首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper we describe a method for the detection of Phytomonas spp. from plants and phytophagous insects using the PCR technique by targeting a genus-specific sequence of the spliced leader (SL) gene. PCR amplification of DNA from 48 plant and insect isolates previously classified as Phytomonas by morphological, biochemical, and molecular criteria resulted in all cases in a 100-bp fragment that hybridized with the Phytomonas-specific spliced leader-derived probe SL3'. Moreover, this Phytomonas-specific PCR could also detect Phytomonas spp. in crude preparations of naturally infected plants and insects. This method shows no reaction with any other trypanosomatid genera or with plant and insect host DNA, revealing it to be able to detect Phytomonas spp. from fruit, latex, or phloem of various host plants as well as from salivary glands and digestive tubes of several species of insect hosts. Results demonstrated that SLPCR is a simple, fast, specific, and sensitive method that can be applied to the diagnosis of Phytomonas among cultured trypanosomatids and directly in plants and putative vector insects. Therefore, the method was shown to be a very specific and sensitive tool for diagnosis of Phytomonas without the need for isolation, culture, and DNA extraction of flagellates, a feature that is very convenient for practical and epidemiological purposes.  相似文献   

2.
Pure cultures of a trypanosomatid isolated from tomato fruits infected laboratory-raised tomatoes and nymphs of the hemipieran coreid Phthia picta . The flagellate could be transmitted back and forth from tomatoes to insects. Light and electron microscopy studies were done on culture, tomato and insect forms. Examination of enzymes of the ornithine-arginine metabolism revealed absence of arginase and presence of arginine deiminase and citrulline hydrolase. Monoclonal antibodies specific for Phytomonas spp. reacted positively with tomato and insect forms. Endonuclease digestion of the k-DNA of various Phytomonas spp. revealed a unique, distinctive pattern for the tomato flagellate. This flagellate thus seems to constitute a separate species of Phytomonas which we now call Phytomonas serpens (Gibbs).  相似文献   

3.
Monoclonal antibodies have been produced against culture forms of Phytomonas francai and Phytomonas serpens parasites, respectively, in cassava roots and tomato fruits. These monoclonal antibodies have been tested against 5 other Phytomonas spp. isolated from plants and 14 species of trypanosomatids of various genera. Monoclonal antibodies were found to react exclusively with Phytomonas spp., always giving negative results with other trypanosomatid genera. Thus, these monoclonal antibodies seem to be an effective tool for the identification of phytomonads among insect trypanosomatids.  相似文献   

4.
ABSTRACT. Seven Phytomonas -specific monoclonal antibodies produced against Phytomonas serpens and Phytomonas françai were further characterised in order to identify and localise their target antigens. Four monoclonal antibodies recognized carbohydrate surface epitopes, in three of the cases associated with surface glycoproteins with apparent molecular weight of 80 kDa. One monoclonal antibody apparently bound to a surface/internal protein epitope, whereas the two others recognized intra-cellular proteins. The cell surface epitopes recognized by monoclonal antibodies were detected specifically in the genus Phytomonas. These epitopes, which are detected in culture, plant and insect forms, may be useful as targets for Phytomonas identification.  相似文献   

5.
Fifty-four species or isolates of insect trypanosomatids were examined for the presence of selected restriction enzyme sites in the small (SSU) and large (LSU) rRNA coding units of ribosomal genes. In the SSU, sites for Eco RI, Bgl II, Pst I, and Hind III were found to occur at the same location for all species examined, thus displaying a universal distribution among trypanosomatids. In the LSU, a site for Bgl II in the 24S-alpha sequence and sites for Hind III and Pst I in the 24S-beta sequence were found in all species examined. In contrast, a site for Pvu II in the SSU exhibited a genus-related distribution, being present in Crithidia and Herpetomonas but absent in Phytomonas. A site for Hind III in the 24S-alpha sequence of the LSU also exhibited genus-restricted distribution. The site was present in Crithidia but absent in Phytomonas and Herpetomonas. These findings were confirmed by dot hybridization with a synthetic oligonucleotide complementary to the 18S rRNA sequence containing the Pvu II site. Results point to the usefulness of restriction markers as diagnostic tools for distinguishing the lower trypanosomatid genera Crithidia, Herpetomonas, and Phytomonas at the same time revealing a marked complexity within the genus Leptomonas.  相似文献   

