首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 48 毫秒
1.
A high melting cis-[Pt(NH3)2[d(GpG)]]adduct of a decanucleotide duplex   总被引:2,自引:0,他引:2  
The [cis-Pt(NH3)2(d(GCCGGATCGC)-N7(4), N7(5))]-d(GCGATCCGGC) duplex has been prepared with Tm = 49 degrees C (vs 58 degrees C for the unplatinated form). NMR of the ten observable imino protons supports a kinked structure with intact base pairing of the duplex on the 3'-side of the d(GpG).cis-Pt chelate (relative to the platinated strand) The modification of the B-DNA type CD spectrum, due to the platinum chelate, is comparable to that observed for the platination (at a 0.05 Pt:base ratio) of the Micrococcus Lysodeikticus DNA (72% GC).  相似文献   

2.
Molecular models for two double-stranded decanucleotides, d(GCCG*G*ATCGC)-d(GCGATCCGGC) (1) and d(GCTG*G*ATCGC)-d(GCGATCCAGC) (2), with the G* guanines cross-linked by a cis-Pt(NH3)2 moiety, were calculated using molecular mechanics. Nine models for 1 and eight models for 2 are reported; in all of them, the double helix is kinked by approx. 60 degrees towards the major groove and slightly unwound. The model building has been guided by comparison with the NMR data available for duplex 1. The influence of the base at the 5'-side of the coordinated G*G* dinucleotide is discussed.  相似文献   

3.
The NMR conformation of a carbocyclic analog of the Dickerson-Drew dodecamer [d(CGC-GAAT*T*CGCG)]2 containing 6'-alpha-Me carbocyclic thymidines (T*) has been determined and compared with that of its X-ray structure. The solution structure of the 6'-alpha-Me carbocyclic thymidine modified duplex has also been compared with the solution structure of the corresponding unmodified Dickerson-Drew duplex solved by us under the same experimental conditions. The NMR structures have been based on 24 experimental distance and torsion constraints per residue for [d(CGCGAAT*T*CGCG)]2 (1) and on 21 constraints per residue for the natural counterpart. In general, both final NMR structures are more close to the B-type DNA. The cyclopentane moieties of the carbocyclic thymidine residues adopt C1'-exo B-DNA type puckers (the phase angles P = 136-139 degrees and the puckering amplitudes psi = 36-37 degrees) that are close to their previously published crystal C1'-exo or C2'-endo puckers. The main differences between the two NMR structures are for beta(T*8) and epsilon, xi(T*7) backbone torsions (27-50 degrees ), for basepair twist for the 7-8 and 8-9 basepair steps (5-6 degrees), tilt for the 8-9 step (7 degrees), roll for the 7-8 step (7 degrees), shift for the 7-8 step (0.9A) and slide for the 9-10 step (0.6A). The relatively small deviations of helical structure parameters lead to structural isomorphism of these duplexes in aqueous solutions (atomic RMSD = 1.0A). The difference of the minor groove widths (less than 0.7A) in the core part of the modified duplex in comparison with the native one is much smaller than the difference between the X-ray structures of these duplexes. A detailed comparison of NMR and X-ray structure parameters showed significant monotonic differences (0.9-2.5A) for all basepair slides in both duplexes. Deviations between NMR and X-ray structure parameters for the modified duplex were also found for basepair tilt of the 4-5 step (13 degrees), rolls for the 8-9 and 10-11 steps (16 and 19 degrees), twist of the 3-4 step (8 degrees) and shift of the 9-10 step (0.9A).  相似文献   

