首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 49 毫秒
1.
DNA-methylase activities which methylate cytosine residues in homo- and heterologous DNA were detected in mitochondria and nuclei from rat liver and beef heart. Adenine modifying DNA-methylases in mitochondria and nuclei were not found. DNA from mitochondria and nuclei differ significantly in the methylation degree and in the pattern of the 5-methyl-cytosine distribution by pyrimidine isostichs as DNA in vivo and in vitro being methylated. Mitochondrial DNA methylase has the maximum activity at 30 degrees and pH 7.8 this enzyme(s) differ(s) from the nuclear one(s) in the pH dependence of its activity. After exhaustive in vitro methylation of various DNA by the nuclear enzyme DNA-methylase from mitochondria additionally introduces CH3 groups from S-adenosylmethionine into these DNA (about 3 times more CH3 groups than nuclear enzyme). Nuclear DNA-methylase also methylates DNA which is previously fully-methylated by the mitochondrial enzyme, but to a lesser degree. In conditions of exhaustive DNA methylation mitochondrial enzyme introduces into E. coli B DNA about four times more methyl groups as compared to the nuclear one. After the methylation of E. coli B DNA by mitochondrial enzyme the label (3H-methyl) was detected predominantly in mono-, and in case of nuclear enzyme--in di- and tripyrimidine fragments. Mitochondrial DNA-methylase differs from the nuclear one in the nature of recognized DNA sequences; these enzymes seems to be represented by different proteins. The mitochondrial enzyme methylates shorter nucleotide sequences in DNA as compared to the nuclear DNA-methylase. All these data suggest there exist organoid specificity of genome methylation in animal cell and the modification-restriction systems in animal nucleus and mitochondria are different in character.  相似文献   

2.
3.
For the whole cell cycle the methylation of DNA was studied in synchronized HeLa cells and in nuclei isolated from them. In the intact cells the methylation of DNA cytosine runs parallel to DNA synthesis. The pattern of DNA cytosine methylation by the isolated nuclei is almost identical to that obtained with the whole cells. Since the isolated nuclei do not synthesize DNA, it is shown that DNA methylation continues for at least 30 min after DNA synthesis is over. No DNA minor thymine is found in the isolated nuclei.  相似文献   

4.
DNA methylation in mammalian nuclei   总被引:1,自引:0,他引:1  
T L Kautiainen  P A Jones 《Biochemistry》1985,24(20):5575-5581
A novel system to study the methylation of newly synthesized DNA in isolated nuclei was developed. Approximately 2.5% of cytosine residues incorporated into nascent DNA became methylated by endogenous methylase(s), and the level of DNA modification was reduced by methylation inhibitors. DNA synthesis and methylation were dependent on separate cytosol factors. The cytosol factor or factors required for DNA methylation were sensitive to trypsin digestion and were precipitable by (NH4)2SO4, suggesting that they were proteinaceous. Time-course experiments revealed a short lag of approximately 20 s between synthesis and methylation in nuclei. The DNAs produced in these nuclei were a mixed population of low molecular weight fragments and higher molecular weight fragments shown to be short extension of existing replicons. The methylation level found in low molecular weight DNA was lower than that found in bulk L1210 DNA, indicating that further methylation events might take place after ligation of small fragments. These data suggest that newly synthesized DNA is a good substrate for methylase enzymes and that nuclear cytoplasmic interactions may be important in controlling inheritance of methylation patterns.  相似文献   

5.
On growing the cells of Bacillus brevis S methionine-auxotroph mutant in the presence of (methyl-3H)-methionine practically the total radioactivity included into DNA is found to exist in 5-methylcytosine (MC) and 6N-methyladenine (MA). The analysis of pyrimidine isopliths isolated from DNA shows that radioactivity only exists in mono- and dinucleotides and the content of MC in Pur-MC-Pur and Pur-MC-T-Pur oligonucleotides is equal. The analysis of dinucleotides isolated from DNA by means of pancreatic DNAase hydrolysis allows the nature of purine residues neighbouring with MC to be revealed and shows that MC localizes in G-MC-A and G-MC-T-Pu fragments. Bac. brevis S DNA-methylase modifying cytosine residues recognizes the GCAT GC degenerative nucleotide sequence which is a part of the following complementary structure with rotational symmetry: (5') ... N'--G--MC--T--G--C--N ... (3') (3') ... N--C--G--A--MC--G--N' ... (5') Cytosine modifying DNA-methylase activity is isolated from Bac. brevis cells; it is capable of methylating in vitro homologous and heterologous DNA. Hence, DNA in bacterial cells can be partially undermethylated. This enzyme methylates cytosine residues in native and deneaturated DNA in the same nucleotide sequences. As compared to the native DNA, the denaturated DNA is indicative of a decrease in the level of methylation of adenine, rather than cytosine residues. Specificity of methylation of cytosine residues in vitro and in vivo does not depend on the nature of substrate DNA (calf thymus, Pseudomonas aeruginosa etc.). DNA-methylases of different variants of Bac. brevis (R, S, P+, P-) methylate cytosine residues in the same nucleotide sequences. It means that specificity of methylation of DNA cytosine residues in the cells of different variants of Bac. brevis is the same.  相似文献   

