首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The catalytic properties of bovine liver catalase have been investigated in organic solvents. In tetrahydrofuran, dioxane, and acetone (all containing 1% to 3% of water), the enzyme breaks down tert-butyl hydroperoxide several fold faster than in pure water. Furthermore, the rate of catalase-catalyzed production of tert-butanol from tert-butyl hydroperoxide increases more than 400-fold upon transition from aqueous buffer to ethanol as the reaction medium. The mechanistic rationale for this striking effect is that in aqueous buffer the rate-limiting step of the enzymatic process involves the reduction of catalase's compound I by tert-butyl hydroperoxide. In ethanol, and additional step in the reaction scheme becomes available in which ethanol, greatly outcompeting the hydroperoxide, is oxidized by compound I regenerating the free enzyme. In solvents, such as acetonitrile or tetrahydrofuran, which themselves are not oxidizable by compound I, catalase catalyzes the oxidation of numerous primary and secondary alcohols with tert-butyl hydroperoxide to the corresponding aldehydes or ketones. The enzymatic oxidation of some chiral alcohols (2,3-butanediol, citronellol, and menthol) under these conditions occurs enantioselectively. Examination of the enantioselectivity for the oxidation of 2,3-butanediol in a series of organic solvents reveals a considerable solvent dependence. (c) 1995 John Wiley & Sons, Inc.  相似文献   

2.
Water plays an important role in enzyme structure and function in aqueous media. That role becomes even more important when one focuses on enzymes in low water media. Here we present results from molecular dynamics simulations of surfactant-solubilized subtilisin BPN' in three organic solvents (octane, tetrahydrofuran, and acetonitrile) and in pure water. Trajectories from simulations are analyzed with a focus on enzyme structure, flexibility, and the details of enzyme hydration. The overall enzyme and backbone structures, as well as individual residue flexibility, do not show significant differences between water and the three organic solvents over a timescale of several nanoseconds currently accessible to large-scale molecular dynamics simulations. The key factor that distinguishes molecular-level details in different media is the partitioning of hydration water between the enzyme and the bulk solvent. The enzyme surface and the active site region are well hydrated in aqueous medium, whereas with increasing polarity of the organic solvent (octane --> tetrahydrofuran --> acetonitrile) the hydration water is stripped from the enzyme surface. Water stripping is accompanied by the penetration of tetrahydrofuran and acetonitrile molecules into crevices on the enzyme surface and especially into the active site. More polar organic solvents (tetrahydrofuran and acetonitrile) replace mobile and weakly bound water molecules in the active site and leave primarily the tightly bound water in that region. In contrast, the lack of water stripping in octane allows efficient hydration of the active site uniformly by mobile and weakly bound water and some structural water similar to that in aqueous solution. These differences in the active site hydration are consistent with the inverse dependence of enzymatic activity on organic solvent polarity and indicate that the behavior of hydration water on the enzyme surface and in the active site is an important determinant of biological function especially in low water media.  相似文献   

3.
Subtilisin Carlsberg was covalently attached to five macroporous acrylic supports of varying aquaphilicity (a measure of hydrophilicity). Kinetic parameters of the transesterification of S and R enantiomers of secphenethyl alcohol with vinyl butyrate, catalyzed by various immobilized subtilisins, were determined in anhydrous dioxane and acetonitrile. Enzyme enantioselectivity in acetonitrile, but not in dioxane, correlated with the aquaphilicity of the support; a mechanistic rationale for this phenomenon was proposed. Although the catalytic activity of immobilized subtilisin in anhydrous solvents strongly depended on enzyme pretreatment, the enantioselectivity was essential conserved. (c) 1994 John Wiley & Sons, Inc.  相似文献   

4.
Candida rugosa lipase-catalysed hydrolysis of three different 2-substituted-aryloxyacetic esters was performed in aqueous buffer containing dimethyl sulphoxide and isopropanol from 0 to 80% v/v as additives, in order to obtain an enhancement of the enantioselectivity. For 2-(p-chlorophenoxy)acetic acid and 2-n-butyl-2-(p-chlorophenoxy)acetic acid ethyl esters, DMSO enhanced enzyme enantioselectivity more than IPA with an opposite enzymatic enantiopreference. The cosolvents moderately improved Candida rugosa lipase enantioselectivity for 2-phenyl-2-(p-chlorophenoxy)acetic acid ethyl ester.  相似文献   

