首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
A computational method to calculate the orientation of membrane-associated alpha-helices with respect to a lipid bilayer has been developed. It is based on a previously derived implicit membrane representation, which was parameterized using the structures of 46 alpha-helical membrane proteins. The method is validated by comparison with an independent data set of six transmembrane and nine antimicrobial peptides of known structure and orientation. The minimum energy orientations of the transmembrane helices were found to be in good agreement with tilt and rotation angles known from solid-state NMR experiments. Analysis of the free-energy landscape found two types of minima for transmembrane peptides: i), Surface-bound configurations with the helix long axis parallel to the membrane, and ii), inserted configurations with the helix spanning the membrane in a perpendicular orientation. In all cases the inserted configuration also contained the global energy minimum. Repeating the calculations with a set of solution NMR structures showed that the membrane model correctly distinguishes native transmembrane from nonnative conformers. All antimicrobial peptides investigated were found to orient parallel and bind to the membrane surface, in agreement with experimental data. In all cases insertion into the membrane entailed a significant free-energy penalty. An analysis of the contributions of the individual residue types confirmed that hydrophobic residues are the main driving force behind membrane protein insertion, whereas polar, charged, and aromatic residues were found to be important for the correct orientation of the helix inside the membrane.  相似文献   

2.
We have investigated the features of single-span model membrane proteins based upon leader peptidase that determines whether the proteins insert by a YidC/Sec-independent, YidC-only, or YidC/Sec mechanism. We find that a protein with a highly hydrophobic transmembrane segment that inserts into the membrane by a YidC/Sec-independent mechanism becomes YidC-dependent if negatively charged residues are inserted into the translocated periplasmic domain or if the hydrophobicity of the transmembrane segment is reduced by substituting polar residues for nonpolar ones. This suggests that charged residues in the translocated domain and the hydrophobicity within the transmembrane segment are important determinants of the insertion pathway. Strikingly, the addition of a positively charged residue to either the translocated region or the transmembrane region can switch the insertion requirements such that insertion requires both YidC and SecYEG. To test conclusions from the model protein studies, we confirmed that a positively charged residue is a SecYEG determinant for the endogenous proteins ATP synthase subunits a and b and the TatC subunit of the Tat translocase. These findings provide deeper insights into how pathways are selected for the insertion of proteins into the Escherichia coli inner membrane.  相似文献   

3.
Spontaneous membrane adsorption, folding and insertion of the synthetic WALP16 and KALP16 peptides was studied by computer simulations starting from completely extended conformations. The peptides were simulated using an unmodified all-atom force field in combination with an efficient Monte Carlo sampling algorithm. The membrane is represented implicitly as a hydrophobic zone inside a continuum solvent modelled using the generalized Born theory of solvation. The method was previously parameterized to match insertion energies of hydrophobic side chain analogs into cyclohexane and no parameters were optimized for the present simulations. Both peptides rapidly precipitate out of bulk solution and adsorb to the membrane surface. Interfacial folding into a helical conformation is followed by membrane insertion. Both the peptide conformations and their location in the membrane are strongly temperature dependent. The temperature dependent behaviour can be summarized by fitting to a four-state model, separating the system into folded and unfolded conformers, which are either inserted into the membrane or located at the interfaces. As the temperature is lowered the dominant peptide conformation of the system changes from unfolded surface bound configurations to folded surface bound states. Folded trans-membrane conformers represent the dominant configuration at low temperatures. The analysis allows direct estimates of the free energies of peptide folding and membrane insertion. In the case of WALP the quality of the fit is excellent and the thermodynamic behaviour is in good agreement with expected theoretical consideration. For KALP the fit is more problematic due to the large solvation energies of the charged lysine residues.  相似文献   

