首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of intraperitoneal administration of alpha-tocopherol (100 mg/kg weight/24 h) on ascorbate (0-0.4 mM) induced lipid peroxidation of mitochondria isolated from rat liver, cerebral hemispheres, brain stem and cerebellum was examined. The ascorbate induced light emission in hepatic mitochondria was nearly completely inhibited by alpha-tocopherol (control-group: 114.32+/-14.4; vitamin E-group: 17.45+/-2.84, c.p.m.x10(-4)). In brain mitochondria, 0.2 mM ascorbate produced the maximal chemiluminescence and significant differences among both groups were not observed. No significant differences in the chemiluminescence values between control and vitamin E treated groups were observed when the three brain regions were compared. The light emission produced by mitochondrial preparations was much higher in cerebral hemispheres than in brain stem and cerebellum. In liver and brain mitochondria from control group, the level of arachidonic acid (C20:4n6) and docosahexaenoic acid (C22:6n3) was profoundly affected. Docosahexaenoic in liver mitochondria from vitamin E group decreased by 30% upon treatment with ascorbic acid when compared with mitochondria lacking ascorbic acid. As a consequence of vitamin E treatment, a significant increase of C22:6n3 was detected in rat liver mitochondria (control-group: 6.42 +/-0.12; vitamin E-group: 10.52 +/-0.46). Ratios of the alpha-tocopherol concentrations in mitochondria from rats receiving vitamin E to those of control rats were as follows: liver, 7.79; cerebral hemispheres, 0.81; brain stem, 0.95; cerebellum, 1.05. In liver mitochondria, vitamin E shows a protector effect on oxidative damage. In addition, vitamin E concentration can be increased in hepatic but not in brain mitochondria. Lipid peroxidation mainly affected, arachidonic (C20:4n6) and docosahexaenoic (C22:6n3) acids.  相似文献   

2.
1. GSH efficiently inhibited the ascorbate-stimulated lipid peroxidation of the unsaturated fatty acids in the fresh microsomal fraction and mitochondria of rat liver, whereas the peroxidation in heat-denatured particles was little inhibited. 2. Cysteamine and diethyldithiocarbamate inhibited the peroxidation in both fresh and boiled particles. Thioglycollate and 2-mercaptoethanol had no inhibiting effect. Cysteine and homocysteine both stimulated the lipid peroxidation even in the absence of ascorbate. 3. The added GSH disappeared at nearly the same rate in the presence of fresh and of boiled particles to which ascorbate had been added, although considerably more malonaldehyde was formed in the boiled particles. In the absence of ascorbate little GSH disappeared. 4. It is suggested that the protective effect of GSH against lipid peroxidation depends on the preservation of heat-labile structures in the microsomal fraction and mitochondria.  相似文献   

3.
The effect of intraperitoneal administration of α-tocopherol (100 mg/kg weight/24 h) on ascorbate (0–0.4 mM) induced lipid peroxidation of mitochondria isolated from rat liver, cerebral hemispheres, brain stem and cerebellum was examined. The ascorbate induced light emission in hepatic mitochondria was nearly completely inhibited by α-tocopherol (control-group: 114.32±14.4; vitamin E-group: 17.45±2.84, c.p.m.×10−4). In brain mitochondria, 0.2 mM ascorbate produced the maximal chemiluminescence and significant differences among both groups were not observed. No significant differences in the chemiluminescence values between control and vitamin E treated groups were observed when the three brain regions were compared. The light emission produced by mitochondrial preparations was much higher in cerebral hemispheres than in brain stem and cerebellum. In liver and brain mitochondria from control group, the level of arachidonic acid (C20:4n6) and docosahexaenoic acid (C22:6n3) was profoundly affected. Docosahexaenoic in liver mitochondria from vitamin E group decreased by 30% upon treatment with ascorbic acid when compared with mitochondria lacking ascorbic acid. As a consequence of vitamin E treatment, a significant increase of C22:6n3 was detected in rat liver mitochondria (control-group: 6.42 ±0.12; vitamin E-group: 10.52 ±0.46). Ratios of the α-tocopherol concentrations in mitochondria from rats receiving vitamin E to those of control rats were as follows: liver, 7.79; cerebral hemispheres, 0.81; brain stem, 0.95; cerebellum, 1.05. In liver mitochondria, vitamin E shows a protector effect on oxidative damage. In addition, vitamin E concentration can be increased in hepatic but not in brain mitochondria. Lipid peroxidation mainly affected, arachidonic (C20:4n6) and docosahexaenoic (C22:6n3) acids.  相似文献   