4.
5.
The reaction of the antitumor active agent cis-[Pt(NH3)2(4-mepy)Cl]Cl (4-mepy stands for 4-methylpyridine) with d(GpG) has been investigated by 1H magnetic resonance spectroscopy. Initially, two mononuclear complexes cis-Pt(NH3)2(4-mepy)[d(GpG)-N7(1)] 1 and cis-Pt(NH3)2(4-mepy)[d(GpG)-N7(2)] 2 are formed in an unexpected ratio 65:35, as determined by 1H NMR and enzymatic digestion techniques. Both products react further with a second equivalent of cis-[Pt(NH3)2(4-mepy)Cl]Cl forming the dinuclear platinum complex [cis-Pt(NH3)2(4-mepy)]2[mu-d(GpG)- N7(1),N7(2)] 3. With [Pt(dien)Cl]Cl and [Pt(NH3)3Cl]Cl similar complexes are formed. No evidence was found for the formation of chelates cis-Pt(NH3)(4-mepy) [d(GpG)-N7(1),N7(2)], which would be formed upon ammonia release from the mononuclear complexes 1 and 2. Even addition of strong nucleophiles, like sodium diethyldithiocarbamate, thiourea, cysteine, or methionine, before or after reaction, do not induce the formation of a chelate. Under all conditions the N-donor ligands remain coordinated to Pt in 1,2 and 3. In addition, the results of bacterial survival and mutagenesis experiments with E. coli strains show that the in vivo formation of bifunctional adducts in DNA, comparable to those induced by cis-Pt(NH3)2Cl2, by treatment of cells with cis-[Pt(NH3)2(4-mepy)Cl]Cl is unlikely. Also, a mechanism of binding and intercalation is not supported by experimental data. All experiments suggest that the mechanism of action of this new class of antitumor agents must be different from that of cis-Pt(NH3)2Cl2.  相似文献   

6.
Proton NMR studies at 500 MHz in aqueous solution were carried out on the G-G chelated deoxytrinucleosidediphosphate platinum complex cis-Pt(NH3)2[d(GpCpG], on the uncoordinated trinucleotide d(GpCpG) and on the constituent monomers cis-Pt(NH3)2[d(Gp)]2, cis-Pt(NH3)2[d(pG)]2, d(Gp), d(pCp) and d(pG). Complete NMR spectral assignments are given and chemical shifts and coupling constants are analysed to obtain an impression of the detailed structure of d(GpCpG) and the distortion of the structure due to chelation with [cis-Pt(NH3)2]2+. Platination of the guanosine monophosphates affects the sugar conformational equilibrium to favour the N conformation of the deoxyribose ring. This feature is also apparent in ribose mononucleotides and is possibly caused by an increased anomeric effect. In cis-Pt(NH3)2[d(pG)]2 the phase angle of pseudorotation of the S-type sugar ring is 20 degrees higher than in 'free' d(pG) which might be an indication for an ionic interaction between the positive platinum and the negatively charged phosphate. It appears that d(GpCpG) reverts from a predominantly random coil to a normal right-handed B-DNA-like single-helical structure at lower temperatures, whereas the conformational features of cis-Pt(NH3)2[d(GpCpG)] are largely temperature-independent. In the latter compound much conformational freedom along the backbone angles is seen. The cytosine protons and deoxyribose protons exhibit almost no shielding effect as should normally be exerted by the guanine bases in stacking positions. This is interpreted in terms of a 'turning away' of the cytosine residue from both chelating guanines. Conformational features of cis-Pt(NH3)2[d(GpCpG)[ are compared with the 'bulge-out' of the ribose-trinucleotide m6(2)ApUpm6(2)A.  相似文献   

7.
The reaction of trans-diamminedichloroplatinum(II) (trans-DDP), the inactive isomer of the anticancer drug cisplatin, with the single-stranded deoxydodecanucleotide d(CCTCGAGTCTCC) in aqueous solution at 37 degrees C was monitored by reversed-phase HPLC. Consumption of the dodecamer follows pseudo-first-order reaction kinetics with a rate constant of 1.25 (4) x 10(-4) s-1. Two intermediates, shown to be monofunctional adducts in which Pt is coordinated to the guanine N7 positions, were trapped with NH4(HCO3) and identified by enzymatic degradation analysis. These monofunctional adducts and a third, less abundant, one are rapidly removed from the DNA by thiourea under mild conditions. When allowed to react further, the monofunctional intermediates formed a single main product that was characterized by 1H NMR spectroscopy and enzymatic digestion as the bifunctional 1,3-intrastrand cross-link trans-[Pt(NH3)2[d(CCTCGAGTCTCC)-N7-G(5),N7-G(7]]). Binding of the trans-[Pt(NH3)2]2+ moiety to the guanosine N7 positions decreases the pKa at N1 and leads to destacking of the intervening A(6) base. The double-stranded trans-DDP-modified and unmodified DNAs were obtained by annealing the complementary strand to the corresponding single strands and then studied by 31P and 1H NMR and UV spectroscopy. trans-DDP binding does not induce large changes in the O-P-O bond or torsional angles of the phosphodiester linkages in the duplex, nor does it significantly alter the UV melting temperature. trans-DDP binding does, however, cause the imino protons of the platinated duplex to exchange rapidly with solvent by 50 degrees C, a phenomenon that occurs at 65 degrees C for the unmodified duplex. A structural model for the platinated double-stranded oligonucleotide was generated through molecular dynamics calculations. This model reveals that the trans-DDP bifunctional adduct can be accommodated within the double helix with minimal distortion of the O-P-O angles and only local disruption of base pairing and destacking of the platinated bases. The model also predicts hydrogen bond formation involving coordinated ammine ligands that bridge the two strands.  相似文献   

