首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Kinetic parameters (Km and kcat.) of the two major forms (A and B) and a minor form (C) of human liver N-acetylglucosamine-6-sulphate sulphatase [Freeman, Clements & Hopwood (1987) Biochem. J. 246, 347-354] were determined with a variety of substrates matching structural aspects of the physiological substrates in vivo, namely heparin, heparan sulphate and keratan sulphate. Enzyme activity is highly specific towards glucosamine 6-sulphate or glucose 6-sulphate residues. More structurally complex substrates, in which several aspects of the aglycone structure of the natural substrate were maintained, are hydrolysed with catalytic efficiencies up to 3900 times above that observed for the monosaccharide substrate N-acetylglucosamine 6-sulphate. Forms A and B both desulphate substrates derived from keratan sulphate and heparin. Aglycone structures that influence substrate binding and/or enzyme activity were penultimate-residue 6-carboxy and 2-sulphate ester groups for heparin-derived substrates and penultimate-residue 6-sulphate ester groups for keratan sulphate-derived substrates. The 4-hydroxy group of the N-acetylglucosamine 6-sulphate or the 2-sulphaminoglucosamine 6-sulphate under enzymic attack is involved in the catalytic mechanism. The presence of a 2-amino group in place of a 2-acetamido or a 2-sulphoamino group considerably decreases the catalytic efficiency of the sulphatase, particularly in the absence of a penultimate-aglycone-residue 6-carboxy group. Both forms A and B are exo-enzymes, since activity towards internal sulphate ester bonds was not observed. The effect of incubation pH on enzyme activity towards the variety of substrates evaluated was complex and dependent on substrate aglycone structure. The presence of aglycone 2-sulphate ester, 6-carboxy group and 6-sulphate ester groups on the glucosamine 6-sulphate residue under attack considerably affects the pH response. Sulphate and phosphate ions are potent inhibitors of enzyme activity.  相似文献   

2.
Human iduronate-2-sulphatase (EC 3.1.6.13), which is involved in the lysosomal degradation of the glycosaminoglycans heparan sulphate and dermatan sulphate, was purified more than 500,000-fold in 5% yield from liver with a six-step column procedure, which consisted of a concanavalin A-Sepharose-Blue A-agarose coupled step, chromatofocusing, gel filtration on TSK HW 50S-Fractogel, hydrophobic separation on phenyl-Sepharose CL-4B and size separation on TSK G3000SW Ultrapac. Two major forms were identified. Form A and form B, with pI values of 4.5 and less than 4.0 respectively, separated at the chromatofocusing step in approximately equal amounts of recovered enzyme activity. By gel-filtration methods form A had a native molecular mass in the range 42-65 kDa. When analysed by SDS/PAGE, dithioerythritol-reduced and non-reduced form A and form B consistently contained polypeptides of molecular masses 42 kDa and 14 kDa. Iduronate-2-sulphatase was purified from human kidney, placenta and lung, and form A was shown to have similar native molecular mass and subunit components to those observed for liver enzyme. Both forms of liver iduronate-2-sulphatase were active towards a variety of substrates derived from heparin and dermatan sulphate. Kinetic parameters (Km and Kcat) of form A were determined with a variety of substrates matching structural aspects of the physiological substrates in vivo, namely heparan sulphate, heparin and dermatan sulphate. Substrate with 6-sulphate esters on the aglycone residue adjacent to the iduronic acid 2-sulphate residue being attack were hydrolysed with catalytic efficiencies up to 200 times above that observed for the simplest disaccharide substrate without a 6-sulphated aglycone residue. The effect of incubation pH on enzyme activity towards the variety of substrates evaluated was complex and dependent on substrate aglycone structure, substrate concentration, buffer type and the presence of other proteins. Sulphate and phosphate ions and a number of substrate and product analogues were potent inhibitor of form A and form B enzyme activities.  相似文献   

