling and affected development of reconstituted embryos. Development to blastocysts was similar with 8- and 32-cell-stage donor nuclei (42% and 33%, respectively, p greater than 0.1). However, it was reduced with ICM transplants (17%, p less than 0.05), and development of TE transplants did not progress beyond the 8-cell stage. Upon blastomere fusion into nonactivated oocyte cytoplasm, nuclear remodeling was characterized by premature chromosome condensation (PCC), followed by pronuclear (PN) formation and swelling. PCC occurred synchronously within 1.2-1.5 h post-fusion with all stages of donor nuclei (p greater than 0.1). PN formation in 8- and 32-cell transplants occurred approximately 4 h after fusion, and was synchronous to that of female pronuclei in activated oocytes; however, it was delayed in ICM and TE transplants (p less than 0.01). With all stages of donor nuclei, final nuclear diameter was similar to, or larger than, that of female pronuclei. Fusion to activated oocyte cytoplasm, as opposed to nonactivated cytoplasm, prevented PCC and extensive nuclear swelling (16.0 +/- 0.7 vs. 30 +/- 0.7 microns, respectively, p less than 0.01). Nuclear diameter in early embryos was smaller (p less than 0.01), and development to blastocysts was reduced (p less than 0.05). The results indicate that remodeling of the donor nucleus is not essential for development to blastocysts; however, it is beneficial. Furthermore, complete reprogramming seems possible only after remodeling of the donor nucleus, i.e., PCC in nonactivated cytoplasm, followed by nuclear swelling upon activation of the oocyte.  相似文献   

16.
由成年转基因山羊体细胞而来的克隆山羊   总被引:23,自引:0,他引:23  
在已经获得的乳腺特异性表达人促红细胞生成素 (rhEPO)成年转基因山羊 (Caprahircus)的基础上 ,取其耳尖成纤维细胞和卵巢颗粒细胞 ,进行体外传代培养 ,然后将这种培养的转基因山羊的体细胞移入去核的处于第Ⅱ次减数分裂中期的卵母细胞中 ,并进行电融合 ,构建重构胚胎 ,重构胚胎在体内培养 6d ,再将发育至囊胚或桑椹胚的重构胚胎移入同步情期的寄母羊子宫内。结果 ,有 2只寄母羊妊娠并最终产下 2只成活的克隆山羊。她们分别来自同一成年母羊的耳尖成纤维细胞和卵巢颗粒细胞。克隆羊经PCR RFLP图谱分析显示 :以克隆羊组织DNA为模板的PCR产物与相应的提供体细胞的基因羊的PCR产物的酶切图谱完全一致 ;并且经PCR对外源hEPO基因检测表明 2只克隆山羊均携带hEPO外源基因。由此证明获得了转基因成年体细胞的克隆山羊  相似文献   

17.
The present study examined nuclear remodeling in rabbit nuclear transfer (NT) embryos formed from metaphase II (MII) oocytes aged in vivo until 19 hr postcoitum (hpc), enucleated, and fused at 22–26 hpc with 32-cell morula blastomeres by means of electric fields, which also induced recipient oocyte activation. Post-activation events observed during the first hour following the fusion/activation pulse were studied in terms of chromatin, lamins, and micro-tubules, and revealed that transferred nuclei underwent premature chromosomes condensation (PCC) in only one-third of NT embryos and remained in interphase in others. Recipient oocytes were mostly not activated by manipulations performed before the fusion/activation pulse. The persistance of transferred nuclei in interphase resulted from the rapid progression of recipient oocytes to interphase after activation, suggesting that the cytoplasmic state of MII oocytes aged in vivo was poised for the approach to interphase. Studying micro-tubular organization in MII oocytes before nuclear transfer manipulations, we found that 19 hpc MII oocytes aged in vivo differed from 14 hpc MII oocytes (freshly ovulated) and from 19-hpc MII oocytes aged in vitro (collected at 14 hpc and cultured for 5 hr), notably by the presence of microtubule asters and tubulin foci or only tubulin foci dispersed throughout the cytoplasm. When PCC was avoided, remodeling of the transferred nucleus was well advanced 1 hr after nuclear transfer, and NT embryos developed better to the blastocyst stage. Mol. Reprod. Dev. 46:325–336, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