4.
首次合成了一个新的含碲化合物 2 TeCD(二碲桥联环糊精 ) ,并证实其具有谷胱甘肽过氧化物酶 (GPX)活力 ,能清除氢过氧化物 .与其它GPX模拟物相比 ,2 TeCD具有分子量小 ,水溶性好及良好的化学和生物学稳定性 ,且其GPX活力比另一种被广泛认知的小分子模拟物Ebselen高约 4 6倍 .用Fe2 + Vc诱导的线粒体损伤体系研究了 2 TeCD的抗氧化性质 ,结果发现在相同剂量下 2 TeCD较Ebselen具有更强的抗氧化能力  相似文献   

5.
Oxidative stress induced by Fe2+ (50 microM) and ascorbate (2 mM) in isolated rat brain mitochondria incubated in vitro leads to an enhanced lipid peroxidation, cardiolipin loss and an increased formation of protein carbonyls. These changes are associated with a loss of mitochondrial membrane potential (depolarization) and an impaired activity of electron transport chain (ETC) as measured by MTT reduction assay. Butylated hydroxytoluene (0.2 mM), an inhibitor of lipid peroxidation, can prevent significantly the loss of cardiolipin, the increased protein carbonyl formation and the decrease in mitochondrial membrane potential induced by Fe2+ and ascorbate, implying that the changes are secondary to membrane lipid peroxidation. However, iron-ascorbate induced impairment of mitochondrial ETC activity is apparently independent of lipid peroxidation process. The structural and functional derangement of mitochondria induced by oxidative stress as reported here may have implications in neuronal damage associated with brain aging and neurodegenerative disorders.  相似文献   

6.
The effect of salinity on the antioxidative system of root mitochondria and peroxisomes of a cultivated tomato Lycopersicon esculentum (Lem) and its wild salt-tolerant related species L. pennellii (Lpa) was studied. Salt stress induced oxidative stress in Lem mitochondria, as indicated by the increased levels of lipid peroxidation and H(2)O(2). These changes were associated with decreased activities of superoxide dismutase (SOD) and guaiacol peroxidases (POD) and contents of ascorbate (ASC) and glutathione (GSH). By contrast, in mitochondria of salt-treated Lpa plants both H(2)O(2) and lipid peroxidation levels decreased while the levels of ASC and GSH and activities of SOD, several isoforms of ascorbate peroxidase (APX), and POD increased. Similarly to mitochondria, peroxisomes isolated from roots of salt-treated Lpa plants exhibited also decreased levels of lipid peroxidation and H(2)O(2) and increased SOD, ascorbate peroxidase (APX), and catalase (CAT) activities. In spite of the fact that salt stress decreased activities of antioxidant enzymes in Lem peroxisome, oxidative stress was not evident in these organelles.  相似文献   

7.
Vitamin A (retinol) and some of its analogs exhibited varying degrees of inhibition on induced iron and ascorbic acid lipid peroxidation of rat brain mitochondria. Malonyldialdehyde production was used as an index of the extent of in vitro lipid peroxidation. The fat-soluble vitamins retinol, retinol acetate, retinoic acid, retinol palmitate, and retinal at concentrations between 0.1 and 10.0 mmol/L inhibited brain lipid peroxidation. Retinol and retinol acetate were the most effective inhibitors. It is concluded from this study that retinol and its analogs can be considered as potential antioxidant factors, more potent than some of the well-known antioxidants such as alpha-tocopherol and butylated hydroxytoluene.  相似文献   