3.
The kinetic parameters (Km and V) of human arylsulphatase B (4-sulpho-N-acetylgalactosamine sulphatase) activity in cultured skin fibroblasts were determined with a variety of substrates matching structural aspects of the physiological substrates in vivo chondroitin 4-sulphate and dermatan sulphate. More structurally complex substrates, in which several aspects of the aglycone structure of the natural substrate were maintained, were desulphated up to 4400 times faster than the minimum arylsulphatase-B-specific substrate, namely the monosaccharide N-acetylgalactosamine 4-sulphate. Aglycone structures that influence substrate binding and/or enzyme activity were an adjacent-residue C-6 carboxy group and a second but internal N-acetylgalactosamine 4-sulphate residue. Arylsulphatase B activity in fibroblast homogenates assayed with O-(beta-N-acetylgalactosamine 4-sulphate)-(1----4)-O-D-(beta-glucuronic acid)-(1----3)-O-D-N-acetyl[1-3H] galactosaminitol 4-sulphate derived from chondroitin 4-sulphate as substrate clearly distinguished Maroteaux-Lamy-syndrome patients from normal controls and other mucopolysaccharidosis patients. We recommend the use of the above trisaccharide substrate for both postnatal and prenatal diagnosis of Maroteaux-Lamy syndrome.  相似文献   

4.
A procedure for purification of oestrone sulphate sulphohydrolase from human placenta microsomes was elaborated. The use of Concanavalin-A-Sepharose chromatography made it possible to separate, for the first time, oestrone sulphate sulphohydrolase (Mr 36,000, optimum pH 7.0, Km 5.5 X 10(-5) M, specific activity 1563 nmol X min-1 X mg protein-1) from arylsulphatase C (Mr 45,000, optimum pH 7.6, Km 0.96 X 10(-3) M). The observed third subfraction showed both arylsulphate C and oestrone sulphate sulphohydrolase activity. Sigmoidal kinetics of oestrone sulphate sulphohydrolase after DEAE-cellulose chromatography (Mr 130,000) points to the allosteric character of the enzyme.  相似文献   

5.
2-Deoxyglucoside-2-sulphamate sulphohydrolase was purified about 10 000-fold from the soluble extract of human placenta by using as substrate [N-sulpho-35S]heparin. Differently charged enzyme forms were observed on chromatography on DEAE-cellulose, all of which had an apparent mol.wt. of 110 000 as determined by gel filtration. By using immobilized heparan sulphate as affinity matrix the sulphamate sulphohydrolase could be separated into two forms, a minor one with low and a major one with high affinity for the adsorbent. When tested with [N-sulpho-35S]heparan sulphate the low-affinity form had a Km of 0.2 mM, and the high-affinity form a Km of 0.03 mM. Both forms exhibited the same Km of 10 microM towards [N-sulpho-35S]heparin and were equally well adsorbed to immobilized heparin. The two forms could be distinguished by their pH-optima and by the influence of KCl on heparan sulphate sulphohydrolase activity.  相似文献   

6.
Bovine liver lysosomal adenosine 5'-phosphosulphate sulphohydrolase (EC 3.6.2.1) was purified to apparent homogeneity. The molecular weight of the enzyme was 53 000 by sodium dodecyl sulphate polyacrylamide gel electrophoresis and 56 000 by BioGel P-150 gel filtration. The substrate specificity of the enzyme was studied. The several substrates towards which the enzyme preparation showed high activity were used to establish that a single enzyme was responsible for the different activities. This multiple specificity provides a possible explanation of the physiological role of lysosomal adenosine 5'-phosphosulphate sulphohydrolase.  相似文献   

7.
A cerebroside sulphatase (cerebroside-3-sulphate 3 sulphohydrolase, EC 3.1.6.8) assay based on radio thin-layer chromatography is described. The substrate was labelled by the catalytic addition of tritium to cerebroside sulphate. Using this assay the cerebroside sulphatase activity of sulphatase A (Aryl-sulphate sulphohydrolase, EC 3.1.6.1) from human liver and kidney in the absence of activators was investigated. The pH optimum of this reaction depends on the buffer concentration, being pH 4.5 at 50 mM and 5.3 at 10 mM sodium formate. With the latter concentration the apparent Km for cerebroside sulphate is 0.06 mM; SO2-4 and nitrocatechol sulphate inhibit noncompetitively with a Ki of 4.51 mM for Na2SO4 and 0.43 mM for nitrocatechol sulphate. The cerebroside sulphatase activity of sulphatase A is highly dependent on the ionic strength. The optimum sodium formate concentration is 10 mM, and the cerebroside suophatase activity decreases rapidly with increasing buffer concentration. The same concentration dependence is observed in the inhibitory effect of cerebroside sulphate on the arylsulphatase reaction. The inhibition decreases at increasing buffer concentrations, becoming an activation at 70 mM sodium formate. The progress curve of the cerebroside sulphatase reaction shows a deviation from linearity similar to that of the arylsulphatase reaction. Investigation of the effect of preincubation with cerebroside sulphate on the arylsulphatase activity of the enzyme shows that cerebroside sluphatase activity and inactivation of the enzyme by cerebroside sulphate occur simultaneously. These observations are interpreted as supporting the assumption that cerebroside suophate and arylsulphates are degraded at an identical active site on the same enzyme. Differences in the properties of the cerebroside sulphatase and the arylsulphatase reaction of the enzyme may be attributed to the differences in the physiocochemical state of the two substrates.  相似文献   