5.
The addition of simple inorganic salts to aqueous enzyme solutions prior to lyophilization results in a dramatic activation of the dried powder in organic media relative to enzyme with no added salt. Activation of both the serine protease subtilisin Carlsberg and lipase from Mucor javanicus resulting from lyophilization in the presence of KCl was highly sensitive to the lyophilization time and water content of the sample. Specifically, for a preparation containing 98% (w/w) KCl, 1% (w/w) phosphate buffer, and 1% (w/w) enzyme, varying the lyophilization time showed a direct correlation between water content and activity up to an optimum, beyond which the activity decreased with increasing lyophilization time. The catalytic efficiency in hexane varied as much as 13-fold for subtilisin Carlsberg and 11-fold for lipase depending on the lyophilization time. This dependence was apparently a consequence of including the salt, as a similar result was not observed for the enzyme freeze-dried without KCl. In the case of subtilisin Carlsberg, the salt-induced optimum value of kcat/Km for transesterification in hexane was over 20,000-fold higher than that for salt-free enzyme, a substantial improvement over the previously reported enhancement of 3750-fold (Khmelnitsky, 1994). As was found previously for pure enzyme, the salt-activated enzyme exhibited greatest activity when lyophilized from a solution of pH equal to the pH for optimal activity in water. The active-site content of the lyophilized enzyme samples also depended upon lyophilization time and inclusion of salt, with opposite trends in this dependence observed for the solvents hexane and tetrahydrofuran. Finally, substrate selectivity experiments suggested that mechanism(s) other than selective partitioning of substrate into the enzyme-salt matrix are responsible for salt-induced activation of enzymes in organic solvents.  相似文献   

6.
Urea is one of the most commonly used denaturants of proteins. However, herein we report that enzymes lyophilized from denaturing concentrations of aqueous urea exhibited much higher activity in organic solvents than their native counterparts. Thus, instead of causing deactivation, urea effected unexpected activation of enzymes suspended in organic media. Activation of subtilisin Carlsberg (SC) in the organic solvents (hexane, tetrahydrofuran, and acetone) increased with increasing urea concentrations up to 8 M. Active-site titration results and activity assays indicated the presence of partially unfolded but catalytically active SC in 8 M urea; however, the urea-modified enzyme retained high enantioselectivity and was ca. 80 times more active than the native enzyme in anhydrous hexane. Likewise, the activity of horseradish peroxidase (HRP) lyophilized from 8 M urea was ca. 56 times and 350 times higher in 97% acetone and water-saturated hexane, respectively, than the activity of HRP lyophilized from aqueous buffer. Compared with the native enzyme, the partially unfolded enzyme may have a more pliant and less rigid conformation in organic solvents, thus enabling it to retain higher catalytic activity. However, no substantial activation was observed for alpha-chymotrypsin lyophilized from urea solutions in which the enzyme retained some activity, illustrating that the activation effect is not completely general.  相似文献   

7.
The potent and specific inhibitor of Golgi alpha-mannosidase II, swainsonine (SW) has been isolated in high yield from Swainsona procumbens and derivatised by regiospecific enzymatic reactions. In this study the regioselectivity of three commercially available enzymes, subtilisin Carlsberg, porcine pancreatic lipase (PPL) and Candida cylindracea lipase was determined for the acylation of swainsonine in predominantly anhydrous organic medium. The use of subtilisin in pyridine facilitated the single step synthesis of 2-O-butyryl-SW in a 23% yield, whilst catalysis by PPL in tetrahydrofuran gave 2-O-butyryl-SW (6%) and 1,2-di-O-butyryl-SW (31%).  相似文献   