4.
Spontaneous membrane adsorption, folding and insertion of the synthetic WALP16 and KALP16 peptides was studied by computer simulations starting from completely extended conformations. The peptides were simulated using an unmodified all-atom force field in combination with an efficient Monte Carlo sampling algorithm. The membrane is represented implicitly as a hydrophobic zone inside a continuum solvent modelled using the generalized Born theory of solvation. The method was previously parameterized to match insertion energies of hydrophobic side chain analogs into cyclohexane and no parameters were optimized for the present simulations. Both peptides rapidly precipitate out of bulk solution and adsorb to the membrane surface. Interfacial folding into a helical conformation is followed by membrane insertion. Both the peptide conformations and their location in the membrane are strongly temperature dependent. The temperature dependent behaviour can be summarized by fitting to a four-state model, separating the system into folded and unfolded conformers, which are either inserted into the membrane or located at the interfaces. As the temperature is lowered the dominant peptide conformation of the system changes from unfolded surface bound configurations to folded surface bound states. Folded trans-membrane conformers represent the dominant configuration at low temperatures. The analysis allows direct estimates of the free energies of peptide folding and membrane insertion. In the case of WALP the quality of the fit is excellent and the thermodynamic behaviour is in good agreement with expected theoretical consideration. For KALP the fit is more problematic due to the large solvation energies of the charged lysine residues.  相似文献   

5.
S C Li  C M Deber 《FEBS letters》1992,311(3):217-220
Transmembrane (TM) segments of integral membrane proteins are putatively alpha-helical in conformation once inserted into the membrane, yet consist of primary sequences rich in residues known in soluble proteins as helix-breakers (Gly) and beta-sheet promoters (Ile, Val, Thr). To examine the specific 2 degrees structure propensities of such residues in membrane environments, we have designed and synthesized a series of 20-residue peptides with 'guest' hydrophobic segments--expected to provide three turns of incipient alpha-helix content--embedded in 'host' hydrophilic (Lys-Ser) matrices. Circular dichroism (CD) spectra of the model peptides in water showed that significant helical content was observed only for peptides with high Ala content; others behaved as 'random coils'. However, in the membrane-mimetic environment of sodium dodecylsulfate (SDS) micelles, it was found that Gly can be accommodated as readily as Ala, and Ile or Val as readily as Leu, in hydrophobic alpha-helices. Further subtleties of structural preferences could be observed in electrically-neutral lyso-phosphatidylcholine (LPC) micelles, where helical propensity decreased in the order Ala-Leu-rich > Gly-Leu-rich > Gly-Ile(Val)-rich hydrophobic segments. The results conjure a role of environment-dependent helix-modulation for Gly, Ile, and Val residues--and suggest that these residues may provide, in part, the structural basis for conformational transitions within or adjacent to membrane domains, such as those accompanying membrane insertion and/or required for transport or signalling functions.  相似文献   

6.
M13 procoat protein was one of the first model proteins used to study bacterial membrane protein insertion. It contains a signal peptide of 23 amino acid residues and is not membrane targeted by the signal recognition particle. The translocation of its periplasmic domain is independent of the preprotein translocase (SecAYEG) but requires electrochemical membrane potential and the membrane insertase YidC of Escherichia coli. We show here that YidC is sufficient for efficient membrane insertion of the purified M13 procoat protein into energized YidC proteoliposomes. When no membrane potential is applied, the insertion is substantially reduced. Only in the presence of YidC, membrane insertion occurs if bilayer integrity is preserved and membrane potential is stable for more than 20 min. A mutant of the M13 procoat protein, H5EE, with two additional negatively charged residues in the periplasmic domain inserted into YidC proteoliposomes and SecYEG proteoliposomes with equal efficiencies. We conclude that the protein can use both the YidC-only pathway and the Sec pathway. This poses the questions of how procoat H5EE is inserted in vivo and how insertion pathways are selected in the cell.  相似文献   

