首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The divalent cation ionophore A 23187 was used to evaluate the action of intracellular calcium on net transepithelial water movement across the isolated frog urinary bladder. Incubation with the ionophore increases the net basal water flux in a dose-dependent fashion but independent of the extracellular calcium concentration. Bladders pretreated with A 23187 and exposed thereafter to an increase in calcium concentration exhibit a water permeability that under certain conditions can be comparable to that achieved with antidiuretic hormone (ADH). Lowering the serosal calcium at the peak of the hydrosmotic responses to both ADH and A 23187 inhibited the maintenance of the net water flux. The action of a supramaximal dose of ADH is blunted in bladders pretreated with A 23187, while the hydrosmotic effects of a submaximal dose are enhanced when the ionophore is added together with the hormone. The results show that an increase in transepithelial water movement can be triggered by calcium and that serosal calcium is needed to sustain the response. This hydrosmotic response may be dependent upon the rate at which intracellular calcium concentrations change and on the absolute concentration attained. It is suggested that calcium is involved in the action of ADH on water permeability and may act as a modulator of the hydrosmotic response.  相似文献   

2.
Summary In the urinary bladder of amphibia, hypertonicity of the serosal bath (SH) evokes an increase in transepithelial water permeability, the characteristics of which resemble the response to antidiuretic hormone (ADH). The ionic dependency, in particular for Ca2+, appears very similar forSH- and ADH-induced water fluxes. In the present experiments La3+ was used as a probe to study the Ca2+-dependency of the hydrosmotic response toSH in isolated urinary bladder of the toadBufo marinus.Addition of La3+ (5mm) on the serosal side of the membrane produced a significant and reversible increase in basal transepithelial water flux. The hydrosmotic response elicited by adding 250mm mannitol to the serosal Ringer's solution was inhibited by 30% in the absence of serosal Ca2+. Similarly, the hydrosmotic response toSH was inhibited by 37%, 30% and 40% when 5mm La3+ was added to the serosal medium 30 min before, concommitantly with, or 60 min after induction ofSH. The inhibition of transepithelial water flux observed in the absence of serosal Ca2+ or in the presence of serosal La3+ was reversible.The results support a critical role for Ca2+ in the modulation of transepithelial water permeability in the urinary bladder of amphibia. Ca2+ presumably exerts its effects at a post-cyclic AMP step.  相似文献   

3.
In certain epithelial tissues, water permeability is markedly increased by antidiuretic hormone. This so-called hydrosmotic effect has been shown to be mediated by 3'-5' cyclic adenosine monophosphate, which, in turn, alters the permeability o the luminal membrane of receptor cells. This review deals wity ultrastructural alterations occurring in the membrane, as observed with freeze-fracture electron microscopy. Basically, these alterations consist of organized particle aggregates which appear in the apical membrane. In all experimental conditions, similar aggregates can be observed in the membrane of cytoplasmic vesicles. ADH stimulation triggers the fusion of these vesicles with the apical membrane resulting in the concomitant transfer of particle aggregates. It has been shown, in a wide range of experimental conditions, that both number and total area of the aggregates are directly proportional to the water permeability of the tissue. It is generally assumed that particle aggregates contain transmembrane channels that are selectively to water.  相似文献   

4.
Sulfhydryl (SH) reactive reagents, such as eosin derivatives, have been found to be useful in labeling water pathways in red cells. In the present study we used an impermeable SH-reagent, a fluorescent maleimide analogue EMA (eosin-5'-maleimide), in order to identify proteins involved in water permeability response to antidiuretic hormone (ADH). We observed that: 1) EMA (1 mM) mucosal pretreatment did not modify either the basal water flux or the subsequent ADH-induced hydrosmotic response; 2) EMA added to the mucosal bath at the maximum response to ADH, significantly decreased net water flux by about 40%; similar results were obtained when 10(-5) M forskolin was used as a hydrosmotic agent. These results suggest that the inhibitory effect of EMA occurs at a post cAMP step, possibly at the level of the sulfhydryl groups of the water channels themselves. Fluorescence distribution in SDS-PAGE of Triton X-100 extracted proteins from bladder labeled with EMA in both control conditions and under ADH stimulation allowed us to identify apical membrane proteins, labeled during ADH stimulation and not labeled in water impermeable controls. Of particular importance are four proteins of 52, 32-35, 26, 17, kDa. These polypeptides are probably involved in ADH-stimulated water transport and may be components of the water channels.  相似文献   