8.
Catalytic activities of alpha-chymotrypsin and subtilisin Carlsberg in various hydrous organic solvents were measured as a function of how the enzyme suspension had been prepared. In one method, lyophilized enzyme was directly suspended in the solvent containing 1% water. In another, the enzyme was precipitated from its aqueous solution by a 100-fold dilution with an anhydrous solvent. In most cases, the reaction rate in a given nonaqueous enzymatic system strongly (up to an order of magnitude) depended on the mode of enzyme preparation. The magnitude of this dependence was markedly affected by the nature of the solvent and enzyme. A mechanistic hypothesis proposed to explain the observed dependencies was verified in additional experiments in which the water contents and enzyme history were further varied.  相似文献   

9.
Effect of organic solvents on enantioselectivity of protease catalysis   总被引:1,自引:0,他引:1  
The protease-catalyzed transesterifications between N-trifluoroacetyl-DL-phenylalanine 2,2,2-trifluoroethyl ester and 1-propanol were studied in a variety of anhydrous organic solvents at 30 degrees C. The protease preparations lyophilized from phosphate buffer solutions (pH 8.0) were used as catalysts. The organic solvent affected both rate of reaction and enantioselectivity differently. Proteases such as Aspergillus oryzae protease, subtilisin Carlsberg, and subtilisin BPN' always preferred the L-enantiomer in both hydrophilic and hydrophobic solvents, indicating no inversion of the L-specificity in hydrophobic solvents such as toluene. However, enantioselectivity was rather poor, with E (enantiomeric ratio) values not exceeding even one order of magnitude except for acetonitrile. There was a weak inverse correlation between E values of subtilisin Carlsberg and solvent hydrophobicity (logP). Acetonitrile was a preferable solvent in terms of both rate of reaction and enantioselectivity (E= 15 to 25) for processing L-amino acid derivatives in organic media. Organic solvents generally have potential advantages of processing D-amino acid derivatives. (c) 1997 John Wiley & Sons, Inc.  相似文献   

10.
Both stability and catalytic activity of the HynSL Thiocapsa roseopersicina hydrogenase in the presence of different water-miscible organic solvents were investigated. For all organic solvents under study the substantial raise in hydrogenase catalytic activity was observed. The stimulating effect of acetone and acetonitrile on the reaction rate rose with the increase in solvent concentration up to 80%. At certain concentrations of acetonitrile and acetone (60–80%, v/v in buffer solution) the enzyme activity was improved even 4–5 times compared to pure aqueous buffer. Other solvents (aliphatic alcohols, dimethylsulfoxide and tetrahydrofuran) improved the enzyme activity at low concentrations and caused enzyme inactivation at intermediate concentrations. The long-term incubation of the hydrogenase with aliphatic alcohols, dimethylsulfoxide and tetrahydrofuran at intermediate concentrations of the latter caused enzyme inactivation. The reduced form of hydrogenase was found to be much more sensitive to action of these organic solvents than the enzyme being in oxidized state. The hydrogenase is rather stable at high concentrations of acetone or acetonitrile during long-term storage: its residual activity after incubation in these solvents upon air within 30 days was about 50%, and immobilized enzyme remained at the 100% of its activity during this period.  相似文献   

11.
A protein solubilization method has been developed to directly solubilize protein clusters into organic solvents containing small quantities of surfactant and trace amounts of water. Termed "direct solubilization," this technique was shown to solubilize three distinct proteins - subtilisin Carlsberg, lipase B from Candida antarctica, and soybean peroxidase - with much greater efficiencies than extraction of the protein from aqueous solution into surfactant-containing organic solvents (referred to as extraction). More significant, however, was the dramatic increase in directly solubilized enzyme activity relative to extracted enzyme activity, particularly for subtilisin and lipase in polar organic solvents. For example, in THF the initial rate towards bergenin transesterification was ca. 70 times higher for directly solubilized subtilisin than for the extracted enzyme. Furthermore, unlike their extracted counterparts, the directly solubilized enzymes yielded high product conversions across a spectrum of non-polar and polar solvents. Structural characterization of the solubilized enzymes via light scattering and atomic force microscopy revealed soluble proteins consisting of active enzyme aggregates containing approximately 60 and 100 protein molecules, respectively, for subtilisin and lipase. Formation of such clusters appears to provide a microenvironment conducive to catalysis and, in polar organic solvents at least, may protect the enzyme from solvent-induced inactivation.  相似文献   