6.
ADP-ribosylation of nuclear proteins, catalysed by the enzyme poly(ADP-ribose) polymerase, is involved in the regulation of different cellular processes of DNA metabolism. To further clarify the role of the enzyme during proliferating activity of mammalian cells, we have studied the control of gene expression in regenerating rat liver. The changes in activity and mRNA levels were analysed during the early and late phases of the compensatory model. When enzyme activity was measured in isolated liver nuclei obtained at different times after hepatectomy, two different phases were observed: an early wave occurring before the onset of DNA synthesis, and a second one, starting several hours after the onset of DNA synthesis and returning to control values at later times. The evaluation of the enzymatic level in nuclear extracts and by activity gel analysis showed a more gradual increase starting 1 day after hepatectomy, in concomitance with the peak of DNA synthesis. By using a specific murine cDNA probe, a significant enhancement of mRNA levels for poly(ADP-ribose) polymerase was observed during liver regeneration, slightly preceding the onset of DNA synthesis. The results obtained show that changes in poly(ADP-ribose) polymerase activity, during liver regeneration, are associated both to early events preceding the increase in DNA synthesis and to later phases of the cell proliferation process.  相似文献   

7.
Hydrolysis of deoxyribonucleoside 5'-triphosphate, resulting in deoxyribonucleoside 5'-monophosphate formation dependent on DNA synthesis, was observed in nuclei isolated from regenerating rat liver. The intensity of the hydrolysis in nuclei varied at different times after partial hepatectomy, showing its maximum at 48 h. The rates of DNA synthesis altered corresponding to the intensities of hydrolysis. Proportionality between decrease in DNA synthesis and decrease in dNMP production was also observed in nuclei treated with various inhibitors of DNA synthesis. The formation of dNMP was detected with the four DNA substrates, indicating no involvement of specific dNTPase . Although regenerating nuclei contained a nonspecific dNTPase activity that can cause release of dNMP , this activity was independent of DNA synthesis and not inhibited by inhibitors of DNA synthesis. These results indicated that regenerating liver nuclei had two different activities for dNMP production; one is DNA synthesis-dependent, and the other is a non-specific dNTPase activity. This paper has focused on the former activity.  相似文献   

8.
Hydrolysis of deoxyribonucleoside 5′-triphosphate, resulting in deoxyribonucleoside 5′-monophosphate formation dependent on DNA synthesis, was observed in nuclei isolated from regenerating rat liver. The intensity of the hydrolysis in nuclei varied at different times after partial hepatectomy, showing its maximum at 48 h. The rates of DNA synthesis altered corresponding to the intensities of hydrolysis. Proportionality between decrease in DNA synthesis and decrease in dNMP production was also observed in nuclei treated with various inhibitors of DNA synthesis. The formation of dNMP was detected with the four DNA substrates, indicating no involvement of specific dNTPase. Although regenerating nuclei contained a nonspecific dNTPase activity that can cause release of dNMP, this activity was independent of DNA synthesis and not inhibited by inhibitors of DNA synthesis. These results indicated that regenerating liver nuclei had two different activities for dNMP production; one is DNA synthesis-dependent, and the other is a non-specific dNTPase activity. This paper has focused on the former activity.  相似文献   

