首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Eicosanoids, which include prostaglandins, thromboxanes, and leukotrienes, are produced from arachidonic acid by three main pathways in cells, including cyclooxygenases and lipoxygenases, and cytochrome P450 enzymes. Accumulated evidence indicates that a certain peroxide tone is required for the initiation of reaction by lipoxygenases and cyclooxygenases. An endogenous inhibitor of arachidonate oxygenation was suspected in the cytosolic fraction of human epidermoid carcinoma A431 cells. After a series of studies, the existence of this inhibitor was confirmed, while it was purified and characterized. By amino acid sequence analysis, the inhibitor in A431 cells was subsequently identified as a phospholipid hydroperoxide glutathione peroxidase (PHGPx). Depletion of cellular glutathione in cells by diethyl maleate or by dibuthionine-sulfoximine results in an increase in enzyme activities of 12(S)-lipoxygenase and cyclooxygenase, suggesting that glutathione-depleting agents abolish the enzyme activity of PHGPx in cells. Stable transfectants of A431 cells with overexpression and depletion of PHGPx have been constructed, respectively. Reduction of arachidonate metabolism through 12(S)-lipoxygenase and cyclooxygenase 1 and that of the arsenite-induced generation of reactive oxygen species are observed in cells overexpressing PHGPx. On the other hand, enhancement of arachidonate metabolism and the arsenite-induced generation of reactive oxygen species is detected in PHGPx-depleted cells. In conclusion, the endogenous inhibitor of arachidonate metabolism present in A431 cells is a PHGPx, which plays a functional role in the down-regulation of arachidonate oxygenation catalyzed by 12(S)-lipoxygenase and cyclooxygenase 1 through the reduction of the level of intracellular lipid hydroperoxides. The latter acts as the peroxide tone for arachidonate metabolism in A431 cells.  相似文献   

2.
A novel cDNA of phospholipid hydroperoxide glutathione peroxidase (PHGPx), which encodes a functional protein capable of complementing the yeast PHGHX-deletion mutant, was recently discovered in radish (Raphanus sativus) and designated as RsPHGPx [Yang X-D, Li W-J, Liu J-Y (2005) Biochim Biophys Acta 1728:199–205]. Sequence alignment suggested that RsPHGPx contains a targeting peptide required for transport to mitochondria, but the experimental evidence for the exact intracellular distribution of RsPHGPx remains to be elucidated. To uncover the cellular localization of plant PHGPx, we first investigated RsPHGPx’s intracellular distribution. Western blot analysis of subcellular fractions using the RsPHGPx antiserum clearly indicated the distribution of RsPHGPx in the radish mitochondrial fraction. Furthermore, a construct expressing the RsPHGPx precursor tagged with green fluorescent protein was introduced into tobacco and yeast cells, and the fusion protein was transported into both mitochondria, indicating that RsPHGPx was indeed localized in mitochondria. To explore the biochemical functions of this enzyme, we tested the enzymatic activity of the recombinant RsPHGPx protein. It displayed GSH-dependent peroxidase activity and exhibited the largest affinity to and the highest catalytic efficiency on phosphatidylcholine hydroperoxide, suggesting that phospholipid hydroperoxide is probably the optimum substrate for RsPHGPx. Furthermore, RsPHGPx showed a much higher V max value, by two orders of magnitude, than those of all other known plant PHGPxs. Taken together, these results showed evidence for the first time of mitochondrial localization and higher activity of PHGPx in plants and provided a framework for continued studies on the physiological functions of RsPHGPx.  相似文献   

