首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
p53 coordinates the expression of an intricate network of genes in response to stress signals. Sequence-specific DNA binding is essential for p53-mediated tumor suppression. We evaluated the impact of single-nucleotide polymorphisms (SNPs) in p53 response elements (p53RE) on DNA binding and gene expression in response to DNA damage. Using a bioinformatics approach based on incorporating p53 binding strength into a position weight matrix, we selected 32 SNPs in putative and validated p53REs. The microsphere assay for protein–DNA binding (MAPD) and allele-specific expression analysis was employed to assess the impact of SNPs on p53-DNA binding and gene expression, respectively. Comparing activated p53 binding in nuclear extracts from doxorubicin- or ionizing radiation (IR)-treated human cells, we observed little difference in binding profiles. Significant p53 binding was observed for most polymorphic REs and several displayed binding comparable to the p21 RE. SNP alleles predicted to lower p53 binding indeed reduced binding in 25 of the 32 sequences. Chromatin immunoprecipitation-sequencing in lymphoblastoid cells confirmed p53 binding to seven polymorphic p53 REs in response to doxorubicin. In addition, five polymorphisms were associated with altered gene expression following doxorubicin treatment. Our findings demonstrate an effective strategy to identify and evaluate SNPs that may alter p53-mediated stress responses.  相似文献   

2.
The p53 tumor suppressor protein functions as a critical component of genotoxic stress response by regulating the expression of effector gene products that control the fate of a cell following DNA damage. Unstressed cells maintain p53 at low levels through regulated degradation, and p53 levels and activity are rapidly elevated upon genotoxic stress. Biochemical mechanisms that control the levels and activity of p53 are therefore of great interest. We and others have recently identified hAda3 (human homologue of yeast alteration/deficiency in activation 3) as a p53-interacting protein and enhancer of p53 activity. Here, we show that endogenous levels of p53 and Ada3 interact with each other, and by using inducible overexpression and short hairpin RNA-mediated knockdown strategies we demonstrate that hAda3 stabilizes p53 protein by promoting its acetylation. Use of a p53 mutant with mutations of known p300/CREB-binding protein acetylation sites demonstrated that hAda3-dependent acetylation is required for increase in p53 stability and target gene induction. Importantly, we demonstrate that endogenous hAda3 is essential for DNA damage-induced acetylation and stabilization of p53 as well as p53 target gene induction. Overall, our results establish hAda3, a component of coactivator complexes that include histone acetyltransferase p300/CREB-binding protein, as a critical mediator of acetylation-dependent stabilization and activation of p53 upon genotoxic stress in mammalian cells.  相似文献   

3.
As a critical tumor suppressor, p53 is inactivated in human cancer cells by somatic gene mutation or disruption of pathways required for its activation. Therefore, it is critical to elucidate the mechanism underlying p53 activation after genotoxic and cellular stresses. Accumulating evidence has indicated the importance of posttranslational modifications such as acetylation in regulating p53 stability and activity. However, the physiological roles of the eight identified acetylation events in regulating p53 responses remain to be fully understood. By employing homologous recombination, we introduced various combinations of missense mutations (lysine to arginine) into eight acetylation sites of the endogenous p53 gene in human embryonic stem cells (hESCs). By determining the p53 responses to DNA damage in the p53 knock-in mutant hESCs and their derivatives, we demonstrate physiological importance of the acetylation events within the core domain (K120 and K164) and at the C-terminus (K370/372/373/381/382/ 386) in regulating human p53 responses to DNA damage.  相似文献   

4.
5.
6.
The p53 protein is activated by stress signals and exhibits both protective and death-promoting functions that are considered important for its tumor suppressor function. Emerging evidence points toward an additional role for p53 in metabolism. Here, we identify Lpin1 as a p53-responsive gene that is induced in response to DNA damage and glucose deprivation. Lpin1 is essential for adipocyte development and fat metabolism, and mutation in this gene is responsible for the lypodystrophy phenotype in fld mice. We show that p53 and Lpin1 regulate fatty acid oxidation in mouse C2C12 myoblasts. p53 phosphorylation on Ser18 in response to low glucose is ROS and ATM dependent. Lpin1 expression in response to nutritional stress is controlled through the ROS-ATM-p53 pathway and is conserved in human cells. Lpin1 provides a critical link between p53 and metabolism that may be an important component in mediating the tumor suppressor function of p53.  相似文献   