8.
A proteolytic enzyme was purified from the post-myofibrillar fraction of rat skeletal muscle. The purification procedure consisted of fractionation of the muscle extract by (NH4)2SO4, chromatography on DEAE-Sephacel, fast protein liquid chromatography on Mono Q and gel filtration on Sepharose 6B. The enzyme preparation appeared to be homogeneous as judged by disc electrophoresis in polyacrylamide gels and by immunoelectrophoresis. The isoelectric point of the proteinase is at 5.1-5.2. The enzyme has an Mr of about 650 000 and dissociates into eight subunits of Mr 25 000-32 000 when subjected to electrophoresis in sodium dodecyl sulphate/polyacrylamide gels. The proteinase contains hydrolytic activity against N-blocked tripeptide 4-methyl-7-coumarylamide substrates with an arginine or phenylalanine residue adjacent to the leaving group. Maximum activity with the first group of substrates was at pH 10.5, and this activity was inhibited by leupeptin, chymostatin and Ca2+. Maximum activity with the latter group of substrates was at pH 7.5, and was also inhibited by the two microbial inhibitors, but was activated by Ca2+ ions. By using [14C]methylcasein as a substrate, maximum activity was observed at pH9.0, and this proteolytic activity was not affected by leupeptin, was enhanced by chymostatin and inhibited by Ca2+. Similar effects were observed when benzyloxycarbonyl-Leu-Leu-Glu 2-naphthylamide was used as a substrate. These enzymic activities were abolished by p-hydroxymercuribenzenesulphonic acid or mersalyl acid, whereas a small activation was observed with cysteine or dithiothreitol.  相似文献   

9.
The cholesterol sulphate sulphohydrolase (CHS-ase) exhibiting molecular weight of 30 kDa was purified from human placenta microsomes. The microsomal proteins were extracted with 0.5% Triton X-100. The DEAE-cellulose chromatography of the solubilized microsomal proteins, performed at pH 7.6 allowed to separate two enzymatically active fractions. One of them was associated with the protein fraction unbound by DEAE-cellulose, the other was tightly bound by ion exchanger. The 30 kDa cholesterol sulphate sulphohydrolase was purified to homogenity from the protein fraction tightly bound by DEAE-cellulose. The highly purified enzyme preparation (specific activity 385 nmol min(-1)mg(-1) of protein) exhibited optimal activity at pH 6.4, the K(m) was established to be 6.7 x 10(-6)M, the pI value was 7.4. The 30 kDa cholesterol sulphate sulphohydrolase, in contrast to the CHS-ase form originated from the protein fraction unbound by DEAE-cellulose, was not sensitive to alkaline phosphatase treatment and phosphohydrolase inhibitors. The effects of steroids, -SH reacting agents and sulphohydrolase inhibitors on the enzyme activity were tested.  相似文献   

10.
The disulphated trisaccharide D-N-acetylgalactosamine sulphate-beta-D-glucuronic acid-beta-D-N-acetylgalactosamine sulphate prepared from 35S- or 14C-labelled chondroitin sulphate was incubated with a preparation of lysosomal enzymes from embryonic-chick epiphysial cartilage. Degradation was demonstrated by analysis of the reaction products. By use of the appropriate intermediate products as substrates, in conjunction with specific enzyme inhibitors, it was shown that the degradation proceeded sequentially from the non-reducing end. It was initiated by sulphatase (preferentially hydrolysing sulphate ester groups at the 6-position), followed by beta-N-acetylgalactosaminidase and beta-glucuronidase, converting the substrate into monosaccharides and inorganic sulphate. The latter enzyme preferentially attacked disaccharides carrying their sulphate ester group at C-4 of the hexosamine residue. Generation of chondroitin sulphate oligosaccharides may occur by the action of an endoglycosidase, previously demonstrated in embryonic-chick cartilage. Endo- and exo-enzymes may thus form a functional unit in lysosomal degradation of chondroitin sulphate.  相似文献   