9.
Nuclei were isolated from synchronized plasmodia of a true slime mold, Physarum polycephalum, in S-phase, and DNA synthesis in the nuclei was studied in vitro. The nuclei catalyzed DNA synthesis at the rate of 0.7 ng DNA/1.0 X 10(6) nuclei/30 min at 25 degrees C, which was 5 times higher than that catalyzed in G2-phase nuclei. The DNA synthesis required Mg2+, four kinds of deoxyribonucleoside 5'-triphosphates and ATP, suggesting that the mode of synthesis is a replicative-type, but not a repair-one. Sedimentation analysis of the DNA products revealed that the nuclei produced 2-4S DNA fragments mainly during a 30-sec pulse incubation, and 2-4S, 5-12S and longer fragments during a 15-min incubation. The pulse- and chase-labeling experiments showed that the 2-4S fragments shifted discontinuously to longer fragments. These results indicate that the nuclei catalyze the formation of 2-4S Okazaki fragments first and then their subsequent ligation. Eighty % and 96% of the DNA synthesis was inhibited by 200 micrograms/ml aphidicolin and 40 mM N-ethylmaleimide, respectively, but 80% of the activity was resistant to 100 microM 2',3'-dideoxythymidine 5'-triphosphate. These results suggest that the DNA synthesis is catalyzed by the alpha-type DNA polymerase of Physarum polycephalum.  相似文献   

10.
Cell cycle-dependent regulation of eukaryotic DNA methylase level   总被引:8,自引:0,他引:8  
DNA methylase activity in the nuclei of somatic cells arrested at G0 increased markedly when the cells were subjected to a mitogenic stimulus. Treatment of mouse splenocytes with Concanavalin A resulted in about 20-fold increase in methylase activity within 20 h starting 12-15 h after Concanavalin A addition. The methylase level in rat liver was elevated approximately 3-fold at about 20-h posthepatectomy. A detailed time course of the increase in methylase activity with respect to the cell cycle revealed that the onset of this event coincided with the entry of the cells into S phase. In both systems, the extent of methylation in CpG sequences is not altered significantly even under conditions of active DNA synthesis which is induced by the mitogenic effect. These results suggest that the cell responds to the mitogenic stimulus by adjusting the DNA methylase activity to enable conservation of the methylation level in DNA.  相似文献   

11.
Previous work has shown that inhibitors of protein or mRNA synthesis block endonuclease activation in thymocytes undergoing programmed cell death. In the present study we used isolated nuclei to investigate the effects of cycloheximide and actinomycin D, inhibitors of protein and mRNA synthesis, respectively, on endogenous endonuclease activity in thymocytes. We observed a rapid loss of Ca2(+)-dependent endonuclease activity in nuclei isolated from thymocytes treated with these inhibitors. In contrast, pretreatment of cells with antipain and leupeptin, inhibitors of proteases, prevented the depletion of endonuclease activity in the nuclei, suggesting that proteolysis was involved. The effects of cycloheximide and actinomycin D were mimicked by incubating thymocytes with treatments known to exert their effects via activation of protein kinase C. Our results suggest that endonuclease activity in thymocyte nuclei undergoes rapid, spontaneous turnover. Agents interfering with macromolecular synthesis may therefore block DNA fragmentation in thymocytes by depleting nuclei of endogenous endonuclease activity.  相似文献   

12.
The sea urchin embryo nuclei which retained their ability to maintain the DNA synthesis in an in vitro system were isolated. The DNA synthesis isolated nuclei was shown to be an ATP-dependent process which is inhibited by low concentrations of actinomycin D, a polymerase alpha araCTP inhibitor. The newly synthesized DNA is represented by short fragments of about 4S. After addition of Ca2+, Mg2+-dependent DNAase to sea urchin embryo nuclei, the synthesis of short DNA fragments is enhanced. This stimulating effect of Ca2+, Mg2+-dependent DNAase is ATP-dependent and is observed only within a narrow range of enzyme concentrations (of the order of 1-5 units of DNAase activity per ml of incubation sample). The increase in the enzyme concentration to 10 or more units of activity results in the depression of DNA synthesis. It is concluded that DNA replication in sea urchin embryo nuclei depends on the presence of active DNAases as well as on the number of accessible initiation sites of DNA replication.  相似文献   

13.
Nuclear matrices were isolated from plasmodia of a true slime mold, Physarum polycephalum, and the DNA synthetic activity in vitro was examined. These matrices isolated in S-phase catalyzed DNA synthesis requiring Mg2+, deoxyribonucleoside 5'-triphosphates and ATP, without exogenous templates. The activity changed during S-phase with the rate of in vivo DNA replication. Product analysis by gel electrophoresis revealed that the matrices produced Okazaki fragments. These results suggest that DNA synthesis partially reflects in vivo DNA replication. DNA synthesis was sensitive to aphidicolin, heparin and N-ethylmaleimide, indicating involvement of the alpha-like DNA polymerase of Physarum. Exogenous addition of activated DNA stimulated DNA synthesis 4-10-fold and suggested that only some of the existing enzymes are involved in endogenous DNA synthesis. Matrices isolated in G2-phase were also associated with a similar DNA synthetic activity, but they did not produce Okazaki fragments in vitro. It is, therefore, concluded that nuclear matrices are associated with alpha-like DNA polymerase throughout the cell cycle, and that some of the enzymes participate in in vivo DNA replication in S-phase; thus, DNA replication is possibly controlled by this process. The relationship between DNA synthetic activities by the isolated nuclei and matrices was also discussed.  相似文献   