3.
Phospholipid hydroperoxide glutathione peroxidase (PHGPx) is a selenoprotein which inhibits peroxidation ofmicrosomes. The human enzyme, which may play an important role in protecting the cell from oxidative damage, has not been purified or characterized. PHGPx was isolated from human liver using ammonium sulphate fractionation, affinity chromatography on bromosulphophthalein-glutathione-agarose, gel filtration on Sephadex G-50, anion exchange chromatography on Mono Q resin and high resolution gel filtration on Superdex 75. The protein was purified about 112,000-fold, and 12 μg, was obtained from 140 g of human liver with a 9% yield. PHGPx was active on hydrogen peroxide, cumene hydroperoxide, linoleic acid hydroperoxide and phosphatidylcholine hydroperoxide. The molecular weight, as estimated from non-denaturing gel filtration, was 16,100. The turnover number (37°C, pH 7.6) on (β-(13-hydroperoxy-cis-9, trans-11-octadecadienoyl)-γ-palmitoyl)-l-α-phosphatidylcholine was 91 mol mo−1 s−1. As reported for pig PHGPx, activity of the enzyme from human liver on cumene hydroperoxide and on linoleic acid hydroperoxide was inhibited by deoxycholate. In the presence of glutathione, the enzyme was a potent inhibitor of ascorbate/Fe induced lipid peroxidation in microsomes derived from human B lymphoblastic AHH-1 TK ± CHol cells but not from human liver microsomes. Human cell line microsomes contained no detectable PHGPx activity. However, microsomes prepared from human liver contained 0.009 U/mg of endogenous PHGPx activity, which is 4–5 times the activity required for maximum inhibition of lipid peroxidation when pure PHGPx was added back to human lymphoblastic cell microsomes. PHGPx from human liver exhibits similar properties to previously described enzymes with PHGPx activity isolated from pig and rat tissues, but does not inhibit peroxidation of human liver microsomes owing to a high level of PHGPx activity already present in these microsomes.  相似文献   

4.
The partially purified phospholipid hydroperoxide glutathione peroxidase (PHGPx) from A431 cells was used to systematically compare the inhibitory effect on the enzyme activity of various lipoxygenases and cyclooxygenases. Under the standard assay system, platelet 12-lipoxygenase, 15-lipoxygenase, and cyclooxygenase-2 were the most sensitive to the inhibition by PHGPx. 5-Lipoxygenase and cyclooxygenase-1 were less sensitive to the inhibition by PHGPx than platelet 12-lipoxygenase and cyclooxygenase-2, respectively, and the difference was approximately 10-fold. Reduction of 12(S)-hydroperoxyeicosatetraenoic acid to 12(S)-hydroxyeicosatetraenoic acid by PHGPx was observed in the presence of glutathione (GSH), and the inhibitory effect of PHGPx on 12-lipoxygenase-catalyzed arachidonate metabolism was reversed by the addition of exogenous lipid hydroperoxide. The results indicate that PHGPx directly reduced lipid hydroperoxides and then down-regulated the activity of arachidonate oxygenases. Moreover, a high-level expression of PHGPx mRNA and its 12-lipoxygenase-inhibitory activity was observed in cancer cells and endothelial cells, and these results suggest that PHGPx may play a significant role in the regulation of reactive oxygen species formation in these cells.  相似文献   

5.
Phospholipid hydroperoxide glutathione peroxidase (PHGPx) is a major antioxidant enzyme and may protect against lipid hydroperoxidation in biomembranes. We isolated full-length cDNA sequences encoding four different PHGPxs from a causative agent of cholangiocarcinoma, Clonorchis sinensis (CsGPx1, CsGPx2, CsGPx3 and CsGPx4). These sequences contained an in-frame TGA codon for selenocysteine (Sec) and a concurrent Sec insertion sequence in their 3′-untranslated regions. The open reading frames were composed of six exons in the chromosomal segments of CsGPx1 (7705 bp), CsGPx2 (5871 bp) and CsGPx3 (3867 bp) and five exons in CsGPx4 (5655 bp). The positions of these introns were tightly conserved between the trematode and vertebrate PHGPx genes. Oxidative stimulation of viable worms with H2O2 or paraquat resulted in 1.5- to 2-fold induction of the GPx activity. The CsGPx proteins were specifically localised in vitellocytes within vitelline follicles and premature eggs in the proximal uterus. In the eggs, glutathione, an electron donor for GPx, was co-localised with the CsGPx proteins, while thioredoxin, which is preferred by peroxiredoxin, was principally detected in the extracellular space between the embryonic cell mass and an eggshell. Our data may suggest a concerted or a specialised function between a thioredoxin-dependent enzyme(s) and GPx in protecting against H2O2-derived damage during maturation of the embryo and formation of the eggshell, in these catalase-lacking trematode parasites. The uniquely conserved genomic organisation and Sec-dependency amongst trematode and vertebrate PHGPx homologues will also provide insight into the evolutionary episode and functional/biochemical diversification of GPx proteins.  相似文献   