11.
The inducible S3 secondary alkylsulphohydrolase of the soil bacterium Pseudomonas C12B was purified to homogeneity (683-fold from cell-free extracts by a combination of column chromatography on DEAE-cellulose. Sephadex G-100 and Blue Sepharose CL-6B. The enzyme has a molecular weight in the region of 40000--46000, and is active over a broad range of pH from 5 to 9, with maximum activity at pH 8.2. The preferred substrates of the enzyme are the symmetrical secondary alkylsulphate esters such as heptan-4-yl sulphate and nonan-5-yl sulphate and the asymmetric secondary octyl and nonyl sulphate esters with the sulphate group attached to C-3 or C-4. However, for each asymmetric ester, the L-isomer is much more readily hydrolysed than the D-isomer. This specificity is interpreted in terms of a three-point attachment of the substrate to the enzyme's active site. The alkyl chains on either side of the esterified carbon atom are bound in two separate sites, one of which can only accommodate alkyl chains of limited size. The third site binds the sulphate group. Enzymic hydrolysis of this group is accompanied by complete inversion of configuration at the asymmetric carbon atom. The implied cleavage of the C--O bond of the C--O--S ester linkage was confirmed by 18O-incorporation studies.  相似文献   

12.
A form of steroid sulphate sulphohydrolase (EC 3.1.6.2) hydrolysing the dehydroepiandrosterone sulphate (DHEAS-ase) was purified from human placenta microsomes. During the purification procedure the DHEAS-ase was separated from the oestrone sulphate sulphohydrolase (OS-ase). The purified DHEAS-ase revealed specific activity of 1520 nmolxmin-1xmgprotein-1 and exhibited optimal activity at pH 8.4. The Km value was established to be 3.3+/-0.07x10(-5) M. The pI value was around 8.7. The molecular weight estimated by gel filtration was 7.4 kDa. The purified DHEAS-ase was not sensitive to the common sulphohydrolase inhibitors, such as phosphate, sulphate and sulphide ions, but was inhibited by several phosphohydrolase inhibitors (ammonium molybdate, vanadium oxide(V), zinc acetate). Steroids effected inhibition or activation of the purified enzyme. The data concerning substances reacting with -SH groups suggest that in the physiological conditions DHEAS-ase is controlled by the redox status of the cell.  相似文献   

13.
Procedures for isolation, from human term placenta, of highly purified nuclei and nuclear envelopes with a low content of DNA are described. Both fractions contain oestrone sulphate sulphohydrolase activity. The enzyme from nuclear envelopes can be solubilized with Triton X-100 and, partially, with proteolytic enzymes. It does not require Ca2+ and is insensitive to Ag+ and agents reacting with SH groups. It is strongly inhibited by millimolar concentrations of sulphites and to a much smaller extent by phosphates. Oxidized forms of ascorbic acid, glutathione and NAD+ revealed a pronounced inhibitory effect, whereas reduced forms of these compounds produced a slight activation. It is proposed that oestrone sulphate sulphohydrolase activity in nuclear envelopes from human placenta is not exerted by arylsulphatase but represents a specific enzyme.  相似文献   

14.
1. Acid alpha-glucosidases were purified to homogeneity from rat liver, rat skeletal muscle and human placenta. The properties of these enzymes were investigated. 2. Their pH optima for activity toward various substrates were in the range 4-5. 3. Time course and pH dependence experiments revealed that all glycogen substrates were not hydrolysed at the same rate; the rate of hydrolysis was inversely related to the molecular size of the substrate. The most rapidly hydrolysed glycogen substrate was the smallest (commercial oyster) while the least rapidly hydrolysed was the largest (native rat or rabbit liver). Intermediate sized glycogens were hydrolysed at intermediate rates. 4. Glycogen hydrolysis was stimulated by added sodium ions; this stimulation was pH dependent. 5. It is suggested that lysosomal glycogen metabolism may be controlled by pH, salt concentration and the size of the glycogen substrate. 6. Since the high molecular weight glycogen associated with lysosomes is formed by disulphide bridges between lower molecular weight material it is proposed that an important step of lysosomal glycogen degradation is disulphide bond reduction.  相似文献   