8.
A conformational study of the double-stranded decanucleotide d(GCCG*G*ATCGC).d(GCGATCCGGC), with the G* guanines chelating a cis-Pt(NH3)2 moiety, has been accomplished using 1H and 31P NMR, and molecular mechanics. Correlation of the NMR data with molecular models has disclosed an equilibrium between several kinked conformations and has ruled out an unkinked structure. The deformation is localized at the CG*G*.CCG trinucleotide where the helix is kinked by approximately 60 degrees towards the major groove and unwound by 12-19 degrees. The models revealed an unexpected mobility of the cytosine complementary to the 5'-G*. This cytosine can stack on either branch of the kinked complementary strand. The energy barrier between the two positions has been calculated to be less than or equal to 12 kJ/mol. The NMR data are in support of rapid flip-flopping of this cytosine. An explanation for the strong downfield shift observed in the 31P resonance of the G*pG* phosphate is given.  相似文献   

9.
The reaction products of cis-PtCl2(NH)3)2 with several deoxyribonucleotides containing d(ApG) and/or d(GpA) have been studied. The various reaction products were separated by high-performance liquid chromatography and characterized by means of absorbance at 254 nm in combination with atomic absorption spectroscopy and 300-MHz 1H-NMR (pH dependence of the non-exchangeable base-protons, T1 relaxation time determinations). For the larger fragments the results from these techniques were confirmed by enzymatic degradation studies of the platinated fragments. The smallest of the investigated nucleotides, d(ApG) and d(GpA), both formed a variety of different platinum chelates. In the reaction with d(ApG) 15% cis-Pt(NH3)2-[d(ApG)N1(1),N7(2)] and 78% cis-Pt(NH3)2[d(ApG)N7(1),N7(2)] were found, 4% of the reacted material consisted of a 1 mol Pt/2 mol dinucleotide product, and 3% of an unidentified 1:1 product. From the main product two rotamers were found to occur: at room temperature, 81% anti,anti and 19% anti,syn product is present. With d(GpA) about equal amounts of N1,N7 and N7,N7 products were found; for both products the anti,anti and anti,syn conformations were found, respectively. Upon reaction of cis-PtCl2(NH3)2 with d(pApG) and d(pGpA) only the N7,N7 products were found; at room temperature and pH greater than 1.5 these products were present in anti,anti conformation. However, for the d(pApG)-platinum chelate at -20 degrees C a small amount (less than 5%) of a second product could be observed in NMR. For the d(pGpA)-platinum chelate a second N7,N7-coordinated product was observed when the pH of the NMR sample was lowered to 1.1 (at this pH the free 5'-phosphate group is protonated). With the larger fragments d(ApGpA), d(pApGpA) and d(TpApGpApT) the intra-molecular competition between the formation of the d(ApG) or the d(GpA) chelates could be studied. Using these nucleotides no N1-coordinated products or rotamers were observed. In the case of d(ApGpA) and d(TpApGpApT) the d(GpA) chelate (67% and 75% respectively) was favoured over the d(ApG) chelate, while with d(pApGpA) about equal amounts of both chelates were formed.  相似文献   