6.
7.
Regulation of arachidonate metabolism in human epidermoid carcinoma A431 cells by phospholipid hydroperoxide glutathione peroxidase (PHGPx) and cytosolic glutathione peroxidase (GPx1) was studied. In order to study the effect of reduced glutathione (GSH) on the catalysis regulation of these oxygenation enzymes, diethyl maleate was used to deplete the intracellular GSH. In the presence of 13-hydroperoxyoctadecadienoic acid, the enzymatic catalysis of cyclooxygenase and 12-lipoxygenase was significantly increased in the GSH-depleted cells. In terms of the inhibitory effect on 12-lipoxygenase, PHGPx was more sensitive to GSH concentrations than GPx1. Inhibition of PHGPx activity by the treatment of cells with antisense oligonucleotide of PHGPx mRNA increased the enzymatic catalysis of both cyclooxygenase and 12-lipoxygenase. In conclusion, the results indicate that catalysis of cyclooxygenase and 12-lipoxygenase in A431 cells was regulated by redox-reaction, and PHGPx seems to play an important role in the controlling of these reactions.  相似文献   

8.
Phospholipid hydroperoxide glutathione peroxidase (PHGPx) is an unique antioxidant enzyme that directly reduces lipid hydroperoxides in biomembranes. In the present work, the entire encoding region for Oryza sativa PHGPx was expressed in Escherichia coli M15, and the purified fusion protein showed a single band with 21.0 kD and pI = 8.5 on SDS- and IFE-PAGE, respectively. Judging from CD and fluorescence spectroscopy, this protein is considered to have a well-ordered structure with 12.2% alpha-helix, 30.7% beta-sheet, 18.5% gamma-turn, and 38.5% random coil. The optimum pH and temperature of the enzyme activity were pH 9.3 and 27 degrees C. The enzyme exhibited the highest affinity and catalytical efficiency to phospholipid hydroperoxide employing GSH or Trx as electron donor. Moreover, the protein displayed higher GSH-dependent activity towards t-Butyl-OOH and H(2)O(2). These results show that OsPHGPx is an enzyme with broad specificity for hydroperoxide substrates and yielded significant insight into the physicochemical properties and the dynamics of OsPHGPx.  相似文献   

9.
Reactive oxygen species (ROS) are known mediators of intracellular signal cascades. Excessive production of ROS may lead to oxidative stress, loss of cell function, and cell death by apoptosis or necrosis. Lipid hydroperoxides are one type of ROS whose biological function has not yet been clarified. Phospholipid hydroperoxide glutathione peroxidase (PHGPx, GPx4) is a unique antioxidant enzyme that can directly reduce phospholipid hydroperoxide in mammalian cells. This contrasts with most antioxidant enzymes, which cannot reduce intracellular phospholipid hydroperoxides directly. In this review, we focus on the structure and biological functions of PHGPx in mammalian cells. Recently, molecular techniques have allowed overexpression of PHGPx in mammalian cell lines, from which it has become clear that lipid hydroperoxides also have an important function as activators of lipoxygenase and cyclooxygenase, participate in inflammation, and act as signal molecules for apoptotic cell death and receptor-mediated signal transduction at the cellular level.  相似文献   