8.
Imbalance between matrix metalloproteinases (MMPs) and tissue inhibitor of matrix metalloproteinases (TIMPs) is an important control point in tissue remodelling. Several findings have reported a marked MMP/TIMP imbalance in a variety of in vitro models in which oxidative stress was induced. Since previous studies showed that commercial hyaluronan and chondroitin-4-sulphate are able to limit lipid peroxidation during oxidative stress, we investigated the antioxidant capacity of purified human plasma chondroitin-4-sulfate in reducing MMP and TIMP imbalance in a model of ROS-induced oxidative injury in fibroblast cultures. Purified human plasma chondroitin-4-sulfate was added to the fibroblast cultures exposed to FeSO4 plus ascorbate. We assayed cell death, MMP and TIMP mRNA expression and protein activities, DNA damage, membrane lipid peroxidation, and aconitase depletion. FeSO4 plus ascorbate produced severe death of cells and increased MMP-1, MMP-2 and MMP-9 expression and protein activities. It also caused DNA strand breaks, enhanced lipid peroxidation and decreased aconitase. TIMP-1 and TIMP-2 protein levels and mRNA expression remain unaltered. Purified human plasma C4S, at three different doses, restored the MMP/TIMP homeostasis, increased cell survival, reduced DNA damage, inhibited lipid peroxidation and limited impairment of aconitase. These results further support the hypothesis that these biomolecules possess antioxidant activity and by reducing ROS production C4S may limit cell injury produced by MMP/TIMP imbalance.  相似文献   

9.
A number of in vitro studies have shown that polyphenols and flavonoids in tea exert significant antioxidant activity. However, epidemiologic and experimental studies have produced conflicting results. The purpose of the present study was to compare the antioxidant activity of black tea in vitro with that ex vivo. Black tea polyphenols (BTP), black tea extract (BTE), or their major polyphenolic antioxidant constituent, epigallocatechin gallate (EGCG), were added to human plasma and lipid peroxidation was induced by the water-soluble radical generator 2,2'-azobis(2-amidinopropane) dihydrochloride (AAPH). Following a lag phase, lipid peroxidation was initiated and occurred at a rate that was lowered in a dose-dependent manner by BTP. Similarly, EGCG and BTE added to plasma in vitro strongly inhibited AAPH-induced lipid peroxidation. The lag phase preceding detectable lipid peroxidation was due to the antioxidant activity of endogenous ascorbate, which was more effective at inhibiting lipid peroxidation than the tea polyphenols and was not spared by these compounds. In contrast, when eight healthy volunteers consumed the equivalent of six cups of black tea, the resistance of their plasma to lipid peroxidation ex vivo did not increase over the next 3 h. These data suggest that, despite antioxidant efficacy in vitro, black tea does not protect plasma from lipid peroxidation in vivo. The striking discrepancy between the in vitro and ex vivo data is most likely explained by the insufficient bioavailability of tea polyphenols in humans.  相似文献   

10.
Decreased lipid peroxidation in the rat kidney during gestation   总被引:4,自引:0,他引:4  
Renal malonaldehyde content and lipid peroxidation, induced by ascorbate, NADPH and cumene hydroperoxide, are significantly decreased during gestation in rats. Lipid peroxidation tends to reach normal levels in the kidney post partum. In the renal mitochondria lipid peroxidation without co-factors and that induced by cumene hydroperoxide, ascorbate and NADPH is decreased during pregnancy. However, in the microsomes, only lipid peroxidation induced by NADPH and cumene hydroperoxide is affected. The observed decrease in lipid peroxidation during gestation is reflected by low levels of total lipid and phospholipid. Endogenous inhibitors of lipid peroxidation also increase during pregnancy.  相似文献   