10.
 The structure of the second major adduct formed by the antitumor drug cisplatin with DNA, the intrastand cis–Pt(NH3)2{d(ApG)N7N7} chelate (A*G*), has been investigated using a double-stranded nonanucleotide, d(CTCA*G*CCTC)-d(GAGGCTGAG), by means of NMR and molecular modeling. The NMR data allow us to conclude that the oligonucleotide is kinked at the platinated site towards the major groove in a way similar to that observed elsewhere for the G*G*-crosslink in d(GCCG*G*ATCGC)-d(GCGATCCGGC). The main difference concerns the position of the thymine T(15) complementary to the platinated adenine A*(4). It remains stacked on its 5′-neighbor C(14), corresponding to the "model E" described previously, whereas in the G*G*-adduct, the cytosine facing the 5′-G* was found to oscillate between the 5′-branch ("model E") and the 3′-branch ("model C") of the complementary strand. Two "E-type" models are presented which account for the particular NOE connectivity and for two remarkable upfield NMR signals: those of the H2′ proton of the cytidine C(3) 5′ to the A*G* chelate, and of the H3 imino proton of T(15), the base complementary to A*(4). The former shift is attributed to shielding by the destacked A*(4) base, whereas the latter is accounted for by a swinging movement of the T(15) base between two positions where the imino Watson-Crick hydrogen bond with A*(4) remains intact and the amino hydrogen bond is disrupted, or vice versa. Possible implications of the structural difference between the AG and GG adducts of cisplatin in the mutagenic properties of the two adducts are discussed. Received: 19 August 1996 / Accepted: 4 November 1996  相似文献   

11.
Kang M  Chifotides HT  Dunbar KR 《Biochemistry》2008,47(8):2265-2276
The 2D NMR analysis in solution of the DNA duplex d(CTCTC*A*ACTTCC).d(GGAAGTTGAGAG) binding to the dirhodium unit cis-[Rh2(mu-O2CCH3)2(eta1-O2CCH3)]+ showed that an unprecedented intrastrand adduct, dsII, is formed with the dirhodium unit cross-linking in the major groove residues C5 and A6 (indicated with asterisks), also corroborated by enzyme digestion studies. Formation of the dirhodium complex dsII destabilizes significantly the duplex as indicated by the substantial decrease in its melting temperature (DeltaTm = -22.9 degrees C). The reduced thermal stability of dsII is attributed to the decreased stacking of the bases and the complete disruption and/or weakening of the hydrogen bonds within the base pairs in the immediate vicinity of the metalation site (C5.G20 and A6.T19), but the effects due to the metal binding are more severe for the base pairs in the 5' direction to the lesion site. The NMR spectroscopic data indicate that Watson-Crick hydrogen bonding is completely disrupted for the C5.G20 site and considerably weakened for A6.T19. In dsII, the bases C5 and A6 bind to eq positions of the dirhodium unit cis-[Rh2(mu-O2CCH3)2(eta1-O2CCH3)]+, which retains one monodentate and two bridging acetate groups, presumably due to steric reasons. Binding of A6 takes place via N7, whereas binding of the C5 base takes place via the exocyclic N4 site, resulting in the anti-cytosine rotamer with respect to site N3 in its metal-stabilized rare iminooxo form.  相似文献   

12.
Proton NMR studies at 300 MHz and 500 MHz have been carried out on the trinucleoside bisphosphate d(CpGpG) and on cis-Pt(NH3)2[d(CpGpG)-N7(2),N7(3)] [abbreviated as d(CpGpGp) . cisPt]. For the Pt adduct, 13C and 31P NMR was also used for characterizing the oligonucleotide. d(CpGpG) appears to revert to a B-DNA-type single helix at lower temperatures. The relatively small concentration dependence of the proton chemical shifts, in comparison with shifts due to intramolecular stacking effects, indicates that the compound is essentially single-stranded. In d(CpGpGp) . cisPt, the first nucleoside, C(1), stacks well on top of the second, G(2), despite the N conformation of the G(2) sugar ring. The platinated GpG part in this trimer adopts largely the same structure as in cis-Pt(NH3)2[d(GpGpG)-N7(1),N7(2)] [den Hartog, J. H. J., et al. (1982) Nucleic Acids Res. 10, 4715-4730]. Main differences however, are changes in H8 chemical shifts and a 0.6-ppm downfield shift of the third nucleotide phosphorus, P(3), in d(CpGpGp) . cisPt with respect to P(2) in d(GpG) . cisPt. The latter shift change is likely to be induced by a structural alteration, caused by stacking of C(1) on top of G(2). Also, the large chemical shift differences between the two H8 protons in d(NpGpG) . cisPt fragments is discussed; the deviation from a mirror symmetry of the two guanine bases seems to be the main origin of this effect. The chemical shift changes, observed in the proton and phosphorus NMR chemical shift temperature and chemical shift pH profiles have been explained in terms of stack-destack equilibria changes.  相似文献   