5.
THERE is overwhelming evidence to connect cyclic 3′,5′-adenos-ine monophosphate (cyclic AMP) with hormone action in various tissues1. For example, the toad bladder responds to neurohypophyseal hormones (ADH) with an increase in water permeability2 and with an increase in the mucosal to serosal transport of sodium3. ADH also causes an increase in cyclic AMP levels in the tissue4 and the actions of the hormone can be mimicked by addition of the cyclic nucleotide2,5. Orloff and Handler5 have suggested that cyclic AMP directly affects the permeability of the mucosal face of the epithelial cells to water and to sodium and that there are two separate adenyl cyclase systems responsible for controlling the permeability to water and to sodium6,7.  相似文献   

6.
The effects of the sodium ionophore monensin on osmotic water flow across the urinary bladder of the toad Bufo marinus were studied. Monensin alone did not alter osmotic water flow; however, the ionophore inhibited the hydrosmotic response to vasopressin and cyclic AMP in a dose-dependent manner. The inhibitory effects of monensin were apparent when the ionophore was added to th serosal bathing solution but not when it was added to the mucosal bathing solution. The inhibitory effect of serosal monensin required the presence of sodium in the serosal bathing solution but not the presence of calcium in the bathing solutions. Thus, it appears that intracellular sodium concentration is a regulator of the magnitude of the hydrosmotic response to vasopressin and cyclic AMP.  相似文献   

7.
The aim of this work was to study the effect of some pharmacological cholinergic agents on the events that follow the interaction of arginine vasopressin with toad bladder membrane receptors related to synthesis of 3′5′cAMP. The water flow through the membrane was measured gravimetrically in sac preparations of the membrane. In the absence of arginine vasopressin (AVP), carbachol induced a significant increase in the water flow (37%) related to the basal (Ringer's solution). On the other hand, when carbachol and AVP were associated, a significant decrease of AVP hydrosmotic activity occurred (23%). The inhibitory effect of carbachol on the AVP action was almost completely abolished by the cholinergic antagonists atropine, pirenzepine, 4-diphenylacetoxy-N-methylpiperidine methiodide (4-DAMP) and the calcium antagonist lanthanum. Similarly, when carbachol and 3′5′ cyclic adenosine monophosphate (3′5′cAMP) were associated, a decrease of nucleotide hydrosmotic activity was observed (12.80%). This effect was partially restored by the addition of pirenzepine or 4-DAMP in the bath solution. These results suggest a role for muscarinic receptors of sub-type M1 and M3, which are involved in the intracellular calcium release. The increase of calcium concentration in the intracellular medium acts as a negative modulator in the hydrosmotic action of antidiuretic hormone.  相似文献   

8.
Summary The effects of the sodium ionophore monensin on osmotic water flow across the urinary bladder of the toadBufo marinus were studied. Monensin alone did not alter osmotic water flow; however, the ionophore inhibited the hydrosmotic response to vasopressin and cyclic AMP in a dose-dependent manner. The inhibitory effects of monensin were apparent when the ionophore was added to the serosal bathing solution but not when it was added to the mucosal bathing solution. The inhibitory effect of serosal monensin required the presence of sodium in the serosal bathing solution but not the presence of calcium in the bathing solutions. Thus, it appears that intracellular sodium concentration is a regulator of the magnitude of the hydrosmotic response to vasopressin and cyclic AMP.  相似文献   

