首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Solvent binding in the nucleosome core particle containing a 147 base pair, defined-sequence DNA is characterized from the X-ray crystal structure at 1.9 Å resolution. A single-base-pair increase in DNA length over that used previously results in substantially improved clarity of the electron density and accuracy for the histone protein and DNA atomic coordinates. The reduced disorder has allowed for the first time extensive modeling of water molecules and ions.Over 3000 water molecules and 18 ions have been identified. Water molecules acting as hydrogen-bond bridges between protein and DNA are approximately equal in number to the direct hydrogen bonds between these components. Bridging water molecules have a dual role in promoting histone-DNA association not only by providing further stability to direct protein-DNA interactions, but also by enabling formation of many additional interactions between more distantly related elements. Water molecules residing in the minor groove play an important role in facilitating insertion of arginine side-chains. Water structure at the interface of the histones and DNA provides a means of accommodating intrinsic DNA conformational variation, thus limiting the sequence dependency of nucleosome positioning while enhancing mobility.Monovalent anions are bound near the N termini of histone α-helices that are not occluded by DNA phosphate groups. Their location in proximity to the DNA phosphodiester backbone suggests that they damp the electrostatic interaction between the histone proteins and the DNA. Divalent cations are bound at specific sites in the nucleosome core particle and contribute to histone-histone and histone-DNA interparticle interactions. These interactions may be relevant to nucleosome association in arrays.  相似文献   

2.
We have examined binding properties of and dissociation induced by the intercalating dye ethidium bromide when it interacts with the nucleosome core particle under low ionic strength conditions. Ethidium binding to the core particle results in a reversible dissociation which requires the critical binding of 14 ethidium molecules. Under low ionic strength conditions, dissociation is about 90% completed in 5 h. The observed ethidium binding isotherm was corrected for the presence of free DNA due to particle dissociation. The corrected curve reveals that the binding of ethidium to the core particle itself is a highly cooperative process characterized by a low intrinsic binding constant of KA = 2.4 X 10(4) M-1 and a cooperativity parameter of omega = approximately 140. The number of base pairs excluded to another dye molecule by each bound dye molecule (n) is 4.5. Through the use of a chemical probe, methidiumpropyl-EDTA (MPE), we have localized the initial binding sites of ethidium in the core particle to consist of an average of 27 +/- 4 bp of DNA that are distributed near both ends of the DNA termini. MPE footprint analysis has also revealed that, prior to dissociation, the fractional population of core particles which bind the dye (f) may be as low as 50%. Comparison of the binding and dissociation data showed that the cooperative maximum of the binding curve occurred at or near the critical value, i.e., at the point where dissociation began. The data were used to generate a detailed model for the association of ethidium with chromatin at the level of the nucleosome.  相似文献   

3.
Crystals of a nucleosome core particle containing defined sequence DNA   总被引:8,自引:0,他引:8  
Nucleosome core particles were reconstituted from a DNA restriction fragment and histone octamers, crystallized, and the crystals examined by X-ray diffraction. A DNA fragment was engineered by site-directed mutagenesis to obtain a 146 base-pair sequence that takes up a symmetrical arrangement in the core particle. The resulting DNA sequence was cloned in multiple copies into pUC9 and excised as monomer via EcoRV to produce it in milligram quantities. Nucleosome core particles incorporating the DNA were reconstituted by salt gradient dialysis and purified by anion-exchange high-pressure liquid chromatography. DNase I digestion was used to demonstrate that the termini of the restriction fragment are located 73 base-pairs from the molecular dyad axis of the particle. The diffraction limits of crystals of defined sequence core particles extend along the principal direction to a approximately equal to 4 A, b approximately equal to 5 A and c approximately equal to 3 A, giving about a twofold increase in the number of measurable X-ray reflections over previous crystals containing mixed sequence DNA. The methods developed here should be useful in the study of other large protein-DNA complexes.  相似文献   

4.
Interaction of rat testis protein, TP, with nucleosome core particle   总被引:6,自引:0,他引:6  
Circular dichroism studies have revealed that addition of testis specific protein, TP in vitro, to rat testes nucleosome core particle resulted in a decrease in the compaction of the core particle DNA. This was also corroborated by thermal denaturation analysis. Addition of TP to nucleosome core particle resulted in the conversion of a biphasic transition towards a single phase. However, at the same time there was a 20% reduction in the overall hyperchromicity of core particle DNA at core particle to TP molar ratios of 1:2 and 1:3. These observations along with our earlier report, showing the DNA melting properties of TP, suggest that TP may play an important role in the disassembly process of nucleosome core particle during spermiogenesis.  相似文献   