13.
The oligonucleotides 5'-d(TTTTCTTTTG) and 5'-d(AAAAGAAAAG) were cross-linked with a trans-[Pt(NH3)2]2+ entity via the N7 positions of the 3'-end guanine bases to give parallel-stranded (ps) DNA. At pH 4.2, CD and NMR spectroscopy indicate the presence of Hoogsteen base pairing. In addition, temperature-dependent UV spectroscopy shows an increase in melting temperature for the platinated duplex (35 degrees C) as compared to the non-platinated, antiparallel-stranded duplex formed from the same oligonucleotides (21 degrees C). A monomer-dimer equilibrium for the platinated 20mer is revealed by gel electrophoresis. At pH 4.2, addition of a third strand of composition 5'-d(AGCTTTTCTTTTAG) to the ps duplex leads to the formation of a triple helix with two distinct melting points at 38 degrees C (platinum cross-linked Hoogsteen part) and 21 degrees C (Watson-Crick part), respectively.  相似文献   

14.
The structure and thermal stability of a hetero chiral decaoligodeoxyribonucleotide duplex d(C1m8 G2C3G4C5LG6LC7G8C9G10)d(C11m8G12C13G14C15LG16LC17G18C19G20) (O1) with two contiguous pairs of enantiomeric 2'-deoxy-L-ribonucleotides (C5LG6L/C15LG16L) at its centre and an 8-methylguanine at position 2/12 was analysed by circular dichroism, NMR and molecular modelling. O1 resolves in a left-handed helical structure already at low salt concentration (0.1 M NaCl). The central L2-sugar portion assumes a B* left-handed conformation (mirror-image of right-handed B-DNA) while its flanking D4-sugar portions adopt the known Z left-handed conformation. The resulting Z4-B2*-Z4 structure (left-handed helix) is the reverse of that of B4-Z2*-B4 (right-handed helix) displayed by the nearly related decaoligodeoxyribonucleotide d(mC1G2mC3G4C5L G6LmC7G8mC9G10)2, at the same low salt concentration (0.1 M NaCl). In the same experimental conditions, d(C1m8G2C3G4C5G6C7G8C9G10)2 (O2), the stereoregular version of O1, resolves into a right-handed B-DNA helix. Thus, both the 8-methylguanine and the enantiomeric step CLpGL at the centre of the molecule are needed to induce left-handed helicity. Remarkably, in the various heterochiral decaoligodeoxyribonucleotides so far analysed by us, when the central CLpGL adopts the B* (respectively Z*) conformation, then the adjacent steps automatically resolves in the Z (respectively B) conformation. This allows a good optimisation of the base-base stackings and base-sugar van der Waals interactions at the ZB*/B*Z (respectively BZ*/Z*B) junctions so that the Z4-B2*-Z4 (respectively B4-Z2*-B4) helix displays a Tm (approximately 65 degrees C) that is only 5 degrees C lower than the one of its homochiral counterpart. Here we anticipate that a large variety of DNA helices can be generated at low salt concentration by manipulating internal factors such as sugar configuration, duplex length, nucleotide composition and base methylation. These helices can constitute powerful tools for structural and biological investigations, especially as they can be used in physiological conditions.  相似文献   