7.
p53 is a critical mediator of cellular responses to a variety of stresses. Given the frequency of p53 mutations in human malignancies and that disruption of p53 has been implicated in chemoresistance, understanding the factors that select for p53 disruption is important both for understanding tumor evolution and for designing cancer therapies. While it is widely believed that genotoxic stress selects for p53 mutations, the effects of DNA damaging agents on long-term proliferative potential are usually not affected by p53 status. Previous reports have demonstrated that despite being activated, p53 loss does not prevent cell cycle arrest and senescence in response to high levels of acute replicational stress. In contrast, we recently reported that chronic exposure of non-transformed cells to low, clinically relevant levels of replicational stress induces p53-dependent senescence-like arrest. Disruption of p53 or its target gene p21CIP1 antagonizes this arrest, leading to a long-term proliferative advantage. However, when replicational stress is associated with substantial DNA strand breaks, the ability of p53 disruption to up-regulate RAD51 dependent homologous recombination becomes important. Replicational stress is induced by many chemotherapeutic treatments and perhaps by some dietary deficiencies, and may be an important factor that selects for p53 mutations during cancer initiation and progression.  相似文献   

8.
We silenced p53 gene expression in ARPE-19, a human retinal pigmented epithelial cell line using RNA interference. The effect of silencing the p53 gene in proliferating ARPE-19 cells was studied. Four short hairpin RNAs (shRNAs) targeting different regions of human p53 mRNA were delivered individually into ARPE-19 cells using lentiviral vector to produce stable cell lines. p53 mRNA and protein levels were reduced to varying extents in the four shRNA-transduced ARPE-19 cell lines. The cell line that showed greatest reduction (85-90%) of p53 expression showed decreased p21 promoter activation after DNA damage with camptothecin, etoposide and MMS. Whereas treatment of wild type ARPE-19 cells with camptothecin resulted in apoptosis, silencing p53 expression increased their survival. Cell cycle analyses indicated that irradiation resulted in a G1 arrest in ARPE-19 cells, and that the arrest was significantly reduced in p53-silenced cells. Thus, p53 plays a central role in the response of ARPE-19 cells to DNA damaging agents that act via different mechanisms. Additionally, ARPE-19 cells with reduced p53 expression behave similar to tumor cell lines with mutated or non-functional p53. The present data demonstrate the utility of lentiviral vectors to create stable isogenic cell lines with reduced expression of a specific gene, thereby permitting the study of the function of a gene, the pathways controlled by it, and the effect of therapeutics on a cell with altered genetic makeup in a pair-wise fashion.  相似文献   

9.
We previously reported that the space environment consisting of microgravity and space radiation induced an increased level of p53 protein, a tumor suppressor gene product, in rat skin. Here, we report the increase of p53 protein in the muscles of rats that traveled into space. Rats were divided into three groups. The first group remained on earth (VC), and did not show any change in p53 protein level. The second group made a 14-day flight into space on the Second Spacelab Life Science (SLS-2) Mission (F). The third group was experimentally subjected to the same kinds of stress as those in the second group without making a space flight (SC). F and SC rats were sacrificed on day zero (F-0, SC-0) and day nine (F-9, SC-9) after return from space. F-0 rats showed a 1.5-fold increase in p53 protein level compared with that of SC-0 rats, whereas, F-9 rats showed a 1.35-fold increase in p53 protein compared with that of SC-9 rats. These results suggest that the accumulation of cellular p53 protein induced by space environments occurs not only in rat skin cells, but also in rat muscle cells.  相似文献   

10.
11.
12.
13.
14.
15.
Previous studies have shown that exposure of cells to high levels of replicational stress leads to permanent proliferation arrest that does not require p53. We have examined cellular responses to therapeutically relevant low levels of replicational stress that allow limited proliferation. Chronic exposure to low concentrations of hydroxyurea, aphidicolin, or etoposide induced irreversible cell cycle arrest after several population doublings. Inhibition of p53 activity antagonized this arrest and enhanced the long-term proliferation of p53 mutant cells. p21CIP1 was found to be a critical p53 target for arrest induced by hydroxyurea or aphidicolin, but not etoposide, as judged by the ability of p21CIP1 suppression to mimic the effects of p53 disruption. Suppression of Rad51 expression, required for homologous recombination repair, blocked the ability of mutant p53 to antagonize arrest induced by etoposide, but not aphidicolin. Thus, the ability of mutant p53 to prevent arrest induced by replicational stress per se is primarily dependent on preventing p21CIP1 up-regulation. However, when replication stress is associated with DNA strand breaks (such as with etoposide), up-regulation of homologous recombination repair in response to p53 disruption becomes important. Since replicational stress leads to clonal selection of cells with p53 mutations, our results highlight the potential importance of chronic replicational stress in promoting cancer development.  相似文献   