11.
T W Poole  D V Parke 《FEBS letters》1983,151(1):27-30
Lipid peroxidation in mitochondria induced by Fe2+ in the presence of ascorbate or by cumene hydroperoxide in the presence of phosphate results in a drop of the membrane potential and in K+ efflux. The inhibitors of ATP-synthetase (oligomycin and dicyclohexylcarbodiimide (DCCD)) are capable of preventing lipid peroxidation, stabilizing the membrane potential and inhibiting potassium efflux. The same effects are observed in the presence of ionol or alpha-tocopherol. In contrast to antioxidant protection the effects of oligomycin and DCCD are reversed by the uncoupler (FCCP). The functional link between non-enzymatic lipid peroxidation, proton conduction through Fo component of ATP-synthetase and induced cation transport is suggested.  相似文献   

12.
Glutathione peroxidase is one of the principal antioxidant defense enzymes in human spermatozoa, but it requires oxidized glutathione to be reduced by glutathione reductase using NADPH generated in the pentose phosphate pathway. We investigated whether flux through the pentose phosphate pathway would increase in response to oxidative stress and whether glutathione reductase was required to protect sperm from oxidative damage. Isotopic measurements of the pentose phosphate pathway and glycolytic flux, thiobarbituric acid assay of malondialdehyde for lipid peroxidation, and computer-assisted sperm analysis for sperm motility were assessed in a group of normal, healthy semen donors. Applying moderate oxidative stress to human spermatozoa by adding cumene hydroperoxide, H(2)O(2), or xanthine plus xanthine oxidase or by promoting lipid peroxidation with ascorbate increased flux through the pentose phosphate pathway without changing the glycolytic rate. However, adding higher concentrations of oxidants inhibited both the pentose phosphate pathway and glycolytic flux. At concentrations of 50 microg/ml or greater, the glutathione reductase-inhibitor 1,3-bis-(2-chloroethyl) 1-nitrosourea decreased flux through the pentose phosphate pathway and blocked the response to cumene hydroperoxide. It also increased lipid peroxidation and impaired the survival of motility in sperm incubated under 95% O(2). These data show that the pentose phosphate pathway in human spermatozoa can respond dynamically to oxidative stress and that inhibiting glutathione reductase impairs the ability of sperm to resist lipid peroxidation. We conclude that the glutathione peroxidase-glutathione reductase-pentose phosphate pathway system is functional and provides an effective antioxidant defense in normal human spermatozoa.  相似文献   

13.
The antioxidant capacity of thyroid hormones and the antithyroid drug propylthiouracil was studied in three model systems, namely, autoxidation of rat brain homogenates and oxidation of rat erythrocyte plasma membranes (EPM) induced by either 2,2'-azobis-(2-amidinopropane) (AAP) thermolysis or by gamma irradiation. Thyroid hormones significantly inhibited the development of lipid peroxidation in these systems at micromolar concentrations, as assessed either by visible light emission, thiobarbituric acid reactive substances accumulation or oxygen uptake. This behaviour was not observed when L-3,3',5-triiodothyronine (T3) and L-thyroxine (T4) were assayed at nanomolar concentrations. In EPM exposed to AAP or gamma irradiation, propylthiouracil inhibited the induced lipid peroxidation, with Q1/2 values of 112-150 microM. It is concluded that the antioxidant capacity of thyroid hormones found in vitro may not be of relevance in physiological conditions, which exhibit variations of T3 and T4 levels in the nanomolar range. On the other hand, the behaviour of propylthiouracil as an inhibitor of EPM lipid peroxidation is observed at concentrations close to the therapeutic levels, thus representing a possible complementary action to its antithyroid activity.  相似文献   