9.
The effects of PGF and PGE2 on transepithelial urea flux and osmotic water flow were evaluated in toad bladders. Mucosal to serosal urea flux and osmotic water flow were not changed from basal values by the addition of either prostaglandin to the serosal bath. However, treatment with either PGF or PGE2 inhibited both urea flux and osmotic water flow in response to ADH stimulation in a concentration-dependent manner. The hydrosmotic response to ADH was more sensitive to prostaglandin inhibition than was urea flux. The inhibitory effect of the prostaglandins on ADH-enhanced urea flux was not dependent upon inhibition of the hydrosmotic response, since both PGF and PGE2 decreased urea flux in the absence of a trans-epithelial osmotic gradient. Prostaglandin E2 was a more potent inhibitor than PGE of both ADH-enhanced urea flux and osmotic water flow. The PGF antagonism of osmotic water flow was apparently competitive, while antagonism of urea flux was apparently non-competitive. The results are consistent with the hypothesis of the existence of a “spare” population of prostaglandin receptors that modulate water flow, but the absence of a “spare” prostaglandin receptor population with respect to the modulation of urea flux.  相似文献   

10.
In the toad urinary bladder 8-p-chlorophenylthio-cyclic AMP mimics the stimulatory effects of antidiuretic hormone on osmotic water permeability, 3H2O diffusion, and transepithelial sodium transport; but unlike the hormone does not cause an increase in urea permeability. Trheshold activation for the hydroosmotic response is observed at 1 micrometer and full activation at 100 micrometer. These results suggest that cyclic AMP may not mediate all the physiological effects of antidiuretic hormone and that this highly potent cyclic AMP analog may be useful in elucidating the precise role of cyclic AMP in other biomediate hormone action.  相似文献   

11.
The effect of Ca2+ and putative neurotransmitters on formation of cyclic AMP and cyclic GMP has been studied in incubated slices of brain tissue. Cyclic AMP levels in cerebellar slices after about 90 min of incubation ranged from 10 pmol/mg protein in rabbit, to 25 in guinea pig, to 50 in mouse and 200 in rat. Cyclic GMP levels in the same four species showed no correlation with cyclic AMP levels and were, respectively, 1.3, 20, 5 and 30 pmol/mg protein. The absence of calcium during the prolonged incubation of cerebellar slices had little effect on final levels of cyclic AMP, while markedly decreasing final levels of cyclic GMP. Reintroduction of Ca2+ resulted in a rapid increase in cerebellar levels of cyclic GMP which was most pronounced for guinea pig where levels increased nearly 7-fold within 5 min. Prolonged incubation of guinea pig cerebral cortical slices in calcium-free medium greatly elevated cyclic AMP levels apparently through enhanced formation of adenosine, while having little effect on final levels of cyclic GMP. Norepinephrine and adenosine elicited accumulations of cyclic AMP and cyclic GMP in both guinea pig cerebral cortical and cerebellar slices. Glutamate, γ-aminobutyrate, glycine, carbachol, and phenylephrine at concentrations of 1 mM or less had little or noe effect on cyclic nucleotide levels in guinea pig cerebellar slices. Prostaglandin E1 and histamine slightly increased cerebellar levels of cyclic AMP. Isoproterenol increased both cyclic AMP and cyclic GMP. The accumulation of cyclic AMP and cyclic GMP elicited by norepinephrine in cerebellar slices appeared, baed on dose vs. response curves, agonist-antaganonist relationships and calcium dependency, to involve in both cases activation of a similar set of ß-adrenergic receptors. In cerebellar slices accumulations of cyclic AMP and cyclic GMP elicted by norepinephrine and by a depolarizing agent, veratridine, were strongly dependent on the presence of calcium. The stimulatory effects of adenosine on cyclic AMP and cyclic GMP formation were antagonized by theophylline. The lack of correlations between levels of cyclic AMP and cyclic GMP under the various conditions suggested independent activation of cyclic AMP- and cyclic GMP-generating systems in guinea pig cerebellar slices by interactions with Ca2+, norephinephrine and adenosine.  相似文献   