10.
11.
The 12S-lipoxygenase (12S-LOX) pathway of arachidonic acid (AA) metabolism is bifurcated at 12(S)-hydroperoxy-5Z,8Z,10E (12S-HpETE) in the reduction route to form 12S-hydroxy-eicosatetraenoic acid (12S-HETE) and in 8(S/R)-hydroxy-11(S),12S-trans-epoxyeicosa-5Z,9E,14Z-trienoic acid (HXA3) synthase pathway, previously known as isomerization route, to form hepoxilins. Earlier we showed that the HXA3 formation is restricted to cellular systems devoid of hydroperoxide reducing enzymes, e.g. GPxs, thus causing a persistent oxidative stress situation. Here, we show that HXA3 at as low as 100 nM concentration upregulates phospholipid hydroperoxide glutathione peroxidase (PHGPx) mRNA and protein expressions, whereas other metabolites of AA metabolism 12S-HpETE and 12S-HETE failed to stimulate the PHGPx. Moreover, the decrease in 12S-HpETE below a threshold value of the hydroperoxide tone causes both suppression of the overall 12S-LOX activity and a shift from HXA3 formation towards 12S-HETE formation. We therefore propose that under persistent oxidative stress the formation of HXA3 and the HXA3-induced upregulation of PHGPx constitute a compensatory defense response to protect the vitality and functionality of the cell.  相似文献   

12.
The distribution of glutathione reductase (GR), glutathione peroxidase (GPx) and phospholipid hydroperoxide glutathione peroxidase (PHGPx) in isolated rat brain mitochondria was investigated. using a fractionation procedure for the separation of inner and outer membranes, contact sites between the two membranes and a soluble fraction mainly originating from the mitochondrial matrix. The data indicate that GR and GPx are concentrated in the soluble fraction, with a minor portion of the two enzymes being associated with the contact sites. PHGPx is localized largely in the inner membrane. The possible functional significance of these findings is discussed.  相似文献   

13.
《Free radical research》2013,47(1):845-850
Oxidative stress responses were tested in the unicellular cyanobacterium synechococcus PCC 7942 (R-2). Cells were exposed to hydrogen peroxide, cumene hydroperoxide and high light intensities. The extent and time course of oxidative stress were related to the activities of ascorbate peroxidase and catalase. Ascorbate peroxidase was found to be the major enzyme involved in the removal of hydrogen peroxide under the tested oxidative stresse. Catalase activity was inhibited in cells, treated with high H2O2 concentrations, and was not induced under photooxidative stress. Catalase was specifically induced in cells treated with cumene hydroperoxide.

Superoxide dismutase activity increased under conditions generating superoxide, such as high light intensities. The induction of the antioxidative enzymes was light dependent and was inhibited by chloramphenicol.  相似文献   

14.
Antigenic cross-linking of the high affinity IgE receptors on mast cells induced the synthesis of prostaglandin D(2) (PGD(2)). The production of PGD(2) in L9 cells, which overexpressed non-mitochondrial phospholipid glutathione peroxidase (PHGPx), was only one-third that in the control line of cells (S1 cells). The reduction in the formation of PGD(2) in L9 cells was reversed upon inhibition of PHGPx activity by buthionine sulfoximine. Experiments with inhibitors demonstrated that prostaglandin H synthase-2 (PGHS-2) was the isozyme responsible for the production of PGD(2) upon cross-linking of IgE receptors. The conversion of radiolabeled arachidonic acid to prostaglandin H(2) (PGH(2)) was strongly inhibited in L9 cells, whereas the rate of conversion of PGH(2) to PGD(2) was the same in L9 cells and S1 cells, indicating that PGHS was inactivated in L9 cells. The PGHS activity in L9 cells was about half that in S1 cells. However, PGHS activity in L9 cells increased to the level in S1 cells upon the addition of the hydroperoxide 15-hydroperoxyeicosatetraenoic acid or of 3-chloroperoxybenzoic acid. These results suggest that non-mitochondrial PHGPx might be involved in the inactivation of PGHS-2 in nucleus and endoplasmic reticulum via reductions in levels of the hydroperoxides that are required for full activation of PGHS. Therefore, it appears that PHGPx might function as a modulator of the production of prostanoids, in addition to its role as an antioxidant enzyme.  相似文献   