14.
In order to evaluate different mitochondrial antioxidant systems, the depletion of alpha-tocopherol and the levels of the reduced and oxidized forms of CoQ were measured in rat liver mitochondria during Fe++/ascorbate and NADPH/ADP/Fe++ induced lipid peroxidation. During the induction phase of malondialdehyde formation, alpha-tocopherol declined moderately to about 80% of initial contents, whereas the total CoQ pool remained nearly unchanged, but reduced CoQ9 continuously declined. At the start of massive malondialdehyde formation, CoQ9 reaches its fully oxidized state. At the same time alpha-tocopherol starts to decline steeply, but never becomes fully exhausted in both experimental systems. Evidently the oxidation of the CoQ9 pool constitutes a prerequisite for the onset of massive lipid peroxidation in mitochondria and for the subsequent depletion of alpha-tocopherol. Trapping of the GSH by addition of dinitrochlorbenzene (a substrate of the GSH transferase), results in a moderate acceleration of lipid peroxidation, but alpha-tocopherol and ubiquinol levels remained unchanged when compared with the controls. Addition of succinate to GSH depleted mitochondria effectively suppressed MDA formation as well as alpha-tocopherol and ubiquinol depletion. The data support the assumption that the protective effect of respiratory substrates against lipid peroxidation in the absence of mitochondrial GSH is mediated by the regeneration of the lipid soluble antioxidants CoQ and alpha-tocopherol.  相似文献   

15.
Pregnancy-associated decrease in lipid peroxidation in rat liver   总被引:1,自引:0,他引:1  
A significant decrease in the hepatic malonaldehyde content and lipid peroxidation, induced by ascorbate, NADPH and cumene hydroperoxide, was observed during gestation in the rat. Lipid peroxidation tends to reach normal levels 3 days post partum. While a significant decrease in the lipid peroxidation of hepatic mitochondria was observed with ascorbate and NADPH, that of microsomes was affected by ascorbate and cumene hydroperoxide. The observed decrease in lipid peroxidation during pregnancy seems to be due to lesser phospholipid content, a lower degree of unsaturation in lipids, and an increase in the level of antioxidants.  相似文献   

16.
Unsaturated lipids in sperm plasma membranes are very susceptible to peroxidation when exposed to reactive oxygen species (ROS). In this investigation we have incubated ram spermatozoa in the presence of two ROS generating systems, ascorbate/FeSO4 and potassium peroxychromate (K3CrO8), and examined their effects on membrane fluidity by measuring fluorescence recovery after photobleaching (FRAP) of a lipid reporter probe 5-(N-octadecanoyl)-aminofluorescein (ODAF). Peroxidation was monitored by malonaldehyde formation and changes in fluorescence emission of 4,4-difluoro-5-(4-phenyl-1,3-butadienyl)-4-bora-3a,4a-diaza-s-indacene-3-undecanoic acid (C11-BODIPY(581/591)). Ascorbate/FeSO4-induced peroxidation was inhibited by Vitamin E, butylated hydroxyanisole (BHA), 1,4-diazobicyclo(2,2,2)octane (DABCO), and to a lesser extent by ethanol. Added superoxide dismutase (SOD), gluthathione peroxidase (GPX), and catalase were ineffective scavengers. K3CrO8 induced very rapid peroxidation that could be delayed, but not prevented, by Vitamin E, BHT, DABCO, ethanol, and mannitol; once again SOD, GPX, and catalase were ineffective scavengers. Neither peroxidation with ascorbate/FeSO4 nor K3CrO8, or added H2O2 or malonaldehyde perturbed ODAF diffusion in any region of the sperm plasma membrane. Vitamin E tended to enhance diffusion rates. Exogenous cumene hydroperoxide, however, reduced ODAF diffusion to low levels on the sperm head. These results suggest that the adverse effects of ROS on spermatozoa are more likely to be caused by direct oxidation of proteins and membrane permeabilisation than disturbance of lipid fluidity.  相似文献   