6.
ABSTRACT. Three strains of Phytomonas serpens two from tomatoes, Lycopersicon esculentum one from the insect Phtia picta (Hemiptera, Coreidae), were cultivated in a chemically defined medium developed from a defined medium for cultivating insect flagellates. Besides organic growth factors required by other insect trypanosomatids this flagellate requires, serine and inositol. Glutamine stimulates growth, and, surprisingly, does not require heme.  相似文献   

7.
A PCR-based method was adapted for the amplification of DNA from methanol-fixed smears of insects and plants parasitized by trypanosomatids. The PCR target was the multicopy spliced leader (SL) gene. Amplicons were hybridized with an oligonucleotide probe (SL3') specific for Phytomonas. The method has the advantage of dispensing with the cultivation of parasites, many of which are very fastidious or non-cultivable. The technique was applied to archival glass slides and to newly collected material. It proved to specific for Phytomonas spp., enabling their detection in plants and insects. Sequence comparison of the amplicons obtained revealed the existence of different strains/species of Phytomonas circulating among diseased palsms and fruit.  相似文献   

8.
Trypanosomatids were isolated from edible fruit. One of the isolates (from tangerine) presented a set of enzymes for the metabolism of arginine-ornithine similar to that of Leptomonas spp., and failed to be recognized by monoclonal antibodies specific for Phytomonas spp. The possibility that trypanosomatids other than Phytomonas spp. could infect fruit was further examined by inoculating tomatoes with species of Crithidia, Leptomonas and Herpetomonas. Some of these flagellates multiplied in tomatoes. Besides, house flies became infected with Crithidia sp. when fed on tomatoes experimentally inoculated with this flagellate. Therefore, isolation of a trypanosomatid from a plant should not constitute an absolute criterion for placing it in the genus Phytomonas.  相似文献   

9.
ABSTRACT We studied 31 Phytomonas stocks isolated from various hosts and a broad geographical range by isoenzyme electrophoresis (14 loci) and population genetics analysis. The total variability is considerable since many stocks share no allele. Population genetic analysis strongly suggests that Phytomonas zymodemes behave as natural clones, as already proposed by us for several other protozoan species. These clones should be considered as actual taxa in all applied studies. Latex plants and phloemic plants (coconut and palm trees) harbor distinct sets of clones; hence, latex plants studied in this article are probably not a reservoir for parasites of the coconut and palm tree.  相似文献   

10.
Control of glyphosate uptake and metabolism in Pseudomonas sp. 4ASW   总被引:1,自引:0,他引:1  
Abstract The tandem mini-exon gene repeat is an ideal diagnostic target for trypanosomatids because it includes sequences that are conserved absolutely coupled with regions of extreme variability. We have exploited these features and the polymerase chain reaction to differentiate Phytomonas strains isolated from phloem, fruit or latex of various host plants. While the transcribed regions are nearly identical, the intergenic sequences are variable in size and content (130–332 base pairs). The mini-exon genes of these phytomonads can therefore be distinguished from each other and from the corresponding genes in insect trypanosomes, with which they are oft confused.  相似文献   

11.
Isopropyl alcohol dehydrogenase (iPDH) is a dimeric mitochondrial alcohol dehydrogenase (ADH), so far detected within the Trypanosomatidae only in the genus Phytomonas. The cloning, sequencing, and heterologous expression of the two gene alleles of the enzyme revealed that it is a zinc-dependent medium-chain ADH. Both polypeptides have 361 amino acids. A mitochondrial targeting sequence was identified. The mature proteins each have 348 amino acids and a calculated molecular mass of 37 kDa. They differ only in one amino acid, which can explain the three isoenzymes and their respective isoelectric points previously found. A phylogenetic analysis locates iPDH within a cluster with fermentative ADHs from bacteria, sharing 74% similarity and 60% identity with Ralstonia eutropha ADH. The characterization of the two bacterially expressed Phytomonas enzymes and the comparison of their kinetic properties with those of the wild-type iPDH and of the R. eutropha ADH strongly support the idea of a horizontal gene transfer event from a bacterium to a trypanosomatid to explain the origin of the iPDH in Phytomonas. Phytomonas iPDH and R. eutropha ADH are able to use a wide range of substrates with similar Km values such as primary and secondary alcohols, diols, and aldehydes, as well as ketones such as acetone, diacetyl, and acetoin. We speculate that, as for R. eutropha ADH, Phytomonas iPDH acts as a safety valve for the release of excess reducing power.  相似文献   