7.
A partition study with peptides and recombinant proteins in poly(ethylene glycol)4000–potassium phosphate aqueous two-phase systems has been performed. The aim was to study to what extent the insertion of charged residues could affect protein partition in addition to the already observed effects of tryptophan residues. The model proteins used are based on a staphylococcal protein A derivative, Z, and modified by the insertion of peptide tags close to the C-terminus. The tags differed with respect to their content of both Trp, negatively (Asp) and positively charged (Lys) amino acid residues. The same partitioning trends were observed for the peptides and fusion proteins. The effect of Trp residues was to direct the partitioning towards the PEG phase. The insertion of two negatively charged (Asp) residues into a Trp4-tag enhanced the partition towards the PEG phase even more. The introduction of positively charged (Lys) residues in addition to Trp residues, on the other hand, pulled the peptide or protein towards the potassium phosphate phase. The partitioning of peptides gave a good qualitative picture of the effect of the peptide on partitioning when fused to the protein. The efficiencies of the tags were calculated based on partitioning of tags and fusion proteins, and tag efficiencies generally varied between 60 and 85%.  相似文献   

8.
A Kuhn  H Y Zhu    R E Dalbey 《The EMBO journal》1990,9(8):2385-2389
The coat protein of bacteriophage M13 is inserted into the Escherichia coli plasma membrane as a precursor protein, termed procoat, with a typical leader peptide of 23 amino acid residues. Its membrane insertion requires the electrochemical potential but not the cellular components SecA and SecY. Since the electrochemical gradients result in the periplasmic side of the membrane being positively charged, the membrane potential could contribute to the transfer of the negatively charged central region of procoat across the membrane. Here we demonstrate that the central domain following the leader peptide can be translocated across the membrane even when the net charge of the region is changed from -3 to +3. This rules out an electrophoresis-like insertion mechanism for procoat. We also show that the sec independence of procoat insertion is linked to the presence of the second apolar domain. The deletion of most of the second apolar domain from a procoat fusion protein results in sec dependent membrane insertion of the hybrid protein. Moreover, like other proteins that require the sec genes, translocation of this sec dependent procoat protein is inhibited when positively charged residues are introduced after the leader peptide. Loop models involving one or two hydrophobic regions are presented that account for the differences in tolerance of positively charged residues.  相似文献   

9.
D.M. Engelman  T.A. Steitz 《Cell》1981,23(2):411-422
We propose that the initial event in the secretion of proteins across membranes and their insertion into membranes is the spontaneous penetration of the hydrophobic portion of the bilayer by a helical hairpin. Energetic considerations of polypeptide structures in a nonpolar, lipid environment compared with an aqueous environment suggest that only α and 310 helices will be observed in the hydrophobic interior of membranes. Insertion of a polypeptide is accomplished by a hairpin structure composed of two helices, which will partition into membranes if the free energy arising from burying hydrophobic helical surfaces exceeds the free energy “cost” of burying potentially charged and hydrogen-bonding groups. We suggest, for example, that the hydrophobic leader peptide found in secreted proteins and in many membrane proteins forms one of these helices and is oriented in the membrane with its N terminus inside. In secreted proteins, the leader functions by pulling polar portions of a protein into the membrane as the second helix of the hairpin. The occurrence of all categories of membrane proteins can be rationalized by the hydrophobic or hydrophilic character of the two helices of the inserted hairpin and, for some integral membrane proteins, by events in which a single terminal helix is inserted. We propose that, because of the distribution of polar and nonpolar sequences in the polypeptide sequence, secretion and the insertion of membrane proteins are spontaneous processes that do not require the participation of additional specific membrane receptors or transport proteins.  相似文献   

10.
The filamentous phage coat protein pIII has been used to display a variety of peptides and proteins to allow easy screening for desirable binding properties. We have examined the biological constraints that restrict the expression of short peptides located in the early mature region of pIII, adjacent to the signal sequence cleavage site. Many functionally defective pIII fusion proteins contained several positively charged amino acids in this region. These residues appear to inhibit proper insertion of pIII into the Escherichia coli inner membrane, blocking the assembly and extrusion of phage particles. Suppressor mutations in the prlA (secY) component of the protein export apparatus dramatically alleviate the phage growth defect caused by the positively charged residues. We conclude that insertion of pIII fusion proteins into the inner membrane can occur by a sec gene-dependent mechanism. The suppressor strains should be useful for increasing the diversity of peptides displayed on pIII in phage libraries.  相似文献   