14.
Microtubule-associated protein-2 (MAP-2) isolated from porcine brains stimulated DNA synthesis catalyzed by the nuclear matrix isolated from Physarum polycephalum in the presence of activated DNA as exogenous templates. The degree of the stimulation depended on the amount of the nuclear matrix, but not on that of the template. MAP-2 also stimulated DNA polymerase alpha activity solubilized from nuclei, but not DNA polymerase beta activity. These results suggest that MAP-2 stimulates DNA synthesis by interacting with the putative DNA replication machinery including DNA polymerase alpha bound to the matrix. Similar stimulation occurred in the nuclear matrix isolated from HeLa and rat ascites hepatoma cells, which strongly suggests that MAP-2 is involved in the control of DNA replication in eukaryotic cells.  相似文献   

15.
Setkov NA  Eremeev AV 《Tsitologiia》2001,43(6):567-574
Mouse liver regeneration after partial hepatectomy can be considered as a spectacular example of controlled tissue increase. In this study serum-deprived (0.2%) resting and serum-stimulated (10%) proliferating NIH 3T3 mouse fibroblasts were fused with primary hepatocytes isolated from normal (intact) and regenerating adult mouse liver at different times after partial hepatectomy (1-15 days) to elucidate mechanisms of liver cell proliferation cessation at the regeneration end. DNA synthesis was investigated in the nuclei of heterokaryons and non-fused cells using radioautography. Hepatocytes isolated from regenerating liver within 1-12 days following operation did not retard the entry of stimulated fibroblast nuclei into the S-period. In contrast, hepatocytes isolated within 15 days after hepatectomy were found to have inhibitory effect on the entry of stimulated fibroblast nuclei into the S-period in heterokaryons. Preincubation of these hepatocytes with cyclocheximide for 2-4 h abolished their ability to suppress DNA synthesis in stimulated fibroblast nuclei in heterokaryons. Possible reasons of inhibitory effect of differentiated cells in heterokaryos are discussed. The data obtained enable us to conclude that the mechanism of proliferative process control in regenerating hepatocytes seems to be stopped being affected by the intracellular growth inhibitors, whose formation depends on protein synthesis.  相似文献   

16.
Quantitative rates of DNA synthesis can be determined by DNA:propidium fluorescence measurements of synchronized cells progressing through S-phase. We have previously reported that HeLa cells have discontinuous rates with values of about 2.9, 1.6, and 4.4 pg of DNA/h for early, middle, and late S-phase, respectively. In attempts to understand why two peaks of DNA synthesis rates are observed, we have examined the nuclear DNA polymerases alpha and beta over the S-phase. Nuclear matrices isolated from HeLa cells contained 2% of the alpha polymerase and 12% of the beta polymerase that was present in cell lysates, and about 2% of the original DNA. The amounts of endogenous DNA synthesis in isolated nuclear matrices were comparable to the amounts observed when exogenous DNA was added. DNase treatment abolished the endogenous DNA synthesis but not the exogenous DNA synthesis, suggesting that polymerase alpha binding does not depend on matrix-bound DNA. As synchronized cells progressed through the S-phase, there appeared two peaks of enzymatic activity of alpha polymerase bound to the nuclear matrix which correlated with in vitro DNA synthesis in these nuclear matrices and with the two peaks of quantitative DNA synthesis rates. Two peaks of alpha polymerase activity were also observed with isolated nuclei, but not with cell lysates or cytosol. Our results suggest that, over the S-phase, the differential binding of polymerase alpha to the nuclear matrix determines the differential rates of DNA synthesis.  相似文献   