15.
The polyamides based on 4-amino-1-methylpyrrol-2-carboxylic acid, 4-amino-1-methylimidazole-2-carboxylic acid, and beta-alanine that stabilize oligonucleotide duplexes consisting of G x C pairs through parallel packing in the minor groove were studied. The initial duplex TTGCGCp x GCGCAA melts at 28 degrees C; the TTGCGCp[NH(CH2)3COPyIm betaImNH(CH2)3NH(CH3)2][NH(CH2)3COIm betaImPyNH(CH2)3N(CH3)2] x GCGCAA duplex (bisphosphoramidate with parallel orientation of ligands, where Py, Im, and beta are the residues of 1-methyl-4-aminopyrrol-2-carboxylic and 1-methyl-4-aminoimidazole-2-carboxylic acids and beta-alanine, respectively), at 48 degrees C; and the TTGCGCp[NH(CH2)3COIm betaImPyNH(CH2)3COIm betaImPyNH(CH2)3N(CH3)2] x GCGCAA duplex (a hairpin structure with antiparallel orientation), at 56 degrees C. The English version of the paper: Russian Journal of Bioorganic Chemistry, 2004, vol. 30, no. 5; see also http: // www.maik.ru.  相似文献   

16.
A theoretical model for the binding of cis-Pt(NH3)2(+2) to DNA   总被引:1,自引:0,他引:1  
The binding of cis-Pt(NH3)2B1B2 to the bases B1 and B2, i.e., guanine (G), cytosine (C), adenine (A), and thymine (T), of DNA is studied theoretically. The components of the binding are analyzed and a model structure is proposed for the intrastrand binding to the dB1pdB2 sequence of a kinked double helical DNA. Quantum mechanical calculations of the ligand binding energy indicates that cis-Pt(NH3)2(+2) (cis-PDA) binds to N7(G), N3(C), O2(C), O6(G), N3(A), N7(A), O4(T) and O2(T) in order of decreasing binding energy. Conformational analysis provides structures of kinked DNA in which adjacent bases chelate to cis-PDA. Only bending toward the major groove allows the construction of acceptable square planar complexes. Examples are presented for kinks of -70 degrees and -40 degrees at the receptor site to orient the base pairs for ligand binding to B1 and B2 to form a nearly square planar complex. The energies for complex formation of cis-PDA to the various intra-strand base sites in double stranded DNA are estimated. At least 32 kcal/mole separates the energetically favorable dGpdG.cis-PDA chelate from the dCpdG.cis-PDA chelate. All other possible chelate structures are much higher in energy which correlates with their lack of observation in competition with the preferred dGpdG chelate. The second most favorable ligand energy occurs with N3(C). A novel binding site involving dC(N3)pdG(N7) is examined. Denaturation can result in an anti----syn rotation of C about its glycosidic bond to place N3(C) in the major groove for intrastrand binding in duplex DNA. This novel intrastrand dCpdG complex and the most favored dGpdG structure are illustrated with stereographic projections.  相似文献   

17.
In the present study the nature and the hydrolysis of DNA-Pt complexes with the platinum compounds, [Pt(dien)Cl]Cl, trans- and cis-Pt(NH3)2Cl2, using potentiometric chloride determinations, have been investigated. The trans-Pt(NH3)2Cl2 and the [Pt(dien)Cl]Cl react with the GC planes at the N7(G) sites, while the cis-Pt(NH3)2Cl2 compound reacts with the GC planes and forms a chelate by using the N7(G) and O6(G) sites. The complex is a specific 1:1 Pt:DNA adduct. The platinum atom in cis-Pt(NH3)2Cl2 liberates both chlorine atoms on chelation. A mechanism for the in vivo antitumor activity of the cis-Pt(NH3)2Cl2 is proposed and the structure activity relationship is discussed.  相似文献   