11.
An efficient excitation energy transfer from tryptophan residues of intrinsic membrane proteins to an extrinsic fluorescent probe (diphenylhexatriene) has been demonstrated in rat erythrocyte ghosts. To correlate this transfer with the localization of the probe, a model system has been investigated. It consists of peptides containing lysine and tryptophan residues bound to negatively charged phosphatidylserine vesicles. Absorption and fluorescence spectroscopies were used to follow peptide binding and diphenylhexatriene incorporation. Peptide binding is accompanied by a blue shift of the tryptophan fluorescence together with an increase of the quantum yield and of the fluorescence decay time. An experimental Föster critical distance value of 4.0 nm was found for energy transfer from tryptophan residues of peptides to diphenylhexatriene which approaches the range of calculated values (3.1–3.7 nm) using a two-dimensional model. These results demonstrate that efficient energy transfer can occur from tryptophan residues of intrinsic proteins to diphenylhexatriene without any interaction between diphenylhexatriene and proteins in biological membranes.  相似文献   

12.
The tetracycline resistance proteins (TetA) of gram-negative bacteria are secondary active transport proteins that contain buried charged amino acids that are important for tetracycline transport. Earlier studies have shown that insertion of TetA proteins into the cytoplasmic membrane is mediated by helical hairpin pairs of transmembrane (TM) segments. However, whether helical hairpins direct spontaneous insertion of TetA or are required instead for its interaction with the cellular secretion (Sec) machinery is unknown. To gain insight into how TetA proteins are inserted into the membrane, we have investigated how tolerant the class C TetA protein encoded by plasmid pBR322 is to placement of charged residues in TM segments. The results show that the great majority of charge substitutions do not interfere with insertion even when placed at locations that cannot be shielded internally within helical hairpins. The only mutations that frequently block insertion are proline substitutions, which may interfere with helical hairpin folding. The ability of TetA to broadly tolerate charge substitutions indicates that the Sec machinery assists in its insertion into the membrane. The results also demonstrate that it is feasible to engineer charged residues into the interior of TetA proteins for the purpose of structure-function analysis.  相似文献   

13.
Subunits CFo-I and CFo-II of ATP synthase in chloroplast thylakoid membranes are two structurally and functionally closely related proteins of bitopic membrane topology which evolved from a common ancestral gene. In higher plants, CFo-I still originates in plastid chromosomes (gene: atpF), while the gene for CFo-II (atpG) was phylogenetically transferred to the nucleus. This gene transfer was accompanied by the reorganization of the topogenic signals and the mechanism of membrane insertion. CFo-I is capable of integrating correctly as the mature protein into the thylakoid membrane, whereas membrane insertion of CFo-II strictly depends on a hydrophobic targeting signal in the transit peptide. This requirement is caused by three negatively charged residues at the N-terminus of mature CFo-II which are lacking from CFo-I and which have apparently been added to the protein only after gene transfer has occurred. Accordingly, the CFo-II transit peptide is structurally and functionally equivalent to typical bipartite transit peptides, capable of also translocating hydrophilic lumenal proteins across the thylakoid membrane. In this case, transport takes place by the Sec-dependent pathway, despite the fact that membrane integration of CFo-II is a Sec-independent, and presumably spontaneous, process.  相似文献   

14.
We previously proposed three hypotheses relating the mechanism of antimicrobial and cytolytic peptides in model membranes to the Gibbs free energies of binding and insertion into the membrane [Almeida, P. F., and Pokorny, A. (2009) Biochemistry 48, 8083-8093]. Two sets of peptides were designed to test those hypotheses, by mutating of the sequences of δ-lysin, cecropin A, and magainin 2. Peptide binding and activity were measured on phosphatidylcholine membranes. In the first set, the peptide charge was changed by mutating basic to acidic residues or vice versa, but the amino acid sequence was not altered much otherwise. The type of dye release changed from graded to all-or-none according to prediction. However, location of charged residues in the sequence with the correct spacing to form salt bridges failed to improve binding. In the second set, the charged and other key residues were kept in the same positions, whereas most of the sequence was significantly but conservatively simplified, maintaining the same hydrophobicity and amphipathicity. This set behaved completely different from predicted. The type of release, which was expected to be maintained, changed dramatically from all-or-none to graded in the mutants of cecropin and magainin. Finally, contrary to the hypotheses, the results indicate that the Gibbs energy of binding to the membrane, not the Gibbs energy of insertion, is the primary determinant of peptide activity.  相似文献   