12.
Fatty acid and sterol analysis were performed on Phytomonas serpens and Phytomonas sp. grown in chemically defined and complex medium, and P. fran?ai cultivated in complex medium. The three species of the genus Phytomonas had qualitatively identical fatty acid patterns. Oleic, linoleic, and linolenic were the major unsaturated fatty acids. Miristic and stearic were the major saturated fatty acids. Ergosterol was the only sterol isolated from Phytmonas sp. and P. serpens grown in a sterol-free medium, indicating that it was synthesized de novo. When P. fran?ai that does not grow in defined medium was cultivated in a complex medium, cholesterol was the only sterol detected. The fatty acids and sterol isolated from Phytomonas sp. and P. serpens grown in a chemically defined lipid-free medium indicated that they were able to biosynthesize fatty acids and ergosterol from acetate or from acetate precursors such as glucose or threonine.  相似文献   

13.
14.
The genus Phytomonas comprises trypanosomatids that can parasitize a broad range of plant species. These flagellates can cause diseases in some plant families with a wide geographic distribution, which can result in great economic losses. We have demonstrated previously that Phytomonas serpens 15T, a tomato trypanosomatid, shares antigens with Trypanosoma cruzi, the agent of human Chagas disease. Herein, two-dimensional gel electrophoresis (2-DE) and mass spectrometry (MS) were used to identify proteins of P. serpens 15T that are recognized by sera from patients with Chagas disease. After 2D-electrophoresis of whole-cell lysates, 31 peptides were selected and analyzed by tandem mass spectrometry. Twenty-eight polypeptides were identified, resulting in 22 different putative proteins. The identified proteins were classified into 8 groups according to biological process, most of which were clustered into a cellular metabolic process category. These results generated a collection of proteins that can provide a starting point to obtain insights into antigenic cross reactivity among trypanosomatids and to explore P. serpens antigens as candidates for vaccine and immunologic diagnosis studies.  相似文献   

15.
Trypanosomatids are widespread in several plant families and although most isolates have been classified as Phytomonas, other trypanosomatid genera can also infect plants. In order to assess the natural occurrence of non-Phytomonas trypanosomatids in plants we characterized 21 new trypanosomatid cultures, 18 from fruits and three from seeds of 17 plant species. The trypanosomatids from fruit and seeds were compared in terms of morphological, growth, biochemical and molecular features. The high diversity among the isolates permitted the classification of the new flagellates into the genera Crithidia and Leptomonas as well as Phytomonas. The data showed that natural fruit infection with non-Phytomonas trypanosomatids is more common than usually thought, being detected in 43% of the fruit isolates.  相似文献   

16.
The NPVs of 3Spodoptera species and 1Heliothis species were bioassay tested for cross-infectivity. The progeny virus from the test insects was purified and examined by specific identification criteria. This demonstrated that activation of virus was much more common than cross-infection. Stress experiments using chemicals and varying environmental conditions failed to activate any virus in the stock insect cultures. Experiments were designed to test for possible mixed inoculum virus as an explanation of the activation effect but this theory was disproved. The mechanism of the activation is unexplained but it seems clear that when independent identification techniques are used it can be demonstrated that infecting an insect larva with a NPV from another host can result in death due to infection with the NPV normally associated with that host rather than that used as inoculum. This can occur even though no latent virus can be detected in the insect population by conventional methods.  相似文献   