5.
6.
The kinetics of the chromatin core particle reassembly reaction in solution were quantitatively studied under conditions such that nucleohistone aggregation did not occur. Core particles, salt-jumped rapidly by dilution from 2.5 m-NaCl (in which DNA and histones do not interact) to 0.6 m-NaCl (in which core particles are nearly intact), reassemble in two distinct time ranges. Approximately 75% of the DNA refolds into core particle-like structures “instantaneously” as measured by several physical and chemical techniques with dead times in the seconds to minutes time range. The remaining DNA refolds with relaxation times ranging from 250 minutes at 0 °C to 80 minutes at 37 °C; this slow effect cannot be attributed to sample heterogeneity. The fraction of slowly refolding DNA and the slow relaxation time are independent of the core particle concentration. Transient intermediates present during the slow phase of refolding were identified as free DNA and core particle-like structures containing excess histone. Mixing experiments with DNA, histones, and core particles showed that core particle-histone interactions are responsible for the slow kinetics of DNA refolding. Upon treatment of reassembling core particles with the protein crosslinking reagent, dimethylsuberimidate, the slow phase of the reassembly reaction was arrested and a 13 S particle containing DNA and two octamers of histone was isolated. Consistent with the nature of this kinetic intermediate, it is shown that in 0.6 m-NaCl, core particles co-operatively bind at least one additional equivalent of histones with high affinity in the form of excess octamers. Also, core particles continue to adsorb considerably more histones with a weaker association constant of the order 105m?1 (in units of octamers) to a maximum value of 12 ± 2 equivalents (octamers) per core particle. The sedimentation coefficient increases with the two-thirds power of the molecular weight of the complex, as it would in the case of clustered spheres.A reassembly mechanism consistent with the data is presented, and other simple mechanisms are excluded. In the proposed mechanism, core particles reassemble very rapidly and compete effectively with DNA for histones such that approximately one-third of the particles initially formed are complexed with an excess octamer of histones, and 25% of the total DNA remains uncomplexed. The amount of this unusual reaction intermediate decays slowly to an equilibrium value of about 10%, thereby leaving 9% of the total DNA uncomplexed. Approximate values are calculated for the free energies, rate constants, and two of the activation energies which characterize this migrating octamer mechanism. This mechanism provides a means whereby histone octamers can be temporarily stripped off DNA at a modest free energy cost, approximately 2.6 kcal per nucleosome. Also, the properties of excess histone adsorption by chromatin and octamer migration suggest an efficient mechanism, consistent with observations by others, for nucleosome assembly in vivo during replication.  相似文献   

7.
The crystal structures of the proteases (PRs) encoded by the Rous sarcoma virus (RSV) and the human immunodeficiency virus (HIV) have been compared. The crystallographic monomer of HIV PR superimposes on the two crystallographically independent subunits of the RSV PR dimer with root mean square deviations of 1.45 and 1.55 A for 86 and 88 common C alpha atoms, respectively. There is a conserved structural core consisting of seven beta-strands forming two perpendicular layers, a helix, and the amino- and carboxyl-terminal beta-strands. PRs from related retroviruses fold into similar structures with surface turns of variable length between the beta-strands. Both HIV and RSV PR dimers have significant subunit-subunit interactions in three regions: the "firemen's grip" at the active site; the salt bridges involving Arg8, Asp29, and Arg87 of HIV PR; and the termini of the two subunits, which form a four-stranded antiparallel beta-sheet. The specific interactions of the termini differ in the two PRs. The carboxyl termini, residues 96-99 of HIV PR and residues 119-124 of RSV PR, contribute approximately 50% of the intersubunit ionic and hydrogen bond interactions and approximately 45% of the buried surface area involved in dimer formation. This information may be useful in the design of site-directed mutations or inhibitors of dimer formation.  相似文献   