12.
Here we report a detailed procedure for the enzymatic kinetic resolution of 4-chloro-2-(1-hydroxyalkyl)pyridines, valuable precursors for the preparation of enantiomerically pure catalysts derived from 4-(N,N-dimethylamino)pyridine. Pseudomonas cepacia lipase shows excellent enantioselectivity in the acylation of the (R)-enantiomer at 30 degrees C and 250 r.p.m., with vinyl acetate as the acyl donor and tetrahydrofuran as the solvent. The reaction times for resolution of the pyridine derivatives depend on the structure of the selected substrate.  相似文献   

13.
Selectivity of enzymatic and chemical methods for transesterifications of cytarabine with divinyl dicarboxylates was described. Catalysis by lipase acrylic resin from Candida antarctica (CAL-B) in acetone facilitated the single step synthesis of polymerizable 5'-O-acyl cytarabine derivatives in high yields, while the use of alkaline protease from Bacillus subtilis (subtilisin) in pyridine afforded the mixture products of 5'-O-acyl and 4-N-acyl cytarabine derivatives. Interestingly, polymerizable 4-N-acyl cytarabine vinyl derivatives can be selectively prepared by chemical transesterification in dioxane. The obtained series of cytarabine derivatives would be useful for a significant monomer for a polymeric anticancer drug.  相似文献   

14.
Inhibitor-induced enzyme activation in organic solvents   总被引:8,自引:0,他引:8  
The enzymatic activity of the protease subtilisin in anhydrous organic solvents can be dramatically increased by pretreating the enzyme before it is placed in the nonaqueous medium. For instance, lyophilization of subtilisin from aqueous solution containing competitive inhibitors (followed by their removal) created an enzyme which was up to 100 times more active than the enzyme lyophilized in the absence of such ligands. This phenomenon of ligand-induced "enzyme memory" also extends to the stability, affinity, and substrate specificity of subtilisin in organic solvents.  相似文献   

15.
The stability of the serine proteases from Bacillus amyloliquefaciens (subtillisin BPN') and Bacillus licheniformis (subtilisin Carlsberg) was investigated in various anhydrous solvents at 45 degrees C. The half-life of subtilisin BPN' in dimethyl-formamide dramatically depends on the pH of the aqueous solutions from which the enzyme was lyophilized, increasing from 48 min to 20 h when the pH is raised from 6.0 to 7.9. Both subtilisins exhibited substantial inactivation during multihour incubations in tert-amyl alcohol and acetonitrile when enzymatic activities were also measured in these solvents; however, when the enzymes were assayed in water instead, hardly any loss of activity was detected. This surprising difference appears to stem from the partitioning of the bound water essential for catalytic activity from the enzymes into the solvents. When assayed in organic solvents, this time-dependent stripping of water results in decay of enzymatic activity; however, when assayed in water, where the dehydrated subtilisins can undergo rehydration thereby recovering catalytic activity, little inactivation is observed. In agreement with this hypothesis, the addition of small quantities of water tert-amyl alcohol stabilized the subtilisins in it even when enzymatic activity was measured in the nonaqueous solvent. Ester substrates (vinyl butyrate and trichloroethyl butyrate) greatly enhanced the stability of both subtilisins in organic solvents possibly because of the formation of the acyl-enzymes.  相似文献   

16.
Changes in solvent type were shown to yield significant improvement of enzyme enantioselectivity. The resolution of 3-methyl-2-butanol catalyzed by Candida antarctica lipase B, CALB, was studied in eight liquid organic solvents and supercritical carbon dioxide, SCCO(2). Studies of the temperature dependence of the enantiomeric ratio allowed determination of the enthalpic (Delta(R-S)Delta H(++)) as well as the entropic (Delta(R-S)Delta S(++)) contribution to the overall enantioselectivity (Delta(R-S)Delta G(++)= -RTlnE). A correlation of the enantiomeric ratio, E, to the van der Waals volume of the solvent molecules was observed and suggested as one of the parameters that govern solvent effects on enzyme catalysis. An enthalpy-entropy compensation relationship was indicated between the studied liquid solvents. The enzymatic mechanism must be of a somewhat different nature in SCCO(2), as this reaction in this medium did not follow the enthalpy-entropy compensation relation.  相似文献   

