首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The expression of the structural genes nit-3 and nit-6, which encode the nitrate assimilatory enzymes nitrate reductase and nitrite reductase, respectively, is highly regulated by the global-acting NIT2 regulatory protein. These structural genes are also controlled by nitrogen catabolite repression and by specific induction via nitrate. A pathway-specific regulatory protein, NIT4, appears to mediate nitrate induction of nit-3 and of nit-6. The NIT4 protein, composed of 1090 amino acids, contains a putative GAL4-like Cys-6 zinc cluster DNA-binding motif, which is joined by a short segment to a stretch of amino acids that appear to constitute a coiled-coil dimerization domain. Chemical crosslinking studies demonstrated that a truncated form of NIT4 forms homodimers. Mobility-shift and DNA-footprinting experiments have identified two NIT4-binding sites of significantly different strengths in the promoter region of the nit-3 gene. The stronger binding site contains a symmetrical octameric sequence, TCCGCGGA, whereas the weaker site has a related sequence. Sequences related to this palindromic element can be found upstream of the nit-6 gene.  相似文献   

2.
The major nitrogen-regulatory gene nit-2 of Neurospora crassa activates the expression of numerous unlinked structural genes which specify nitrogen-catabolic enzymes during conditions of nitrogen limitation. The nit-2 gene encodes a regulatory protein of 1036 amino acid residues with a single 'zinc finger' and a downstream basic region, which together may constitute a DNA-binding domain. The zinc finger domain of the NIT2 protein was synthesized in vitro and also expressed as a fusion protein in Escherichia coli to examine its DNA-binding activity. The wild-type NIT2 finger domain protein binds to the promoter region of nit-3, the nitrate reductase structural gene. A series of NIT2 mutant proteins obtained by site-directed mutagenesis was expressed and tested for functional activity. The results demonstrate that both the single zinc-finger motif and the downstream basic region of NIT2 are critical for its trans-activating function in vivo and specific DNA-binding in vitro.  相似文献   

3.
NIT2, a positive-acting regulatory protein in Neurospora crassa, activates the expression of a series of unlinked structural genes that encode nitrogen catabolic enzymes. NIT2 binding sites in the promoter regions of nit3, alc and lao have at least two GATA sequence elements. We have examined the binding affinity of the NIT2 protein for the yeast DAL5 wild-type upstream activation sequence UASNTR, which contains two GATA elements, and for a series of mutated binding sites, each differing from the wild-type site by a single base. Substitution for individual nucleotides within 5′ or 3′ sequences that flank the GATA elements had only modest effects upon NIT2 binding. In contrast, nearly all substitutions within the GATA elements almost completely eliminated NIT2 binding, demonstrating the importance of the GATA sequence for NIT2 binding. Four high-affinity binding sites for the NIT2 protein were found within a central region of the nit-2 gene itself.  相似文献   

4.
5.
B Feng  X Xiao    G A Marzluf 《Nucleic acids research》1993,21(17):3989-3996
The NIT2 nitrogen regulatory protein of Neurospora is a DNA binding protein which contains a single Cys2/Cys2 type finger motif followed immediately by a highly basic region. Several different approaches were employed to identify nucleotides which appear to be in contact with NIT2 in the DNA-protein complex. Methylation interference and missing contact analyses with the promoter DNA fragment of the L-amino acid oxidase gene showed that all three purines in both of two GATA core sequences and the single adenine residue in each of the complementary TATC sequences were in intimate contact with NIT2. Modification or loss of the three purine residues located between the two GATA core sequences also significantly reduced NIT2 binding, whereas alteration of purines which flank the binding element showed only minor effects. Chemical modification of all six thymine bases in the two GATA and TATC complement core sequences also strongly affected NIT2 binding. High affinity NIT2 binding sites appear to contain at least two GATA core sequences, with single GATA sequences acting only as weak binding sites. Mobility shift experiments with the DNA fragment upstream of nit-3, the structural gene for nitrate reductase, revealed two DNA-NIT2 protein complexes. In complex I, which is formed first, NIT2 was bound to a pair of GATA sites located at -180. In complex II, the paired GATA sites at -180 plus a single GATA site at -290 were all occupied by NIT2. A DNA fragment containing only the single -290 GATA element bound NIT2 very weakly. The affinity of this single GATA for NIT2 was ten to twenty times greater when it was situated on the same DNA fragment with the distant paired GATA elements than when alone.  相似文献   

6.
H Lee  Y H Fu  G A Marzluf 《Biochemistry》1990,29(37):8779-8787
The nitrogen regulatory circuit of Neurospora crassa contains structural genes that encode nitrogen catabolic enzymes which are subject to complex genetic and metabolic regulation. This set of genes is controlled by nitrogen limitation, by specific induction, and by the action of nit-2, a major positive-acting regulatory gene, and nmr, a negative-acting control gene. The complete nucleotide sequence of alc, the gene that encodes allantoicase, a purine catabolic enzyme, is presented. The alc gene contains a single intron, is transcribed from two initiation sites situated approximately 50 nb upstream of the translation start site, and encodes a protein comprised of 354 amino acids. Mobility shift and DNA footprint experiments identified a single binding site for the NIT2 regulatory protein in the alc promoter region. The binding site contains a 10 nucleotide base pair symmetrical sequence which is flanked by two possible core binding sequences, TATCT and TATCG. Mutant NIT2/beta-gal fusion proteins with amino acid substitutions in a putative zinc-finger motif were shown to be completely deficient in the ability to bind to the alc promoter DNA fragment.  相似文献   