12.
The basal rate of water reabsorption and its acceleration by oxytocin, cyclic AMP (cAMP) or serosal hypertonicity in frog urinary bladders were monitored before and after exposure of the mucosal surface to sulfhydryl (SH) reactive reagents. The following observations were made: 1. N-ethylmaleimide (NEM, 10(-5)M) did not modify the basal water flux, but did potentiate the hydrosmotic response to oxytocin. At higher NEM concentrations, an increase in the basal flux was observed, while the oxytocin-induced water flux was strongly inhibited, if not, nullified. 2. Iodoacetamide (IAM, 10(-3)M) did not modify the basal water flux but did inhibit the oxytocin-, cAMP-, and serosal hypertonicity-induced increase in water permeability. Furthermore, the time course of the hydrosmotic response to oxytocin was significantly increased. 3. 5,5' dithio-bis-(2-nitrobenzoic acid) (DTNB, 10(-3)M) modified neither the basal nor the oxytocin-induced water flux when incubated at pH 8.1, but potentiated the inhibitory effect of NEM. However, at a mucosal pH of 6.5, DTNB inhibited the response to oxytocin by 30%. These results suggest that: (1) the three SH reagents affect differently the basal and the oxytocin-induced water pathways; and that (2) each of the changes in the oxytocin-induced paths occurs at a step following the hormonally-induced increase in intracellular cAMP concentration.  相似文献   

13.
Summary It has been suggested that during the oxytocin-induced hydrosmotic response, water crosses the luminal membrane of urinary bladder epithelium cells through membranespanning proteins. Although specific inhibitors of osmotic water transport have not been found, certain sulfhydryl reagents such as mercurial compounds may help to identify the proteins involved in this permeation process. We tested the effects ofp-chloromercuribenzene sulfonate (PCMBS) and of fluoresceinmercuric acetate (FMA) on the net water flux, the microtubule and microfilament structures of the frog urinary bladder, and the distribution of intramembrane particle aggregates in the luminal membrane.We observed that: (i) 5mm PCMBS at pH 5 and 0.5mm FMA at pH 8 added to the mucosal bath at the maximum of the response to oxytocin partially inhibited the net water flux. Inhibition then increased progressively when the preparation was repeatedly or continuously stimulated, until it reached a maximal inhibition at 120 min. This inhibition was not reversed even when cystein was added in the mucosal bath. PCMBS and FMA effects were also observed when cyclic AMP (3,5 cyclic adenosine monophosphate) was used to increase water permeability. (ii) PCMBS mucosal pretreatment did not modify the basal water flux but potentiated the inhibitory effect of PCMBS or FMA on the hydrosmotic response to oxytocin. (iii) Microtubule and microfilament network, visualized in target cells by immunofluorescence, was not affected by PCMBS. (iv) The maximal PCMBS or FMA inhibition was not associated with a reduction of aggregate surface area in the apical membrane.The persistence of the intramembrane particle aggregates associated with the oxytocin-induced hydrosmotic response during the net water flux inhibition by PCMBS, suggests that the PCMBS effect occurs possibly at the level of sulfhydryl groups of the water channel itself.  相似文献   

14.
Several benzodiazepines, diazepam, chlordiazepoxide, desmethyldiazepam, methyloxazepam and oxazepam, potentiate the accumulation of cyclic AMP elicited by histamine and histamine: noradrenaline in cerebral cortical slices of guinea pig. In addition, these drugs increase basal levels of cyclic AMP by about 100 per cent. When adenosine is used to stimulate cyclic AMP formation only diazepam, desmethyldiazepam and methyloxazepam are increasing cyclic AMP levels significantly over respective controls. The order of potency is: diazepam > desmethyldiazepam > methyloxazepam > oxazepam > chlordiazepoxide. Diazepam decreases the rate of degradation of cyclic AMP after removal of the stimulatory agents (histamine : noradrenaline). Dose response curves for diazepam under two stimulatory conditions are shown. A significant effect is obtained at 50 μm -diazepam and an ED50 of 40 μm is calculated with histamine as the stimulatory agent. When cyclic AMP formation is elicited by histamine : noradrenaline a significant effect of diazepam is seen at 10 μm and an ED50 of 16 μm is obtained. These results lend support to the hypothesis that the psychotropic action of the benzodiazepines may, at least in part, involve the cyclic AMP generating systems of the central nervous system.  相似文献   