17.
Trypanosomatids of the genus Phytomonas have been known as parasites of lactiferous plants since the beginning of the century and have been the subject of renewed attention in the past decade, as they are now recognized to be pathogenic in plants of economic interest. Nevertheless, information about these flagellates is still scanty. Until recently they had not been cultured, or studied biochemically or ultrastructurally. Phytophagous insects are their putative vectors but exactly which species are involved remains to be established. There are many unanswered questions about the taxonomic identification, pathogenecity and transmission of Phytomonas spp as well as about their natural hosts and reservoirs; this article by Erney Camargo, Pieter Kastelein and Isaac Roitman highlights some of them.  相似文献   

18.
Insect foreign materials in food are of great economic and hygienic significance. However, identifying these species with any certainty requires an expert taxonomist and can be a time consuming process. Furthermore, insects are found as body parts or they are immature specimens that cannot be identified by conventional means. For these reasons, a reference database and efficient means of identification by non‐specialists are necessary to control insect pests. In this study, we chose 15 important insect pest species, because they had a higher probability of being included in human foods. We tested the utility of the cytochrome c oxidase I (COI) DNA barcodes for the identification. A 658‐bp fragment of the COI gene was sequenced, aligned, and a sequence data bank was constructed. As a result, the COI barcode sequence was suitable for identifying insect pests as food foreign materials. Photographs of morphological key characters by stereoscopic microscope and a pictorial key of the species are provided.  相似文献   

19.
Many field studies of insects have focused on the adult stage alone, likely because immature stages are unknown in most insect species. Molecular species identification (e.g., DNA barcoding) has helped ascertain the immature stages of many insects, but larval developmental stages (instars) cannot be identified. The identification of the growth stages of collected individuals is indispensable from both ecological and taxonomic perspectives. Using a larval–adult body size relationship across species, I present a novel technique for identifying the instar of field-collected insect larvae that are identified by molecular species identification technique. This method is based on the assumption that classification functions derived from discriminant analyses, performed with larval instar as a response variable and adult and larval body sizes as explanatory variables, can be used to determine the instar of a given larval specimen that was not included in the original data set, even at the species level. This size relationship has been demonstrated in larval instars for many insects (Dyar’s rule), but no attempt has been made to include the adult stage. Analysis of a test data set derived from the beetle family Carabidae (Coleoptera) showed that classification functions obtained from data sets derived from related species had a correct classification rate of 81–100%. Given that no reliable method has been established to identify the instar of field-collected insect larvae, these values may have sufficient accuracy as an analytical method for field-collected samples. The chief advantage of this technique is that the instar can be identified even when only one specimen is available per species if classification functions are determined for groups to which the focal species belongs. Similar classification functions should be created for other insect groups. By using those functions together with molecular species identification, future studies could include larval stages as well as adults.  相似文献   

20.
Classification of insects by echolocating greater horseshoe bats   总被引:1,自引:0,他引:1  
Summary Echolocating greater horseshoe bats (Rhinolophus ferrumequinum) detect insects by concentrating on the characteristic amplitude- and frequency modulation pattern fluttering insects impose on the returning echoes. This study shows that horseshoe bats can also further analyse insect echoes and thus recognize and categorize the kind of insect they are echolocating.Four greater horseshoe bats were trained in a twoalternative forced-choice procedure to choose the echo of one particular insect species turning its side towards the bat (Fig. 1). The bats were able to discriminate with over 90% correct choices between the reward-positive echo and the echoes of other insect species all fluttering with exactly the same wingbeat rate (Fig. 4).When the angular orientation of the reward-positive insect was changed (Fig. 2), the bats still preferred these unknown echoes over echoes from other insect species (Fig. 5) without any further training. Because the untrained bats did not show any prey preference, this indicates that the bats were able to perform an aspect-anglein-dependent classification of insects.Finally we tested what parameters in the echo were responsible for species recognition. It turned out that the bats especially used the small echo-modulations in between glints as a source of information (Fig. 7). Neither the amplitudenor the frequencymodulation of the echoes alone was sufficient for recognition of the insect species (Fig. 8). Bats performed a pattern recognition task based on complex computations of several acoustic parameters, an ability which might be termed cognitive.Abbreviations AM amplitude modulation - CF constant frequency - FM frequency modulation - S+ positive stimulus - S- negative stimulus  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号