8.
The tetrameric (H3/H4)2 146 base pair (bp) DNA and hexameric (H3/H4)2(H2A/H2B)1 146 bp DNA subnucleosomal particles have been prepared by depletion of chicken erythrocyte core particles using 3 or 4 M urea, 250 mM sodium chloride, and a cation-exchange resin. The particles have been characterized by cross-linking and sedimentation equilibrium. The structures of the particles, particularly the tetrameric, have been studied by sedimentation velocity, low-angle neutron scattering, circular dichroism, optical melting, and nuclease digestion with DNase I, micrococcal nuclease, and exonuclease III. It is concluded that since the radius of gyration of the DNA in the tetramer particle and its maximum dimension are very close to those of the core particle, no expansion occurs on removal of all the H2A and H2B. Nuclease digestion results indicate that histones H3/H4 in the tetramer particle protect a total of 70 bp of DNA that are centrally located within the 146 bp. Within the 70 bp DNA length, the two terminal regions of 10 bp are, however, not strongly protected from digestion. The optical melting profile of both particles can be resolved into three components and is consistent with the model of histone protection of DNA proposed from nuclease digestion. The structure proposed for the tetrameric histone complex bound to DNA is that of a compact particle containing 1.75 superhelical turns of DNA, in which the H3 and H4 histone location is the same as found for the core particle in chromatin by histone/DNA cross-linking [Shick, V. V., Belyavsky, A. V., Bavykin, S. G., & Mirzabekov, A. D. (1980) J. Mol. Biol. 139, 491-517]. Optical melting of the hexamer particle shows that each (H2A/H2B)1 dimer of the core particle protects about 22 base pairs of DNA.  相似文献   

9.
DNase I, trypsin, and micrococcal nuclease are used to further probe the structure of nascent deoxyribonucleoprotein (DNP) fractions which appear after in vivo 20-s pulse labeling of sea urchin embryos with [3H]thymidine. We present evidence that the large nascent DNP which protects the approximately 300-base pair large nascent DNA consists of at least one nucleosome core. This is based on fractionation in denaturing polyacrylamide gels of DNA extracted from large nascent DNP fractions of a micrococcal nuclease + DNase I digest of nuclei. The data also suggest the existence of a DNase I-hypersensitive site(s) within the large nascent DNP; this is consistent with the hypothesis that the latter consists of closely packed dinucleosome cores. Histone H1 and non-histone proteins do not account for the previously reported unusual hyperresistance of the large nascent DNA against micrococcal nuclease. The protection offered this approximately 300-base pair nascent DNA was not eliminated by an 0.2-microgram/ml trypsin pretreatment which removes the above proteins from the chromatin. However, 5-10 micrograms/ml of trypsin, which remove a portion of the NH2 termini of the four core histones of nucleosomes, eliminate the hyperresistance of the large nascent DNA to subsequent micrococcal nuclease digestion, while nascent and bulk monomer DNAs remain unaffected. This indicates histone-histone and/or histone-DNA interactions within the large nascent DNP which differ from those of nascent and bulk mononucleosome cores.  相似文献   

10.
DNA-binding protein was characterized by previous investigators as a single-stranded DNA-binding protein analogous to the gene 32 protein of phage T4 (Van der Vliet &; Levine, 1973; Sugawara et al., 1977). In the studies presented here the interactions between natural and synthetic polynucleotides and the DNA-binding protein of adenovirus 2-infected HeLa cells have been examined. Polynucleotide melting techniques revealed a tight yet dissociable binding to the helix structure of double-stranded DNA. In addition, binding and filter binding competition experiments at high DNA to protein ratios revealed a specific binding to double-stranded DNA termini with a dissociation constant of 1 × 10?9 to 2 × 10?9m. The ability of DNA-binding protein to bind to heat-denatured viral DNA was confirmed but the binding to double-stranded DNA termini was more specific on a molar basis. DNA-binding protein can recognize both flush and staggered ends of double-stranded DNA molecules.  相似文献   

11.
Structural dynamics of nucleic acid and protein is an important physical basis of their functions. These motions are often very difficult to synchronize and too fast to be clearly resolved with the currently available single molecule methods. Here we demonstrate a novel hybrid single molecule approach combining stochastic data analysis with fluorescence correlation that enables investigations of sub-ms unsynchronized structural dynamics of macromolecules. Based on the method, we report the first direct evidence of spontaneous DNA motions at the nucleosome termini. The nucleosome, comprising DNA and a histone core, is the fundamental packing unit of eukaryotic genes that must be accessed during various genome transactions. Spontaneous DNA opening at the nucleosome termini has long been hypothesized to enable gene access in the nucleosome, but has yet to be directly observed. Our approach reveals that DNA termini in the nucleosome open and close repeatedly at 0.1–1 ms−1. The kinetics depends on salt concentration and DNA–histone interactions but not much on DNA sequence, suggesting that this dynamics is universal and imposes the kinetic limit to gene access. These results clearly demonstrate that our method provides an efficient and robust means to investigate unsynchronized structural changes of DNA at a sub-ms time resolution.  相似文献   