17.
The antioxidant effect of alpha-tocopherolquinone and alpha-tocopherolhydroquinone was studied in liposomes and rat liver submitochondrial particles. Both alpha-tocopherolquinone and alpha-tocopherolhydroquinone inhibit lipid peroxidation induced by ascorbate/Fe2+ in liposomes and by cumene hydroperoxide in submitochondrial particles. Alpha-tocopherolhydroquinone is much more effective than alpha-tocopherolquinone in inhibiting lipid peroxidation. Submitochondrial particles, depleted of ubiquinones and reincorporated with alpha-tocopherolquinone, are protected from lipid peroxidation only in the presence of succinate. Alpha-tocopherolquinone cannot replace endogenous ubiquinones in the respiratory chain function, nevertheless it can be reduced by the mitochondrial respiratory chain substrates, presumably through the reduced ubiquinones.  相似文献   

18.
The effect of lipid peroxidation on lipolysis depends on the intactness of the adipocyte plasma membrane. In the intact cells, the norepinephrine-stimulated lipolysis was inhibited, while the basal one was elevated. In the lysed cells, lipid peroxidation had no effect upon hormone-stimulated lipolysis, but the basal one was strongly inhibited. The effects of free radical damage (iron plus ascorbate ions) were compared to those of malondialdehyde, a non-radical product of lipid peroxidation. Although qualitatively similar, deterioration of plasma membrane induced by malondialdehyde was much lower than by free radicals. The changes in lipolytic response to norepinephrine were accompanied by a drastic reduction in the number of beta-adrenergic receptors.  相似文献   

19.
We have introduced two specific techniques for the quantitative measurement of monohydroxyeicosatetraenoic acids (HETEs) and F2-isoprostanes by gas chromatography-mass spectrometry/negative ion chemical ionization (GC-MS/NICI) to study lipid peroxidation in isolated rat brain mitochondria by iron/ascorbate. The analysis of HETEs involved hydrogenation, solid phase extraction on a C18-cartridge, formation of pentafluorobenzyl bromide and trimethylsilyl ether derivatives. In the case of F2-isoprostanes, the analytical procedure was similar to that of HETEs except that the hydrogenation step was omitted. We found that HETE content (sum of 5-, 8-12-, and 15-isomers) in freshly prepared rat brain mitochondria was 220 +/- 40pmol/mg protein. The corresponding content for the F2-isoprostane, 8-iso-PGF2alpha, was 0.21 +/-+/- 0.10 pmol/mg protein. HETEs and 8-iso-PGF2alpha were predominantly present in the esterified form. The content of both HETEs and 8-iso-PGF2alpha were increased in presence of iron/ascorbate as oxidation system. After 30 min incubation with Fe2+ ascorbate, the content of HETE isomers was increased about 6-fold compared with baseline levels whereas that for 8-iso-PGF2alpha was elevated 100-fold. Formation of HETEs and F2-isoprostanes corresponded to the consumption of arachidonic acid (AA) and alpha-tocopherol, respectively. There were almost no changes in the content of free (non-esterified) HETEs and 8-iso-PGF2alpha during the course of iron/ascorbate induced oxidation of the brain mitochondria. Our data provide the first direct evidence for the presence of HETEs and F2-isoprostanes in freshly isolated rat brain mitochondria and that esterified HETEs and 8-iso-PGF2alpha are predominantly generated during iron/ascorbate induced lipid peroxidation. Sensitive quantification of these products of non-enzymatic lipid peroxidation as indicators of oxidant injury opens new areas of investigation regarding the role of free radicals in the pathogenesis of human diseases. In addition, HETEs and F2-isoprostanes may be important mediators for mitochondrial functions.  相似文献   

20.
Vanadyl (V(IV)) was found to induce rapidly developing lipid peroxidation in intact and sonicated mitochondria as well as in phosphatidylcholine suspension. The ability of vanadate (V(V)) to induce lipid peroxidation was much less pronounced compared to that of vanadyl. The peroxidative action of vanadate on phosphatidylcholine much increased in the presence of NADH and ascorbate. Preincubation of vanadate with glucose had the same effect.

Vanadyl-induced lipid peroxidation was not essentially influenced by SOD, catalase and ethanol but was completely inhibited by butylated hydroxytoluene.

All these effects of vanadyl and vanadate are thought to participate in the insulin-like and other biological actions of vanadium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号