15.
Phospholipid hydroperoxide glutathione peroxidase (PHGPx), a selenium-dependent glutathione peroxidase, can interact with lipophilic substrates, including phospholipid hydroperoxides, fatty acid hydroperoxides and cholesterol hydroperoxides, and can reduce them to hydroxide compounds. It also seems to be a major regulator of lipid oxygenation in human epidermoid carcinoma A431 cells. In order to study the functional role of PHGPx in the regulation of 12-lipoxygenase and cyclooxygenase, cDNA of PHGPx was inserted into pcDNA3.1/His, and a plasmid designated as S4 with the His-tag sequence inserted between PHGPx and its 3'-untranslated region was constructed. A number of stable transfectants of A431 cells that could express the tag-PHGPx were generated using plasmid S4. Using an intact cell assay system, the metabolism of arachidonic acid to prostaglandin E(2) significantly decreased in stable transfectants of overexpressing PHGPx compared to that in a vector control cell line. If the intact cell assay was carried out in the presence of 13-hydroperoxyoctadecadienoic acid as a stimulator of lipid peroxidation, formation of 12-hydroxyeicosatetraenoic acid from arachidonic acid also significantly decreased in stable transfectants of overexpressing PHGPx compared to that in a vector control cell line, indicating that PHGPx could downregulate the 12-lipoxygenase activity in cells. These results support the hypothesis that PHGPx plays a pivotal role in the regulation of arachidonate metabolism in A431 cells.  相似文献   

16.
The synthesis of platelet-activating factor (PAF) by -stimulated RBL-2H3 cells was significantly suppressed by overexpression of phospholipid hydroperoxide glutathione peroxidase (PHGPx). When the cells overexpressing PHGPx (L9 cells) were pretreated with diethyl maleate, which reduces PHGPx activity, PAF synthesis upon stimulation rose to levels seen in mock-transfected cells (S1 cells). Hydroperoxide levels, which are reduced in L9 cells, are involved in regulating PAF synthesis, because the addition of hydroperoxyeicosatetraenoic acid increased PAF production in -stimulated L9 cells to control cell levels. The activity of acetyl-CoA:1-O-alkyl-2-lyso-sn-glycero-3-phosphocholine acetyltransferase, which is involved in the last step of PAF synthesis, is also reduced in L9 cells. p38 kinase inhibitors block acetyltransferase activity in normal -stimulated cells, suggesting that p38 kinase is involved in regulating acetyltransferase activity. Recombinant active p38 kinase activates acetyltransferase, whereas alkaline phosphatase reverses this, suggesting p38 kinase directly phosphorylates acetyltransferase. p38 kinase phosphorylation is blocked in L9 cells, indicating that high hydroperoxide levels are needed for the activation of p38 kinase. Thus, intracellular hydroperoxide levels participate in regulating p38 kinase phosphorylation, which in turn controls the activation of acetyltransferase and thus the synthesis of PAF. These observations suggest that PHGPx is an important component of the mechanisms regulating inflammation.  相似文献   