12.
The rate of production of acid-soluble material during degradation of duplex DNA by Hemophilus influenzae ATP-dependent DNAse (Hind exonuclease V) has been shown to be directly dependent upon the Mg2+ concentration in the reaction mixture. At high concentrations of Mg2+ (5 to 20 mM), DNA degradation to acid-soluble products is rapid and the rate of ATP hydrolysis is slightly depressed. At low concentrations of Mg2+ (0.1 to 0.5 mM), the enzyme rapidly hydrolyzes ATP and converts up to 35% of linear duplex DNA to single-stranded material while degrading less than 0.2% of the DNA to acid-soluble products. We refer to this enzymatic production of single-stranded DNA as the "melting" activity. Under the conditions of our assay, the initial melting reaction is processive, lasting about 70s on phage T7 DNA. Using DNAs with several different lengths, we have established that the duration of the initial reaction is dependent upon DNA length, requiring approximately 1 s per 0.18 mum. The products of the initial reaction on phage T7 DNA are somewhat heterogeneous, consisting of short duplex fragments approximately 0.5 mum long, purely single-stranded products up to 7 mum long, and longer duplex fragments 3 to 11 mum in length, some of which have single-stranded tails. Nearly half of the single-stranded material remains linked to a duplex segment of DNA after the inital processive reaction. We propose that Hind exo V initiates attack at the DNA termini and then acts in a processive manner, migrating along the DNA molecule, converting some regions to single-stranded material by the combined action of the melting activity and limited phosphodiester cleavage, while leaving other regions double-stranded. At the completion of its processive movement through a single DNA molecule, it is released and then recycles onto either intact molecules or the partially degraded products, continuing in this manner until the DNA is finally reduced to oligonucleotides.  相似文献   

13.
The structure of the DNA region in rat thymus nucleosome core particle has been studied by synchrotron X-ray scattering analysis and the contrast-variation technique has been applied to determine the contribution of the DNA to the total scatterings. Small-angle contrast-matching measurements show that the entire core particle and isolated histone octamers are contrast-matched by solvents containing 64 and 54% (w/w) sucrose, respectively. At a contrast of 54% sucrose, where the scattering of the DNA dominates, the scattering data extending to higher angle of about 0.05 A-1 have been collected from relatively concentrated solutions (10 mg/ml) of core particles and interpreted on the basis of the regular helical model for the DNA region. The model calculations show that the shape of the DNA around the histone core is approximately by 1.8 turns of regular helix of 42 A radius and 28 A pitch. These values for helical parameters of our model are in good agreement with those of the structure of DNA in crystallized nucleosome cores shown by earlier diffraction studies.  相似文献   

14.
DNA of a Human Hepatitis B Virus Candidate   总被引:41,自引:23,他引:18       下载免费PDF全文
Particles containing DNA polymerase (Dane particles) were purified from the plasma of chronic carriers of hepatitis B antigen. After a DNA polymerase reaction with purified Dane particle preparations treated with Nonidet P-40 detergent, Dane particle core structures containing radioactive DNA product were isolated by sedimentation in a sucrose density gradient. The radioactive DNA was extracted with sodium dodecyl sulfate and isolated by band sedimentation in a preformed CsCl gradient. Examination of the radioactive DNA band by electron microscopy revealed exclusively circular double-stranded DNA molecules approximately 0.78 mum in length. Identical circular molecules were observed when DNA was isolated by a similar procedure from particles that had not undergone a DNA polymerase reaction. The molecules were completely degraded by DNase 1. When Dane particle core structures were treated with DNase 1 before DNA extraction, only 0.78-mum circular DNA molecules were detected. Without DNase treatment of core structures, linear molecules with lengths between 0.5 and 12 mum, in addition to the 0.78-mum circles were found. These results suggest that the 0.78-mum circular molecules were in a protected position within Dane particle cores and the linear molecules were not within core structures. Length measurements on 225 circular molecules revealed a mean length of 0.78 +/- 0.09 mum which would correspond to a molecular weight of around 1.6 x 10(6). The circular molecules probably serve as primer-template for the DNA polymerase reaction carried out by Dane particle cores. Thermal denaturation and buoyant density measurements on the Dane particle DNA polymerase reaction product revealed a guanosine plus cytosine content of 48 to 49%.  相似文献   

15.
Thermal transition of core particle which occurs before melting of DNA and can be followed by circular dichroism is not a two-state process; it is the result of two processes which cannot be dissociated in static experiments: unfolding of core particles is immediately followed by their aggregation. It is thus impossible to get thermodynamic parameters of core particle unfolding from its thermal transition monitored by circular dichroism. Thermal denaturation kinetics of core particles gives some information about their stability. Finally core particle structure is more stable in chromatin than in its isolated state.  相似文献   