15.
Hydrogen sulfide (H2S) has been reported to exert pharmacological effects on neural and non-neural tissues from several mammalian species. In the present study, we examined the role of the intracellular messenger, cyclic AMP in retinal response to H2S donors, sodium hydrosulfide (NaHS) and sodium sulfide (Na2S) in cows and pigs. Isolated bovine and porcine neural retinae were incubated in oxygenated Krebs buffer solution prior to exposure to varying concentrations of NaHS, Na2S or the diterpene activator of adenylate cyclase, forskolin. After incubation at different time intervals, tissue homogenates were prepared for cyclic AMP assay using a well established methodology. In isolated bovine and porcine retinae, the combination of both phosphodiesterase inhibitor, IBMX (2 mM) and forskolin (10 μM) produced a synergistic increase (P < 0.001) in cyclic AMP concentrations over basal levels. NaHS (10 nM–100 μM) produced a time-dependent increase in cyclic AMP concentrations over basal levels which reached a maximum at 20 min in both bovine and porcine retinae. At this time point, both NaHS and Na2S (10 nM–100 μM) caused a significant (P < 0.05) dose-dependent increase in cyclic AMP levels in bovine and porcine retinae. For instance, NaHS (100 nM) elicited a four-fold and three-fold increase in cyclic AMP concentrations in bovine and porcine retinae respectively whilst higher concentrations of Na2S (100 μM) produced a much lesser effect in both species. In bovine and porcine retinae, the effects caused by forskolin (10 μM) on cyclic AMP production were not potentiated by addition of low or high concentrations of both NaHS and Na2S. We conclude that H2S donors can increase cyclic AMP production in isolated neural retinae from cows and pigs. Bovine retina appears to be more sensitive to the stimulatory effect of H2S donors on cyclic nucleotide production than its porcine counterpart indicating that species differences exist in the magnitude of this response. Furthermore, effects produced by forskolin on cyclic AMP formation were not additive with those elicited by H2S donors suggesting that these agents may share a common mechanism in their action on the adenylyl cyclase pathway.  相似文献   

16.
Norepinephrine and serotonin augment by about 2-fold the accumulation of cyclic [3H]AMP elicited by 2-chloroadenosine in [3H]adenine-labeled guinea-pig cerebral cortical slices. Histamine causes a 3-fold augmentation. The first two agents have no effect on cyclic AMP alone, while histamine has only a small effect alone. The augmentation of the 2-chloroadenosine response appears to be mediated by α1-adrenergic, 5HT2-serotonergic and H2-histaminergic receptors. VIP-elicited accumulations of cyclic AMP are also augmented through stimulation of α1-adrenergic, 5HT2-serotonergic and H1-histaminergic receptors. Activation of these amine receptors also increases the turnover of phosphatidylinositols in [3H]inositol-labeled guinea pig cerebral cortical slices. Norepinephrine causes a 5-fold, serotonin a 1.2-fold, and histamine a 2.5-fold increase in accumulations of [3H]inositol phosphates. 2-Chloroadenosine, vasoactive intestinal peptide, baclofen, and somatostatin have no effect on phosphatidylinositol turnover, nor do the last two agents augment accumulations of cyclic AMP elicited by 2-chloroadenosine. The data suggest a possible relationship between turnover of phosphatidylinositol and the augmentations of the cyclic AMP accumulations elicited by biogenic amines in brain slices.  相似文献   