15.
A series of thylakoid membrane proteins, including PsbX, PsbY and PsbW, are synthesized with cleavable signal peptides yet inserted using none of the known Sec/SRP/Tat/Oxa1-type insertion machineries. Here, we show that, although superficially similar to Sec-type signal peptides, these thylakoidal signal peptides contain very different determinants. First, we show that basic residues in the N-terminal domain are not important, ruling out electrostatic interactions as an essential element of the insertion mechanism, and implying a fundamentally different targeting mechanism when compared with the structurally similar M13 procoat. Second, we show that acidic residues in the C-domain are essential for the efficient maturation of the PsbX and PsbY-A1 peptides, and that even a single substitution of the -5 Glu by Val in the PsbX signal peptide abolishes maturation in the thylakoid. Processing efficiency is restored to an extent, but not completely, by the highly hydrophilic Asn, implying that this domain is required to be hydrophilic, but preferably negatively charged, in order to present the cleavage site in an optimal manner. We show that substitution of the PsbX C-domain Glu residues by Val leads to a burial of the cleavage site within the bilayer although insertion is unaffected. Finally, we show that substitution of the Glu residues in the lumenal A2 loop of the PsbY polyprotein leads to a block in cleavage on the stromal side of the membrane, and present evidence that the PsbY-A2 signal peptide is required to be relatively hydrophilic and unable to adopt a transmembrane conformation on its own. These data indicate that, rather than being merely additional hydrophobic regions to promote insertion, the signal peptides of these thylakoid proteins are complex domains with uniquely stringent requirements in the C-domain and/or translocated loop regions.  相似文献   

16.
We present a theoretical study of the energetics, equilibrium size, and size distribution of membrane pores composed of electrically charged amphipathic peptides. The peptides are modeled as cylinders (mimicking alpha-helices) carrying different amounts of charge, with the charge being uniformly distributed over a hydrophilic face, defined by the angle subtended by polar amino acid residues. The free energy of a pore of a given radius, R, and a given number of peptides, s, is expressed as a sum of the peptides' electrostatic charging energy (calculated using Poisson-Boltzmann theory), and the lipid-perturbation energy associated with the formation of a membrane rim (which we model as being semitoroidal) in the gap between neighboring peptides. A simple phenomenological model is used to calculate the membrane perturbation energy. The balance between the opposing forces (namely, the radial free energy derivatives) associated with the electrostatic free energy that favors large R, and the membrane perturbation term that favors small R, dictates the equilibrium properties of the pore. Systematic calculations are reported for circular pores composed of various numbers of peptides, carrying different amounts of charge (1-6 elementary, positive charges) and characterized by different polar angles. We find that the optimal R's, for all (except, possibly, very weakly) charged peptides conform to the "toroidal" pore model, whereby a membrane rim larger than approximately 1 nm intervenes between neighboring peptides. Only weakly charged peptides are likely to form "barrel-stave" pores where the peptides essentially touch one another. Treating pore formation as a two-dimensional self-assembly phenomenon, a simple statistical thermodynamic model is formulated and used to calculate pore size distributions. We find that the average pore size and size polydispersity increase with peptide charge and with the amphipathic polar angle. We also argue that the transition of peptides from the adsorbed to the inserted (membrane pore) state is cooperative and thus occurs rather abruptly upon a change in ambient conditions.  相似文献   