16.
Epidermal melanocytes are skin cells specialized in melanin production. Activation of the melanocortin 1 receptor (MC1R) on melanocytes by α-melanocyte-stimulating hormone (α-MSH) induces synthesis of the brown/black pigment eumelanin that confers photoprotection from solar UV radiation (UVR). Contrary to keratinocytes, melanocytes are slow proliferating cells that persist in the skin for decades, in an environment with high levels of UVR-induced reactive oxygen species (ROS). We previously reported that in addition to its role in pigmentation, α-MSH also reduces oxidative stress and enhances the repair of DNA photoproducts in melanocytes, independent of melanin synthesis. Given the significance of ROS in carcinogenesis, here we investigated the mechanisms by which α-MSH exerts antioxidant effects in melanocytes. We show that activation of the MC1R by α-MSH contributes to phosphorylation of p53 on serine 15, a known requirement for stabilization and activation of p53, a major sensor of DNA damage. This effect is mediated by the cAMP/PKA pathway and by the activation of phosphoinositide 3-kinase (PI3K) ATR and DNA protein kinase (DNA-PK). α-MSH increases the levels of 8-oxoguanine DNA glycosylase (OGG1) and apurinic apyrimidinic endonuclease 1 (APE-1/Ref-1), enzymes essential for base excision repair. Nutlin-3, an HDM2 inhibitor, mimicked the effects of α-MSH resulting in reduced phosphorylation of H2AX (γ-H2AX), a marker of DNA damage. Conversely, the p53 inhibitor pifithrin-α or silencing of p53 abolished the effects of α-MSH and augmented oxidative stress. These results show that p53 is an important target of the downstream MC1R signaling that reduces oxidative stress and possibly malignant transformation of melanocytes.  相似文献   

17.
Mdm2 is a nuclear phosphoprotein which functions as a negative feedback regulator of the p53 tumor suppressor gene. In this study, we investigated the alteration of Mdm2 and p53 in three human cancer cell lines containing either a wild-type or mutant p53 gene after treatment with Adriamycin (doxorubicin, ADR), a DNA damaging agent. We found that human breast cancer MCF-7 cells containing wild-type p53 were much more susceptible to ADR compared to human breast cancer MDA-MB-231 and human prostate cancer Du-145 cells which contain mutant p53. ADR resulted in a significant dose-dependent accumulation of p53 protein in MCF-7 cells, whereas little or no influence was observed on p53 protein of the two mutant p53 cell lines. However, a significant down-regulation of Mdm2 at protein and mRNA levels was observed in these three cell lines following ADR treatment. Moreover, the decrease of Mdm2 was in both a dose- and time-dependent manner. It is interestingly noted that 5 μM is a critical dose for significant down-regulation of the Mdm2 protein. Selected proteasome inhibitors did not rescue the ADR-caused decline in the expression of Mdm2 protein. Therefore, our present results reveal that ADR can induce a down-regulation of Mdm2 via a p53-independent pathway in human cancer cells and the ubiquitin-proteasome degradation mechanism may not be involved in the decreased expression of Mdm2 protein.  相似文献   

18.
In the present study we present evidence for the critical role of Sp1 in the mechanism of transactivation of the human cell cycle inhibitor p21(WAF1/Cip1) (p21) gene promoter by the tumor suppressor p53 protein. We found that the distal p53-binding site of the p21 promoter acts as an enhancer on the homologous or heterologous promoters in hepatoma HepG2 cells. In transfection experiments, p53 transactivated the p21 promoter in HaCaT cells that express Sp1 but have a mutated p53 form. In contrast, p53 could not transactivate the p21 promoter in the Drosophila embryo-derived Schneider's SL2 cells that lack endogenous Sp1 or related factors. Cotransfection of SL2 cells with p53 and Sp1 resulted in a synergistic transactivation of the p21 promoter. Synergistic transactivation was greatly decreased in SL2 cells and HaCaT cells by mutations in either the p53-binding site or in the -82/-77 Sp1-binding site indicating functional cooperation between Sp1 and p53 in the transactivation of the p21 promoter. Synergistic transactivation was also decreased by mutations in the transactivation domain of p53. Physical interactions between Sp1 and p53 proteins were established by glutathione S-transferase pull-down and coimmunoprecipitation assays. By using deletion mutants we found that the DNA binding domain of Sp1 is required for its physical interaction with p53. In conclusion, Sp1 must play a critical role in regulating important biological processes controlled by p53 via p21 gene activation such as DNA repair, cell growth, differentiation, and apoptosis.  相似文献   

19.
20.
Occurrence of DNA damage in a cell activates the DNA damage response, a survival mechanism that ensures genomics stability. Two key members of the DNA damage response are the tumor suppressor p53, which is the most frequently mutated gene in cancers, and MDC1, which is a central adaptor that recruits many proteins to sites of DNA damage. Here we characterize the in vitro interaction between p53 and MDC1 and demonstrate that p53 and MDC1 directly interact. The p53-MDC1 interaction is mediated by the tandem BRCT domain of MDC1 and the C-terminal domain of p53. We further show that both acetylation of lysine 382 and phosphorylation of serine 392 in p53 enhance the interaction between p53 and MDC1. Additionally, we demonstrate that the p53-MDC1 interaction is augmented upon the induction of DNA damage in human cells. Our data suggests a new role for acetylation of lysine 382 and phosphorylation of serine 392 in p53 in the cellular stress response and offers the first evidence for an interaction involving MDC1 that is modulated by acetylation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号