7.
The nit-3 gene of the filamentous fungus Neurospora crassa encodes nitrate reductase, the enzyme which catalyzes the first step in nitrate assimilation. The nit-3 gene is subject to a high degree of regulation by metabolic inducers and repressors, and its expression requires two distinct trans-acting regulatory proteins. Hypersensitive sites in the 5' DNA sequence upstream of the nit-3 gene were mapped with the use of three different nucleases as molecular probes. Six hypersensitive sites, three of which are very strong, were detected at essentially identical positions by all three nucleases. The hypersensitive sites appear to develop in a constitutive fashion and are present under conditions in which the nit-3 structural gene is expressed but also when this gene is inactive, although these sites are considerably less prominent in cells subjected to nitrogen catabolite repression. The presence of the hypersensitive sites appears to depend upon both the positively acting NIT2 and the positively acting NIT4 regulatory proteins, which might play a role in positioning of chromatin protein.  相似文献   

8.
NIT2, a positive-acting regulatory protein in Neurospora crassa, activates the expression of a series of unlinked structural genes that encode nitrogen catabolic enzymes. NIT2 binding sites in the promoter regions of nit3, alc and lao have at least two GATA sequence elements. We have examined the binding affinity of the NIT2 protein for the yeast DAL5 wild-type upstream activation sequence UASNTR, which contains two GATA elements, and for a series of mutated binding sites, each differing from the wild-type site by a single base. Substitution for individual nucleotides within 5 or 3 sequences that flank the GATA elements had only modest effects upon NIT2 binding. In contrast, nearly all substitutions within the GATA elements almost completely eliminated NIT2 binding, demonstrating the importance of the GATA sequence for NIT2 binding. Four high-affinity binding sites for the NIT2 protein were found within a central region of the nit-2 gene itself.  相似文献   

9.
10.
11.
The nitrogen regulatory circuit of Neurospora crassa consists of a set of unlinked structural genes which specify various nitrogen catabolic enzymes plus control genes and metabolic effectors which regulate their expression. The positive-acting nit-2 regulatory gene is required to turn on the expression of the nitrogen catabolic enzymes during conditions of nitrogen limitation. The complete nucleotide sequence of the nit-2 gene was determined. The nit-2 mRNA is 4.3 kilobases long and has a long nontranslated sequence at both its 5' and 3' ends. The nit-2 gene nucleotide sequence can be translated to yield a protein containing 1,036 amino acid residues with a molecular weight of approximately 110,000. Deletion analyses demonstrated that approximately 21% of the NIT2 protein at its carboxy terminus can be removed without loss of function. The nit-2 protein contains a single putative Cys2/Cys2 zinc finger domain which appears to function in DNA binding and which has striking homology to a mammalian trans-acting factor, GF-1.  相似文献   

12.
Nitrogen metabolism is a highly regulated process in Neurospora crassa . The structural genes that encode nitrogen catabolic enzymes are subject to nitrogen metabolite repression, mediated by the positive-acting NIT2 protein and by the negative-acting NMR protein. NIT2, a globally acting factor, is a member of the GATA family of regulatory proteins and has a single Cys2/Cys2 zinc finger DNA-binding domain. The negative-acting NMR protein interacts via specific protein–protein binding with two distinct regions of the NIT2 protein, a short alpha-helical motif within the NIT2 DNA-binding domain and a second motif at its carboxy terminus. Deletions of segments of NIT2 throughout most of its length result in truncated proteins, which are still functional for activating gene expression; most of these mutant NIT2 proteins still allow proper nitrogen repression of nitrate reductase synthesis. In contrast, deletions or certain amino acid substitutions within the zinc finger and the carboxy-terminal tail result in a loss of nitrogen metabolite repression. Those mutated forms of NIT2 that are insensitive to nitrogen repression have also lost one of the NIT2–NMR protein–protein interactions. These results provide compelling evidence that the specific NIT2–NMR interactions have a regulatory function and play a central role in establishing nitrogen metabolite repression.  相似文献   

13.
14.
The Neurospora crassa genome database was searched for sequence similarity to crnA, a nitrate transporter in Aspergillus nidulans. A 3.9-kb fragment (contig 3.416, subsequence 183190-187090) was cloned by PCR. The gene coding for this nitrate transporter was termed nit-10. The nit-10 gene specifies a predicted polypeptide containing 541 amino acids with a molecular mass of 57 kDa. In contrast to crnA, which is clustered together with niaD, encoding nitrate reductase, and niiA, encoding nitrite reductase, nit-10 is not linked to nit-3 (nitrate reductase), nit-6 (nitrite reductase), or to nit-2, nit-4 (both are positive regulators of nit-3), or nmr (negative regulator of nit-3) in Neurospora crassa. A nit-10 rip mutant failed to grow in the medium when nitrate (< 10 mM) was used as the sole nitrogen source, but grew similarly to wild type when nitrate concentration was 10 mM or higher. In addition, it showed strong sensitivity to cesium in the presence of nitrate and resistance to chlorate in the presence of alanine, proline, or hypoxanthine. The expression of nit-10 required nitrate induction and was subject to repression by nitrogen metabolites such as glutamine. Expression of nit-10 also required functional products of nit-2 and nit-4. The half-life of nit-10 mRNA was determined to be approximately 2.5 min.  相似文献   