17.
Summary The reversible dependence of skin osmotic water permeability (L PD ) upon the ionic concentration of the outer bathing solution — which we have called hydrosmotic salt effect (HSE) — was studied in the isolated skin of the toadBufo marinus ictericus. The skin osmotic water flow (J V ) was measured as a function of outer bathing solution osmolality (O e ).L PD , calculated as (J v /) P=0 (where and P are the osmotic and hydrostatic pressure differences across the skin, respectively) was constant whenO e was altered with sucrose, a nonelectrolyte. In contrast,L PD increased continuously in the hypotonic range asO e was raised from zero (distilled water) with NaCl or KCl. The HSE could also be evoked in the condition of reversed osmotic volume flow, with the outer bathing medium made hypertonic with sucrose.Diffusional14C-sucrose permeability, measured in theJ v =0 condition to prevent solvent drag of sucrose in the paracellular pathways, indicate that the hydrosmotic salt effect cannot be explained by assuming a paracellular permeability increase, due to tight junction opening, but might be interpreted as due to changes in the osmotic water permeability of the apical membranes of the most superficial cells of the epithelium.The hydrosmotic salt effect can be elicited in control skins and in vasopressin-stimulated skins, on top of the hormonal response.The time course of the hydrosmotic salt effect is substantially different from that of the hydrosmotic response to vasopressin. Its half-time is 4 to 5 times faster than that of vasopressin action, with individual values as short as 1.5 min.The time courses of the hydrosmotic salt-effect onset and reversibility are exponential, clearly contrasting with the typical sigmoidal shape of vasopressin onset and washout time courses.Based on time course data and on speed of response we postulate that the mechanism underlying the hydrosmotic salt effect is due to modifications of existing water pathways in the apical membrane, rather than to incorporation and removal of water permeability units in this structure.  相似文献   

18.
The effect of ethanol on histamine release from lungs of sensitized guinea pigs was studied in conjunction with measurements of tissue concentrations of cyclic AMP and cyclic GMP. Addition of antigen in vitro elicited a rapid increase in cyclic AMP and cyclic GMP and stimulated release of histamine. Ethanol (2%) inhibited antigen-induced release of histamine over 95% and completely inhibited the increase in both cyclic nucleotides. The activity of cyclic AMP-dependent protein kinase was only slightly affected by ethanol.Metiamide blocked the ovalbumin stimulated increase in cyclic AMP but not cyclic GMP. Pyrilamine did not prevent the rise in either cyclic nucleotide. This suggests that the antigen-induced rise in cyclic AMP is an indirect result of histamine released from the tissue. The inability of H1 and H2 receptor antagonists to affect antigen-induced elevation of cyclic GMP in sensitized lung fragments suggests that an elevation in cyclic GMP might be either a primary event in the mediator release sequence or secondary to the release of a mediator other than histamine. The ability of ethanol to inhibit mediator release might be due to its capacity to attenuate the antigen-induced elevation of cyclic GMP in sensitized lung.  相似文献   

19.
Studies have been performed on the effect of vasopressin on cyclic AMP content of toad bladders. A prompt increase in cyclic AMP content occurred after exposure to vasopressin, which reached maximal values within 8 min and remained elevated up to 30 min. By a comparison of the dose-response characteristics of vasopressin on cyclic AMP content, with those Na+ transport and osmotic water flow, it was shown that supramaximal concentrations of vasopressin with respect to physiological function generate more cyclic AMP than is required for maximal stimulation of Na+ transport and water flow. Thus, it would seem that a reverse of hormone-sensitive adenylate cyclase is present in this tissue.  相似文献   

20.
1. Vasopressin induces a rapid increase in water permeability and stimulates net sodium transport in responsive epithelia through the mediation of cAMP. 2. In amphibian urinary bladder, the increase in water permeability is dependent on an intact cytoskeleton and is associated with the exocytotic insertion of tubular vesicles containing particle aggregates (the putative water channels) into the apical membrane of the granular epithelial cells. 3. In the toad bladder, mucosal addition of NEM, 0.1 mM, elicits a slow and irreversible increase in transepithelial water flow, whilst decreasing net sodium transport. 4. The hydrosmotic response to mucosal NEM is inhibited by cellular acidification, by pretreatment with cytoskeleton-disruptive drugs, and by agents that increase cytosolic calcium. 5. Mucosal NEM potentiates the hydrosmotic response to a submaximal, but not a maximal, dose of vasopressin. 6. Mucosal NEM, like vasopressin, induces both vesicle fusion and the appearance of particle aggregates at the granular cell apical surface. 7. NEM, unlike vasopressin, does not increase cellular cAMP content. 8. Mucosal NEM appears to increase transcellular water flow by activating cellular processes normally triggered by vasopressin, at a step beyond cAMP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号