17.
A citrus salt‐stress associated protein (Cit‐SAP), partially purified from citrus cultured cells, was previously identified as the first plant phospholipid hydroperoxide glutathione peroxidase (PHGPx). The nucleotide sequence of its isolated gene ( csa ) revealed that a TGT, known as codon for Cys, encodes the presumed catalytic residue 41 in the polypeptide chain of Cit‐SAP. In animals, a TGA encodes the rare amino acid selenocysteine (Sec) as the catalytic residue of the analogous enzyme. It is of interest to establish whether the TGT codon for this catalytic residue in the plant enzyme is indeed translated to Cys and not to Sec, and to demonstrate the effect of such a change, if it exists, on the nature of the enzymatic activity of the plant enzyme as compared to that of the animal. In the present study, we have purified for the first time, by affinity chromatography, enzymatically active citrus PHGPx from recombinant Escherichia coli bearing the csa gene. Tryptic digestion of the purified enzyme followed by HPLC afforded the isolation of a peptide which contains residue 41, and its sequence analysis revealed that this residue is indeed a Cys, and not Sec. The enzymatic activity and specificity of the recombinant Cit‐SAP was found to be similar to that observed before for the partially purified plant enzyme. However, the rate of this activity was much lower towards phospholipid hydroperoxides, and none towards hydrogen peroxide, as compared to that of the animal analogue. It is therefore suggested that the presence of a Cys, and not Sec, as the catalytic residue in the plant enzyme, affects its enzymatic activity and may determine a different biological role for the plant PHGPx from that of the animal.  相似文献   

18.
The selenoenzyme phospholipid hydroperoxide glutathione peroxidase   总被引:17,自引:0,他引:17  
The reduction of membrane-bound hydroperoxides is a major factor acting against lipid peroxidation in living systems. This paper presents the characterization of the previously described 'peroxidation-inhibiting protein' as a 'phospholipid hydroperoxide glutathione peroxidase'. The enzyme is a monomer of 23 kDa (SDS-polyacrylamide gel electrophoresis). It contains one gatom Se/22 000 g protein. Se is in the selenol form, as indicated by the inactivation experiments in the presence of iodoacetate under reducing conditions. The glutathione peroxidase activity is essentially the same on different phospholipids enzymatically hydroperoxidized by the use of soybean lipoxidase (EC 1.13.11.12) in the presence of deoxycholate. The kinetic data are compatible with a tert-uni ping-pong mechanism, as in the case of the 'classical' glutathione peroxidase (EC 1.11.1.9). The second-order rate constants (K1) for the reaction of the enzyme with the hydroperoxide substrates indicate that, while H2O2 is reduced faster by the glutathione peroxidase, linoleic acid hydroperoxide is reduced faster by the present enzyme. Moreover, the phospholipid hydroperoxides are reduced only by the latter. The dramatic stimulation exerted by Triton X-100 on the reduction of the phospholipid hydroperoxides suggests that this enzyme has an 'interfacial' character. The similarity of amino acid composition, Se content and kinetic mechanism, relative to the difference in substrate specificity, indicates that the two enzymes 'classical' glutathione peroxidase and phospholipid hydroperoxide glutathione peroxidase are in some way related. The latter is apparently specialized for lipophylic, interfacial substrates.  相似文献   

19.
Salt damage to plants has been attributed to a combination of several factors including mainly osmotic stress and the accumulation of toxic ions. Recent findings in our laboratory showed that phospholipid hydroperoxide glutathione peroxidase (PHGPX), an enzyme active in the cellular antioxidant system, was induced by salt in citrus cells and mainly in roots of plants. Following this observation we studied the two most important enzymes active in elimination of reactive oxygen species, namely, superoxide dismutase (SOD) and ascorbate peroxidase (APX), to determine whether a general oxidative stress is induced by salt. While Cu/Zn-SOD activity and cytosolic APX protein level were similarly induced by salt and methyl viologen, the response of PHGPX and other APX isozymes was either specific to salt or methyl viologen, respectively. Unlike PHGPX, cytosolic APX and Cu/Zn-SOD were not induced by exogenously added abscisic acid. Salt induced a significant increase in SOD activity which was not matched by the subsequent enzyme APX. We suggest that the excess of H2O2 interacts with lipids to form hydroperoxides which in turn induce and are removed by PHGPX. Ascorbate peroxidase seems to be a key enzyme in determining salt tolerance in citrus as its constitutive activity in salt-sensitive callus is far below the activity observed in salt-tolerant callus, while the activities of other enzymes involved in the defence against oxidative stress, namely SOD, glutathione reductase and PHGPX, are essentially similar. Received: 10 January 1997 / Accepted: 28 May 1997  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号