15.
16.
The nit-2 gene of Neurospora crassa encodes the major nitrogen regulatory protein which acts in a positive fashion to activate the expression of many different structural genes during conditions of nitrogen limitation. An E. coli-expressed NIT2/-Gal fusion protein binds specifically to DNA in vitro by recognizing GATA core elements. Nuclear extracts prepared from a wild-type N. crassa strain contain a protein factor which displays all of the properties expected for the native NIT2 protein. The native NIT2 protein in nuclear extracts binds with high affinity to DNA fragments which contain two GATA elements, weakly to fragments with a single GATA element, and fails to bind to DNAs which lack these sequences. The DNA binding ability of the protein factor in nuclear extracts is efficiently blocked by a polyclonal antibody developed against the zinc-finger region of NIT2 protein. Western blot analysis with the anti-NIT2 antiserum revealed a specific protein with a size of approximately 110,000 daltons, in excellent agreement with the predicted size of NIT2. Both the specific NIT2 DNA binding activity and the protein detected by Western blot are totally lacking in nuclear extracts of a nit-2 rip mutant strain. These results all support the conclusion that the native NIT2 protein in Neurospora cells has been identified. The NIT2 protein is localised in nuclei and could not be detected in the cytoplasmic fraction of cells subjected to nitrogen derepression or nitrogen repression, indicating that the nuclear import of NIT2 is not regulated.  相似文献   

17.
18.
19.
In higher plants, the expression of the nitrate assimilation pathway is highly regulated. Although the molecular mechanisms involved in this regulation are currently being elucidated, very little is known about the trans-acting factors that allow expression of the nitrate and nitrite reductase genes which code for the first enzymes in the pathway. In the fungus Neurospora crassa, nit-2, the major nitrogen regulatory gene, activates the expression of unlinked structural genes that specify nitrogen-catabolic enzymes during conditions of nitrogen limitation. The nit-2 gene encodes a regulatory protein containing a single zinc finger motif defined by the C-X2-CX17-C-X2-C sequence. This DNA-binding domain recognizes the promoter region of N. crassa nitrogen-related genes and fragments derived from the tomato nia gene promoter. The observed specificity of the binding suggests the existence of a NIT2-like homolog in higher plants. PCR and cross-hybridization techniques were used to isolate, respectively, a partial cDNA from Nicotiana plumbaginifolia and a full-length cDNA from Nicotiana tabacum. These clones encode a NIT2-like protein (named NTL1 for nit-2-like), characterized by a single zinc finger domain, defined by the C-X2-C-X18-C-X2-C amino acids, and associated with a basic region. The amino acid sequence of NTL1 is 60% homologous to the NIT2 sequence in the zinc finger domain. The Ntl1 gene is present as a unique copy in the diploid N. plumbaginifolia species. The characteristics of Ntl1 gene expression are compatible with those of a regulator of the nitrate assimilation pathway, namely weak nitrate inducibility and regulation by light.  相似文献   

20.
Nitrite reductase (NiR) is the second enzyme in the nitrate assimilatory pathway reducing nitrite to ammonium. The expression of the NiR gene is induced upon the addition of nitrate. In an earlier study, a 130 bp upstream region of the spinach NiR gene promoter, located between –330 to –200, was shown to be necessary for nitrate induction of -glucuronidase (GUS) expression in tissue-specific manner in transgenic tobacco plant [28]. To further delineate the cis-acting elements involved in nitrate regulation of NiR gene expression, transgenic tobacco plants were generated with 5 deletions in the–330 to –200 region of the spinach NiR gene promoter fused to the GUS gene. Plants with the NiR promoter deleted to –230 showed a considerable increase in GUS activity in the presence of nitrate, indicating that the 30 bp region between –230 to –200 is crucial for nitrate-regulated expression of NiR. In vivo DMS footprinting of the –300 to –130 region of the NiR promoter in leaf tissues from two independent transgenic lines revealed several nitrate-inducible footprints. Footprinting within the –230 to –181 region revealed factor binding to two adjacent GATA elements separated by 24 bp. This arrangement of GATA elements is analogous to cis-regulatory sequences found in the promoters of nitrate-inducible genes of Neurospora crassa, regulated by the NIT2 Zn-finger protein. The –240 to –110 fragment of the NiR promoter, which contains two NIT2 consensus core elements, bound in vitro to a fusion protein comprising the zinc finger domain of the N. crassa NIT2 protein. The data presented here show that nitrate-inducible expression of the NiR gene is mediated by nitrate-specific binding of trans-acting factors to sequences preserved between fungi and higher plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号