18.
D S Pilch  C Levenson  R H Shafer 《Biochemistry》1991,30(25):6081-6088
We have investigated the structure and physical chemistry of the d(C3T4C3).2[d(G3A4G3)] triple helix by polyacrylamide gel electrophoresis (PAGE), 1H NMR, and ultraviolet (UV) absorption spectroscopy. The triplex was stabilized with MgCl2 at neutral pH. PAGE studies verify the stoichiometry of the strands comprising the triplex and indicate that the orientation of the third strand in purine-purine-pyrimidine (pur-pur-pyr) triplexes is antiparallel with respect to the purine strand of the underlying duplex. Imino proton NMR spectra provide evidence for the existence of new purine-purine (pur.pur) hydrogen bonds, in addition to those of the Watson-Crick (W-C) base pairs, in the triplex structure. These new hydrogen bonds are likely to correspond to the interaction between third-strand guanine NH1 imino protons and the N7 atoms of guanine residues on the purine strand of the underlying duplex. Thermal denaturation of the triplex proceeds to single strands in one step, under the conditions used in this study. Binding of the third strand appears to enhance the thermal stability of the duplex by 1-3 degrees C, depending on the DNA concentration. The free energy of triplex formation (-26.0 +/- 0.5 kcal/mol) is approximately twice that of duplex formation (-12.6 +/- 0.7 kcal/mol), suggesting that the overall stability of the pur.pur base pairs is similar to that of the W-C base pairs.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
The oligonucleotide 5'-d(TCTACGCGTTCT) reacts with trans-diamminedichloroplatinum(II) to yield primarily trans-[Pt(NH3)2[d(TCTACGCGTTCT)-N7-G(6),N7-G(8)]], containing the desired trans-[Pt(NH3)2[d(GCG)]] 1,3-cross-link. A key element of the platination reaction is the use of low pH to suppress coordination at A(4). The product was fully characterized by pH-dependent NMR titrations, enzymatic degradation analysis, and 195Pt NMR spectroscopy. Interestingly, the 1,3-cross-linked adduct is unstable at neutral pH, rearranging unexpectedly to form the linkage isomer trans-[Pt(NH3)2[d-(TCTACGCGTTCT)-N3-C(5),N7-G(8)]]. This rearrangement product is more stable than the initially formed isomer and could be characterized by pH-dependent NMR titrations, enzymatic degradation analysis, liquid secondary ion mass spectrometric analysis of an enzymatically digested fragment, 195Pt NMR spectroscopy, and modified Maxam-Gilbert footprinting experiments. By contrast, the 1,3-intrastrand cross-linked isomer rearranges during the course of both pH titration and enzymatic degradation experiments to form the 1,4-adduct. The equilibrium constant for this rearrangement is approximately 3, favoring the 1,4-adduct. Kinetic studies of the linkage isomerization reaction reveal t1/2 values for the first-order disappearance of the 1,3-intrastrand cross-linked isomer ranging from 129 (at 30 degrees C) to 3.6 h (at 62 degrees C), with activation parameters delta H not equal to = 91 +/- 2 kJ/mol and delta S not equal to = -58 +/- 8 J/(mol.K). Mechanistic implications of these kinetic results as well as the general relevance of this linkage isomerization reaction to platinum-DNA chemistry are briefly discussed.  相似文献   

20.
The products resulting from reaction of cis-Pt(NH3)2Cl2 with d(CpCpGpG), d(GpCpG), d(pCpGpCpG), d(pGpCpGpC) and d(CpGpCpG) and from reaction of [Pt(dien)Cl]Cl with d(CpCpGpG) and d(GpCpG) have been characterized with the aid of proton NMR spectroscopy, circular dichroic spectroscopy and Pt analysis. The binding sites of the Pt compounds were determined by pH-dependent NMR spectroscopy. Binding of the two Pt compounds invariably occurs at the guanine N7 atoms. In all compounds containing [cis-Pt(NH3)2]2+ chelates are formed by coordination of platinum to two guanines of the same oligonucleotide. The resulting intrastrand-cross-linked oligonucleotides contain either d(GpG) . cisPt units, or d(GpCpG) . cisPt units. In the latter case the middle cytosine is not coordinated to platinum. As a result the conformational changes originating from these two chelates are different from each other. In the case of [Pt(dien)Cl]Cl as a starting product, two types of oligonucleotide adducts are formed, i.e. those with one Pt atom/molecule and those with two Pt atoms/molecule. The NMR spectra of the adducts containing only one Pt(dien)2+ show that only one adduct is formed, although two guanine bases are present. This indicates a preference for one of the N7 atoms in the molecule.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号