17.
Yeast porin, the major outer mitochondrial membrane protein, is synthesized without a cleavable extension peptide and post-translationally inserted into the membrane. When inserted into the membrane, it acquires resistance to externally added trypsin. To locate the sequences responsible for membrane insertion and topogenesis in the primary structure of yeast porin, we constructed several deletion and chimeric mutants of the porin cDNA. These cDNAs were expressed in vitro and the products were assayed for capacity to be correctly inserted into isolated mitochondria. It was thus found that deletion of the segment spanning residues 37-98 did not appreciably impair the insertion competence and the inserted protein became resistant to trypsin. On the other hand, the porin mutant lacking the segment consisting of residues 17-98 did not acquire the trypsin resistance, though it could bind to mitochondria specifically. Deletion of the carboxy-terminal 62 amino acid residues also abolished the capacity to be correctly inserted into mitochondria. We conclude that information required for membrane insertion and intramembranous topogenesis of the porin molecule is stored not only in the amino-terminal region but also in the carboxy-terminal portion.  相似文献   

18.
Phosphatidic acid (PA) is a minor but important phospholipid that, through specific interactions with proteins, plays a central role in several key cellular processes. The simple yet unique structure of PA, carrying just a phosphomonoester head group, suggests an important role for interactions with the positively charged essential residues in these proteins. We analyzed by solid-state magic angle spinning 31P NMR and molecular dynamics simulations the interaction of low concentrations of PA in model membranes with positively charged side chains of membrane-interacting peptides. Surprisingly, lysine and arginine residues increase the charge of PA, predominantly by forming hydrogen bonds with the phosphate of PA, thereby stabilizing the protein-lipid interaction. Our results demonstrate that this electrostatic/hydrogen bond switch turns the phosphate of PA into an effective and preferred docking site for lysine and arginine residues. In combination with the special packing properties of PA, PA may well be nature's preferred membrane lipid for interfacial insertion of positively charged membrane protein domains.  相似文献   

19.
Distributions of each amino acid in the trans-membrane domain were calculated as a function of the membrane normal using all currently available alpha-helical membrane protein structures with resolutions better than 4 A. The results were compared with previous sequence- and structure-based analyses. Calculation of the average hydrophobicity along the membrane normal demonstrated that the protein surface in the membrane domain is in fact much more hydrophobic than the protein core. While hydrophobic residues dominate the membrane domain, the interfacial regions of membrane proteins were found to be abundant in the small residues glycine, alanine, and serine, consistent with previous studies on membrane protein packing. Charged residues displayed nonsymmetric distributions with a preference for the intracellular interface. This effect was more prominent for Arg and Lys resulting in a direct confirmation of the positive inside rule. Potentials of mean force along the membrane normal were derived for each amino acid by fitting Gaussian functions to the residue distributions. The individual potentials agree well with experimental and theoretical considerations. The resulting implicit membrane potential was tested on various membrane proteins as well as single trans-membrane alpha-helices. All membrane proteins were found to be at an energy minimum when correctly inserted into the membrane. For alpha-helices both interfacial (i.e. surface bound) and inserted configurations were found to correspond to energy minima. The results demonstrate that the use of trans-membrane amino acid distributions to derive an implicit membrane representation yields meaningful residue potentials.  相似文献   

20.
The mechanosensitive channel MscL in the inner membrane of Escherichia coli is a homopentameric complex involved in homeostasis when cells are exposed to hypoosmotic conditions. The E. coli MscL protein is synthesized as a polypeptide of 136 amino acid residues and uses the bacterial signal recognition particle for membrane targeting. The protein is inserted into the membrane independently of the Sec translocon but requires YidC. Depletion of YidC inhibits translocation of the protein across the membrane. Insertion of MscL occurs primarily in a proton motive force-independent manner. The hydrophilic loop region of MscL has 29 residues that include 5 charged residues. Altering the charges in the periplasmic loop of MscL affects the requirements for membrane insertion. The introduction of one, two or three negatively charged amino acids makes the insertion dependent on the electrochemical membrane potential and gradually dependent on the Sec translocon, whereas the addition of five negatively charged residues as well as the addition of three positively charged residues inhibits membrane insertion of MscL. However, we find that the mutant with three uncharged residues requires both the SecYEG complex and YidC but not SecA for membrane insertion. In vivo cross-linking data showed that the newly synthesized MscL interacts with YidC and with SecY. Therefore, the MscL mutants use a membrane insertion mechanism that involves SecYEG and YidC simultaneously.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号