15.
UDP-glucuronosyltransferase (EC 2.4.1.17) activity was solubilized from male Wistar rat liver microsomal fraction in Emulgen 911, and six fractions with the transferase activity were separated by chromatofocusing on PBE 94 (pH 9.4 to 6.0). Fraction I was further separated into Isoforms Ia, Ib and Ic by affinity chromatography on UDP-hexanolamine-Sepharose 4B. UDP-glucuronosyltransferase in Fraction III was further purified by rechromatofocusing (pH 8.7 to 7.5). UDP-glucuronosyltransferases in Fractions IV and V were purified by UDP-hexanolamine-Sepharose chromatography. The transferase isoforms in Fractions II, III, IV and V were finally purified by h.p.l.c. on a TSK G 3000 SW column. Purified UDP-glucuronosyltransferase Isoforms Ia (Mr 51,000), Ib (Mr 52,000), Ic (Mr 56,000), II (Mr 52,000), IV (Mr 53,000) and V (Mr 53,000) revealed single Coomassie Blue-stained bands on sodium dodecyl sulphate/polyacrylamide-gel electrophoresis. Isoform III enzyme showed two bands of Mr 52,000 and 53,000. Comparison of the amino acid compositions by the method of Cornish-Bowden [(1980) Anal. Biochem. 105, 233-238] suggested that all UDP-glucuronosyltransferase isoforms are structurally related. Reverse-phase h.p.l.c. of tryptic peptides of individual isoforms revealed distinct 'maps', indicating differences in primary protein structure. The two bands of Isoform III revealed distinct electrophoretic peptide maps after limited enzymic proteolysis. After reconstitution with phosphatidylcholine liposomes, the purified isoforms exhibited distinct but overlapping substrate specificities. Isoform V was specific for bilirubin glucuronidation, which was not inhibited by other aglycone substrates. Each isoform, except Ia, was identified as a glycoprotein by periodic acid/Schiff staining.  相似文献   

16.
A soil bacterium grown on propan-2-yl sulphate as sole source of carbon and sulphur yielded extracts containing an enzyme capable of liberating sulphate from racemic lactate-2-sulphate. The enzyme was purified to homogeneity by a combination of streptomycin sulphate precipitation of nucleic acids, batch treatment with DEAE-cellulose, and chromatography on columns of DEAE-cellulose, Sephacryl S-300 and butyl-agarose. The protein was monomeric with an Mr of 55 000-60 000. The enzyme activity was specific for D-lactate-2-sulphate (Km 6.6 nM; maximal specific activity 14.3 mumol/min per mg of protein) and showed no activity towards the L-isomer. The products of the enzyme's action were inorganic sulphate and D-lactate which were released in equimolar amounts and stoicheiometrically with the amount of ester hydrolysed. No L-lactate was formed. Retention of configuration implied cleavage of the O-S bond of the C-O-S ester link and this was confirmed by 18O-incorporation experiments in which 18O from 18O-enriched water in the incubation medium was incorporated exclusively and quantitatively into inorganic sulphate. Only two other esters (serine-O-sulphate and p-nitrophenyl sulphate) of a total of 29 compounds tested were substrates for the enzyme. D-Lactate, L-lactate-2-sulphate and the substrate analogues glycollate-2-sulphate and butyrate-2-sulphate were significantly inhibitory.  相似文献   

17.
1. Specific proteases which inactivate the apo-proteins of many pyridoxal enzymes were found in skeletal muscle, liver and small intestine of rats. The protease from these three organs were purified and their properties were compared. 2. The purified proteases from liver and skeletal muscle appeared homogeneous on acrylamide gel electrophoresis. Two different proteases were separated from small intestine. A homogeneous, crystalline enzyme was obtained from the muscle layer while enzyme from the mucosa was partially purified. 3. They showed substrate specificity for pyridoxal enzymes. Their pH optima were in an alkaline region. They showed activity with the substrate of chymotrypsin, N-acetyl-L-tyrosine ethyl ester, but not with that of trypsin, p-toluenesulfonyl-L-arginine ethyl ester. They were inhibited by pyridoxal phosphate or pyridoxamine phosphate and seryl residues were involved in their active center. 4. The four enzymes differed in the following characters: (a) molecular weights; (b) patterns of elution from a CM-Sephadex column; (c) rates of inactivation of substrate enzymes; (d) rates of cleavage of N-acetyl-L-tyrosine ethyl ester; (e) reactivities with antiserum against the enzyme from the muscle layer of small intestine; (f) specific activities. 5. The amino acid composition and effect of chemical modifications of the crystalline enzyme from the muscle layer of small intestine were examined to elucidate its active sites and mode of action. Serine and histidine residues were found to be essential for protease activity. A tyrosine residue was also necessary for activity. Modifications of its sulfhydryl group, amino residues and carboxyl group had no effect on its activity.  相似文献   