17.
The effect of purified SV40 T antigen on DNA synthesis in isolated nuclei from the confluent culture of CV-1 cells was studied. In the presence of T antigen the incorporation of [3H]TTP into DNA was found to be 2 to 3 times as high as in the control nuclei. The resulting labelled DNA was subjected to alkaline sucrose gradient centrifugation, which revealed the presence of 4S DNA species, corresponding to Okazaki fragments of animal cells. The latter finding suggests a replicative mode of DNA synthesis induced by T antigen. T antigen isolated from the cells infected with SV40 tsA-mutant and kept at a nonpermissive (41 degrees) temperature fails to stimulate DNA synthesis in isolated nuclei from resting cells. On storage at 4 degrees SV40 T antigen gradually loses its ability to stimulate DNA synthesis and by the 8th day even suppresses it when tested on isolated nuclei from a growing cell culture. No effect of T antigen on the endonuclease-induced reparative synthesis of DNA could be observed. The data described suggest that T antigen is directly involved in the control of DNA synthesis in the cells infected or transformed with SV40.  相似文献   

18.
Proliferating cell nuclear antigen (PCNA) is expressed in the nuclei of proliferating cells, but is not detected in resting cells. The kinetics of PCNA expression suggest that it is associated with a phase preceding active DNA synthesis. DNA synthesis is under cytoplasmic control, and there is a cytoplasmic protein, ADR (activator of DNA replication), that induces DNA synthesis in isolated quiescent nuclei. We now report that a human antibody preparation monospecific for PCNA, but not two monoclonal antibodies directed against different epitopes on PCNA, can inhibit the ability of ADR to induce DNA synthesis in isolated quiescent nuclei. This effect is not due to inhibition of DNA polymerase alpha activity. Thus, the anti-PCNA antibody exerts its effect either by directly influencing the initial interaction of ADR with the nucleus, or by inhibiting subsequent synthetic events.  相似文献   

19.
Experiments were designed to determine whether DNA synthesis ceases in terminally differentiating cardiac muscle of the rat because the activity of the putative replicative DNA polymerase (DNA polymerase alpha) is lost or whether the activity of this enzyme is lost because DNA synthesis ceases. DNA-template availability and 3'-hydroxyl termini in nuclei and chromatin, isolated from cardiac muscle at various times during the developmental period in which DNA synthesis and the activity of DNA polymerase alpha are decreasing, were measured by using Escherichia coli DNA polymerase I, Micrococcus luteus DNA polymerase and DNA polymerase alpha under optimal conditions. Density-shift experiments with bromodeoxyuridine triphosphate and isopycnic analysis indicate that DNA chains being replicated semi-conservatively in vivo continue to be elongated in isolated nuclei by exogenous DNA polymerases. DNA template and 3'-hydroxyl termini available to exogenously added DNA polymerases do not change as cardiac muscle differentiates and the rate of DNA synthesis decreases and ceases in vivo. Template availability and 3'-hydroxyl termini are also not changed in nuclei isolated from cardiac muscle in which DNA synthesis had been inhibited by administration of isoproterenol and theophylline to newborn rats. DNA-template availability and 3'-hydroxyl termini, however, were substantially increased in nuclei and chromatin from cardiac muscle of adult rats. This increase is not due to elevated deoxyribonuclease activity in nuclei and chromatin of the adult. Electron microscopy indicates that this increase is also not due to dispersal of the chromatin or disruption of nuclear morphology. Density-shift experiments and isopycnic analysis of DNA from cardiac muscle of the adult show that it is more fragmented than DNA from cardiac-muscle cells that are, or have recently ceased, dividing. These studies indicate that DNA synthesis ceases in terminally differentiating cardiac muscle because the activity of a replicative DNA polymerase is lost, rather than the activity of this enzyme being lost because DNA synthesis ceases.  相似文献   

20.
Permeabilized mammalian cells and isolated nuclei were used to study various aspects of DNA replication and repair. The present paper describes a progressive fragmentation of parental DNA in human lymphoblastoid cells that were permeabilized with L-alpha-lysophosphatidylcholine or with saponin and incubated at 37 degrees C in a DNA-synthesis mixture. The formation of DNA single-strand breaks (measured by alkaline elution) was linear with the time of incubation and was temperature-dependent. It was prevented by deleting Mg2+ or both Mg2+ and Ca2+ from the incubation mixture, or by the addition of EDTA. It was increased by deleting the components necessary for DNA synthesis, and by substituting Mn2+ for Mg2+ and Ca2+. DNA strand breaks also accumulated in isolated nuclei incubated in a DNA synthesis mixture, but not when Mg2+ was omitted. These results suggest that DNA fragmentation in permeabilized cells and nuclei was due to an activation of (Ca2+ + Mg2+)-dependent endodeoxyribonucleases. The integrity of template DNA needs to be ascertained when the conditions for measuring DNA synthesis in permeabilized cells or in nuclei are formulated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号