首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Transformation-deficient mutants of Bacillus subtilis were selected after replica plating on agar plates containing transforming DNA. Out of 24 mutants tested, 3 showed highly reduced abilities to bind donor DNA; the residual levels of binding were similar to those of noncompetent cells. Transformation and transfection were reduced to nondetectable levels in the mutants. However, transduction with phage SPP1 occurred at normal frequencies. The nuclease activities involved in entry of donor DNA were present in the mutants. Comparison of protein patterns by two-dimensional gel electrophoresis revealed the absence of one major protein in the mutants as compared with the wild-type strain. This protein (molecular weight, approximately 18,000; isoelectric point, 5.0) appeared to be membrane associated. The protein was specific for competent cells, suggesting that it is involved in the binding of donor DNA.  相似文献   

3.
4.
A mutation in Bacillus subtilis call recC4 which results in an impairment of genetic transformation was transferred to a new strain using the closely linked marker mit-2 (mitomycin C-resistance) for selection. This derived strain was in turn impaired in transformation but showed normal levels of sensitivity to ultraviolet irradiation and methyl methane sulfonate. The genetic and molecular fate of transforming DNA in the recC4 strain was studied. Normal amounts of DNA were taken up by the cells and this DNA or parts of it became associated with recipient DNA. Linkage between genes on donor and recipient molecules was, however, not established and transformants were not generated. The recC4 mutation therefore affects a step in the recombination pathway during transformation. Either the association between donor and recipient DNA molecules is abnormal or the cells are deficient in the further processing of the associated complex.  相似文献   

5.
6.
7.
Protoplasts rather than intact cells of nontransformableB. subtilis mutants were transformed by plasmid pUB 110 DNA. Transformability of protoplasts of the NT mutants indicates that the mechanism of uptake of the donor DNA by protoplasts differs from that by competent intact cells.  相似文献   

8.
9.
10.
Three mutant strains exhibiting hyper-sensitivity to N-methyl-N'-nitro-N-nitrosoguanidine, but not to methyl methanesulfonate, were selected by a replica method from mutagenized spores of Bacillus subtilis. All three were totally deficient in the adaptive response to N-methyl-N'-nitro-N-nitrosoguanidine with regard to both lethality and mutagenesis. The activity to destroy O6-methylguanine residues in the methylated DNA was not elevated in the mutant cells by the pretreatment with sublethal concentrations of N-methyl-N'-nitro-N-nitrosoguanidine. This deficiency corresponded to the persistence of O6-methylguanine residues in the DNA of both control and pretreated mutant cells challenged with the drug. The lethal and mutagenic sensitivity of the mutant strains were observed only for methyl- or ethyl-nitroso compounds that are thought to be active as inducers and are also active in O-alkylation. Except for the insensitivity to methyl methanesulfonate, the phenotypes of these mutants look very similar to those of ada mutants isolated previously in Escherichia coli.  相似文献   

11.
Plasmid replication in DNA Ts mutants of Bacillus subtilis.   总被引:11,自引:0,他引:11  
A G Shivakumar  D Dubnau 《Plasmid》1978,1(3):405-416
In an attempt to increase our understanding of plasmid replication in Bacillus subtilis we determined the effect of various dna Ts mutations [Gass, K. B., and Cozzarelli, N. R. (1973). J. Biol. Chem. 248, 7688–7700; Gross, J. D., Karamata, D., and Hempstead, P. G. (1968). Cold Spring Harbor Symp. Quant. Biol.33, 307–312; Karamata, D., and Gross, J. D. (1970). Mol. Gen. Genet.108, 277–287] on pUB110 replication. pUB110 is a kanamycin resistance plasmid originally isolated in Staphylococcus aureus and introduced into B. subtilis by transformation. At temperatures nonpermissive for chromosomal DNA synthesis dnaA13, dnaB19, dnaC6, dnaC30, dnaD23, dnaE20, and dnaI102 permit replication of the plasmid. In several cases this “amplification” continues until approximately equal amounts of plasmid and chromosomal DNA are present. dnaG34, dnaH151, dnaF133, mut-1, and polC26 affect both pUB110 and host DNA synthesis at nonpermissive temperatures. The last three mutations are known to affect the activity of DNA polymerase III (PolIII). When polC26 is incubated at a nonpermissive temperature, there is an accumulation of plasmid DNA with a density on EtBr-CsCl gradients intermediate between that of covalently closed circular (CCC) and open circular DNA. pUB110 can replicate in a strain which is deficient in DNA polymerase I (PolI). Finally, chloramphenicol (Cm) inhibits the replication of pUB110 as well as of chromosomal DNA.  相似文献   