17.
Thirty-eight filamentous fungi cultivated under solid state fermentation (SSF) conditions were screened for lipase activity and enantioselectivity in kinetic resolutions of racemic secondary alcohols (rac-1a–c) by acetylation with vinyl acetate performed in organic solvents. Many of the target fungi have not been studied previously for lipase/esterase activity and enantioselectivity. Without special enzyme isolation processes, the room temperature (25 °C) dried SSF cultures as such were tested in the enantiomer selective biotransformations. The majority of these SSF preparations proved to be effective as enantiomer selective biocatalysts exhibiting high but usual enantioselectivities according to the Kazlauskas rule. However, the SSF preparation of Mucor hiemalis origin acted as a selective anti-Kazlauskas catalyst. The best SSF products were successfully applied in preparative scale resolutions.  相似文献   

18.
Summary Subtilisin Carlsberg and subtilisin BPN' (nagarse) catalyze peptide bond formation from aromatic amino acid esters and glycinamide in hydrophilic organic solvents. The activities of subtilisin and product compositions are different in several organic solvents; reactions in acetonitrile, tetrahydrofuran, and propylene carbonate gave the peptide in excellent yields, while in N,N-dimethylformamide and methanol the enzyme activity was largely retarded. The yield of the peptide is also dependent on water content in the reaction solutions. Optimum water contents are in the range from 3 to 7 %. The reaction is strongly specific for glycinamide as an amine component, and amides of alanine, valine, and leucine gave the corresponding peptides in poor yields.  相似文献   

19.
Lipase from Pseudomonas cepacia showed poor activity and moderate enantioselectivity (E) in pure aqueous systems for hydrolysis of a racemic mixture (+/-)-1-chloro-2-acetoxy-3-(1-naphthyloxy)-propane, which is a potential intermediate for beta-blocker synthesis. However, addition of polar organic solvents to the reaction can change both the activity and the enantioselectivity for this chiral reaction significantly. It was observed, in general, that the activity increases and the enantioselectivity decreases with the increase in the polarity of the organic solvent added to the medium. Among the six solvents chosen (i.e., dimethylsulfoxide [DMSO], 1, 4-dioxane, dimethylformamide [DMF], acetone, 1-propanol, and tetrahydrofuran [THF]), maximum activity and minimum enantioselectivity was obtained with DMSO, whereas minimum activity and maximum enantioselectivity was obtained with THF as the cosolvents. In the subsequent studies, native or polyethylene glycol (PEG)-modified lipase was immobilized by entrapping in Caalginate gel beads. In a fixed-bed continuous reactor containing these catalyst beads, the enzyme was found to be at least three times more enantioselective than the native form in a batch reactor. This fixed-bed reactor with the beads could be operated with high concentration of acetone (33% v/v) for about 1 month without a significant loss of enzyme activity and enantioselectivity.  相似文献   

20.
Fourier-transform infrared (FTIR) spectroscopy has been used to quantify the alpha-helix and beta-sheet contents of subtilisin Carlsberg dissolved in several nonaqueous, as well as aqueous, solvents. Independently, the catalytic activity of the enzyme has been measured in the same solvents. While our previous FTIR studies revealed no connection between the secondary structure and enzymatic activity for subtilisin suspended in various organic solvents, a very different situation is observed herein for the dissolved enzyme. Specifically, if either the alpha-helix or beta-sheet content in a given solvent is higher or lower than in water, no appreciable enzymatic catalysis is observed. Conversely, when the secondary structure of subtilisin dissolved in a given nonaqueous solvent is similar to that in water, so is the enzymatic activity. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 56: 485-491, 1997.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号