16.
Zhao H  Zhang Y  Zhang SB  Jiang C  He QY  Li MQ  Qian RL 《Cell research》1999,9(4):255-260
The structure of the nuclosome core particle of chromatin in chicken erythrocytes has been examined by using AFM.The 146 bp of DNA wrapped twice around the core histone octamer are clearly visualized.Both the ends of entry/exit of linker DNA are also demonstrated.The dimension of the nucleosome core particles is - 1-4 nm in height and - 13-22 nm in width.In addition,superbeads (width of - 48-57 nm,height of - 2-3 nm )are occasionally revealed,two turns of DNA around the core particles are also detected.  相似文献   

17.
A novel nucleohistone particle is generated in high yield when a complex of DNA with the four core histones formed under conditions that are close to physiological (0.15 M NaCl, pH 8) is treated with micrococcal nuclease. The particle was found to contain 102 base pairs of DNA in association with six molecules of histones in the ratio 2H2A:2H2B:1H3:1H4 after relatively brief nuclease treatment. Prolonged nuclease digestion resulted in a reduction in the DNA length to a sharply defined 92-base pair fragment that was resistant to further degradation. Apparently normal nucleosome core particles containing two molecules each of the four core histones in association with 145 base pairs of DNA and a particle containing one molecule each of histones H2A and H2B in association with approximately 40 base pairs of DNA were also generated during nuclease treatment of the histone-DNA complexes formed under physiological ionic strength conditions. Kinetic studies have shown that the hexamer particle is not a subnucleosomal fragment produced by the degradation of nucleosome core particles. Furthermore, the hexamer particle was not found among the products of nuclease digestion when histones and DNA were previously assembled in 0.6 M NaCl. The high sedimentation coefficient of the hexameric complex (8 S) suggests that the DNA component of the particle has a folded conformation.  相似文献   

18.
Human polynucleotide kinase (hPNK) is required for processing and rejoining DNA strand break termini. The 5'-DNA kinase and 3'-phosphatase activities of hPNK can be stimulated by the "scaffold" protein XRCC1, but the mechanism remains to be fully elucidated. Using a variety of fluorescence techniques, we examined the interaction of hPNK with XRCC1 and substrates that model DNA single-strand breaks. hPNK binding to substrates with 5'-OH termini was only approximately 5-fold tighter than that to identical DNA molecules with 5'-phosphate termini, suggesting that hPNK remains bound to the product of its enzymatic activity. The presence of XRCC1 did not influence the binding of hPNK to substrates with 5'-OH termini, but sharply reduced the interaction of hPNK with DNA bearing a 5'-phosphate terminus. These data, together with kinetic data obtained at limiting enzyme concentration, indicate a dual function for the interaction of XRCC1 with hPNK. First, XRCC1 enhances the capacity of hPNK to discriminate between strand breaks with 5'-OH termini and those with 5'-phosphate termini; and second, XRCC1 stimulates hPNK activity by displacing hPNK from the phosphorylated DNA product.  相似文献   

19.
We have prepared semi-synthetic chromatin core particles from a complex of chicken erythrocyte inner histones (H2A, H2B, H3 and H4) with double-stranded poly(dAdT).poly(dAdT) and studied the conformation of the phosphodiester backbone using 31P NMR at 109.3 MHz. At 20 degrees C, the core particle spectrum is fit well by a single Lorenzian distribution with a line width of 110 Hz. This signal is significantly broader than that for the 145 base pair poly(dAdT).poly(dAdT) alone; the latter consists of two resonances, approximately equal in intensity, with average line width 41 Hz. Major changes in the spectrum ensue on heating the core particle preparation. In conjunction with other results (1) these data suggest four states for the core particle at increasing temperatures. Additionally, analysis of the spectrum of the unmelted core particle and its differences from protein-free DNA of the same length suggests that the conformation of the phosphodiester backbone and/or its interactions with histones along the length of the core particle DNA segment may not be uniform.  相似文献   

20.
A DNA kinase has been partially purified from rat liver nuclei by a procedure which also yields DNA ligase. The kinase uses ATP to phosphorylate specifically the 5'-hydroxyl termini of oligodeoxynucleotides and of single- or double-stranded DNA, yielding 5'-phosphate termini and ADP. The kinase is inactive on RNA, or on oligodeoxynucleotides of chain length less than approximately 10 to 12 residues. The kinase requires a divalent cation (Mg2+, Mn2+, Co2+, Zn2+, Ni2+, or Ca2+) for activity and has an acidic pH optimum. It is inhibited by a variety of nucleotides as well as by very low levels of inorganic and organic sulfate compounds and sulfate analogues. The molecular weight of the kinase is estimated to be 8 times 10(4) from gel filtration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号