18.
In this paper we report that the activity of cholesterol sulphate sulphohydrolase (CHS-ase) is associated with the lysosomal membranes. The procedure of purification of CHS-ase from human placenta lysosomes was elaborated. The purified enzyme is highly specific to cholesterol sulphate (specific activity 2126.60+/-940.90 nmol min(-1) mg protein(-1)) and acts optimally at pH 3.4. The K(M) value for the hydrolysis of cholesterol sulphate is 3.6+/-0.95 x 10(-5)mol/l. The isoelectric point (pI) has the value 5.7, molecular weight estimated by SDS-PAGE electrophoresis is 38 kDa. The described enzyme may be involved in a regulation of cholesterol and cholesterol sulphate levels in the lysosomal membrane.  相似文献   

19.
The mechanism of the L-threo-3-methylaspartate ammonia-lyase (EC 4.3.1.2) reaction has been probed using deuterium and solvent isotope effects with three different substrates, (2S,3S)-3-methylaspartic acid, (2S)-aspartic acid and (2S,3R)-3-methylaspartic acid. Each substrate appears to form a covalent adduct with the enzyme through the amination of a dehydroalanine (DehydAla-173) residue. The true substrates are N-protonated and at low pH, the alkylammonium groups are deprotonated internally in a closed solvent-excluded pocket after K+ ion, an essential cofactor, has become bound to the enzyme. At high pH, the amino groups of the substrates are able to react with the dehydroalanine residue prior to K+ ion binding. This property of the system gives rise to complex kinetics at pH 9.0 or greater and causes the formation of dead-end complexes which lack Mg2+ ion, another essential cofactor. The enzyme-substrate adduct is subsequently deaminated in two elimination processes. Hydrazines act as alternative substrates in the reverse reaction direction in the presence of fumaric acid derivatives, but cause irreversible inhibition in their absence. Borohydride and cyanide are not inhibitors. N-Ethylmaleimide also irreversibly inactivates the enzyme and labels residue Cys-361. The inactivation process is enhanced in the presence of cofactor Mg2+ ions and Cys-361 appears to serve as a base for the removal of the C-3 proton from the natural substrate, (2S,3S)-3-methylaspartic acid. The dehydroalanine residue appears to be protected in the resting form of the enzyme by generation of an internal thioether cross-link. The binding of the substrate and K+ ion appear to cause a conformational change which requires hydroxide ion. This is linked to reversal of the thioether protection step and generation of the base for substrate deprotonation at C-3. The deamination reaction displays high reverse reaction commitments and independent evidence from primary deuterium isotope effect data indicates that a thiolate acts as the base for deprotonation at C-3.  相似文献   

20.
1. Alkaline phosphatase (orthophosphoric-monoester phosphohydrolase (alkaline optimum), EC 3.1.3.1) in guinea pig thymus was extracted optimally in 10 mM Tris - HCl buffer at pH 8.0 containing 5 g/l Triton X-100. 2. alpha-Glycerophosphate, beta-glycerophosphate and phenolphthalein monophosphate were hydrolyzed by thymus extract with a pH optimum at 9.8-10.0, whereas p-nitrophenylphosphate and alpha-naphthylphosphate were hydrolyzed with pH optima at 10.7-10.8 and beta-naphthylphosphate at pH 11.2. P-Nitrophenylphosphate and phenolphthalein monophosphate proved to be the most suitable substrates. 3. Alkaline phosphatase was effectively inhibited by EDTA, Zn2+, histidine and urea therefore resembling the inhibition characteristics of alkaline phosphatase in the placenta and kidney, but not that in the liver and intestine, which differed markedly. 4. DEAE-cellulose chromatography and polyacrylamide disc electrophoresis revealed three enzyme peaks which did not differ in their substrate specificities and modifier characteristics. 5. Polyacrylamide disc electrophoresis of thymus, serum, placenta, kidney, liver, bone and intestine revealed no alkaline phosphatase bands definitely unique to thymus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号