18.
Selective enucleation (SE) was applied to germinal vesicle (GV) oocytes by removing the chromatin attached to nuclear envelope, and leaving the liquid contents of GV in the cytoplast. However, after reconstruction with 1/8 blastomeres or fetal fibroblasts (FFs) neither the maturation efficiency nor the frequency of normal (asymmetric) division was improved as compared with completely enucleated (CE) oocytes. Chromosomal aberrations introduced with somatic nuclei were not rescued in SE oocytes either. On the other hand, timing of maturation division in SE GV oocytes, but not in CE GV oocytes, reconstructed with GV-karyoplasts was like in the control. After maturation and fertilization in vitro, SE oocytes reconstructed with 1/8 blastomeres developed nucleolated donor pronuclei, contrary to CE oocytes. The latter could be rescued with nucleoli-containing nucleus, but not anucleolate nucleus, from a 1/2 blastomere. SE oocytes reconstructed with FFs contained nucleolated pronuclei upon activation, unlike CE GV oocytes. These experiments show that the ooplast nucleolar material and/or embryonic nucleolus are indispensable for pronuclei formation. SE oocytes reconstructed with 1/8 blastomeres or FFs failed to cleave after activation or in vitro fertilization. Control GV oocytes enucleolated before fertilization seized cleavage at the 6-cell stage, as oppose to intact GV oocytes, which in 50.9% yielded morulae/blastocysts. These results suggest that ooplast nucleolar material is essential for the cleavage divisions. Activation of cumulus-enclosed SE GV oocytes matured in hormone-supplemented medium and fused to 1/2 blastomere-karyoplasts, yielded morulae, and blastocysts in 45.5% and 23.4% of reconstructed oocytes, respectively.  相似文献   

19.
Nuclear transfer (NT) is used to elucidate fundamental biological issues such as reversibility of cell differentiation and interactions between the cytoplasm and nucleus. To obtain an insight into interactions between the somatic cell nucleus and oocyte cytoplasm, nuclear remodeling and gene expression were compared in bovine oocytes that had received nuclei from bovine and mouse fibroblast cells. While the embryos that received nuclei from bovine fibroblast cells developed into blastocysts, those that received nuclei from mouse fibroblasts did not develop beyond the 8-cell stage. Similar nuclear remodeling procedures were observed in oocytes reconstructed with mouse and bovine fibroblast cells. Foreign centrosomes during NT were introduced into embryos reconstructed with both fibroblast cell types. A number of housekeeping mouse genes (hsp70, bax, and glt-1) were abnormally expressed in embryos that had received nuclei from mouse fibroblast cells. However, development-related genes, such as Oct-4 and E-cad, were not expressed. The results collectively suggest that the bovine oocyte cytoplasm supports nuclear remodeling, but not reprogramming of mouse fibroblast cells.  相似文献   

20.
The organization of chromatin and cytoplasmic microtubules changes abruptly at M-phase entry in both mitotic and meiotic cell cycles. To determine whether the early nuclear and cytoplasmic events associated with meiotic resumption are dependent on protein synthesis, cumulus-enclosed hamster oocytes were cultured in the presence of 100 micrograms/ml puromycin or cycloheximide for 5 hr. Both control (untreated) and treated oocytes were analyzed by fluorescence microscopy after staining with Hoechst 33258 and tubulin antibodies. Freshly isolated oocytes exhibit prominent nucleoli and diffuse chromatin within the germinal vesicle as well as an interphase network of cytoplasmic microtubules. After 4-4.5 hr in culture, most oocytes were in prometaphase I of meiosis as characterized by a prominent spindle with fully condensed chromosomes and numerous cytoplasmic asters. After 5-5.5 hr in culture, microtubule asters are no longer detected in most cells, and the spindle is the only tubulin-positive structure. Incubation for 5 hr in the presence of inhibitors does not impair germinal vesicle breakdown, chromatin condensation, kinetochore microtubule assembly, or cytoplasmic aster formation in the majority of oocytes examined; however, under these conditions, a population of oocytes retains a germinal vesicle, exhibiting variable degrees of chromatin condensation and cytoplasmic aster formation. Meiotic spindle formation is inhibited in all oocytes. These effects are fully reversible upon culture of treated oocytes in drug-free medium for 5 hr. The data indicate that meiotic spindle assembly is dependent on ongoing protein synthesis in the cumulus-enclosed hamster oocyte; in contrast, chromatin condensation and aster formation are not as sensitive to protein synthesis inhibitors during meiotic resumption.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号