12.
The equilibrium adsorption and binding of DNA from Bacillus subtilis on the clay mineral montmorillonite, the ability of bound DNA to transform competent cells, and the resistance of bound DNA to degradation by DNase I are reported. Maximum adsorption of DNA on the clay occurred after 90 min of contact and was followed by a plateau. Adsorption was pH dependent and was greatest at pH 1.0 (19.9 micrograms of DNA mg of clay-1) and least at pH 9.0 (10.7 micrograms of DNA mg of clay-1). The transformation frequency increased as the pH at which the clay-DNA complexes were prepared increased, and there was no transformation by clay-DNA complexes prepared at pH 1. After extensive washing with deionized distilled water (pH 5.5) or DNA buffer (pH 7.5), 21 and 28%, respectively, of the DNA remained bound. Bound DNA was capable of transforming competent cells (as was the desorbed DNA), indicating that adsorption, desorption, and binding did not alter the transforming ability of the DNA. Maximum transformation by bound DNA occurred at 37 degrees C (the other temperatures evaluated were 0, 25, and 45 degrees C). DNA bound on montmorillonite was protected against degradation by DNase, supporting the concept that "cryptic genes" may persist in the environment when bound on particulates. The concentration of DNase required to inhibit transformation by bound DNA was higher than that required to inhibit transformation by comparable amounts of free DNA, and considerably more bound than free DNase was required to inhibit transformation by the same amount of free DNA. Similarly, when DNA and DNase were bound on the same or separate samples of montmorillonite, the bound DNA was protected from the activity of DNase.  相似文献   

13.
The equilibrium adsorption and binding of DNA from Bacillus subtilis on the clay mineral montmorillonite, the ability of bound DNA to transform competent cells, and the resistance of bound DNA to degradation by DNase I are reported. Maximum adsorption of DNA on the clay occurred after 90 min of contact and was followed by a plateau. Adsorption was pH dependent and was greatest at pH 1.0 (19.9 micrograms of DNA mg of clay-1) and least at pH 9.0 (10.7 micrograms of DNA mg of clay-1). The transformation frequency increased as the pH at which the clay-DNA complexes were prepared increased, and there was no transformation by clay-DNA complexes prepared at pH 1. After extensive washing with deionized distilled water (pH 5.5) or DNA buffer (pH 7.5), 21 and 28%, respectively, of the DNA remained bound. Bound DNA was capable of transforming competent cells (as was the desorbed DNA), indicating that adsorption, desorption, and binding did not alter the transforming ability of the DNA. Maximum transformation by bound DNA occurred at 37 degrees C (the other temperatures evaluated were 0, 25, and 45 degrees C). DNA bound on montmorillonite was protected against degradation by DNase, supporting the concept that "cryptic genes" may persist in the environment when bound on particulates. The concentration of DNase required to inhibit transformation by bound DNA was higher than that required to inhibit transformation by comparable amounts of free DNA, and considerably more bound than free DNase was required to inhibit transformation by the same amount of free DNA. Similarly, when DNA and DNase were bound on the same or separate samples of montmorillonite, the bound DNA was protected from the activity of DNase.  相似文献   

14.
15.
16.
Summary The initial attachment of transforming DNA to competent Bacillus subtilis is temperature independent between 25° and 45°. However, below 15° there is a significant reduction in the amount of DNA attached to competent cells. The DNA that is attached at 4° can lead to transformation or interfere effectively with the subsequent attachment of a distinctive DNA when the cells are shifted to a permissive temperature (37°). These data suggest that the attachment of DNA at 4° is to sites normally involved in the transformation process. The amount of DNA that is initially attached to the bacteria at 4° or 37° after perturbation of the cells by ionic strength changes, repetitive washings, or periodate oxidation varies with the temperature at which the treatment occurs. These results are consistent with a reorientation of the DNA attachment sites upon lowering the temperature to 4°, such that their affinity for DNA and susceptibility inhibitory treatments are reduced.National Institutes of Health Research Career Program Awardee, CA-K3-6487 during a portion of this investigation.  相似文献   

17.
18.
The single-stranded form of a pE194-based plasmid transformed Bacillus subtilis protoplasts at least as efficiently as did the double-stranded plasmid, but the single-stranded form did not detectably transform B. subtilis competent cells.  相似文献   

19.
The transformation of Bacillus subtilis by homologous deoxyribonucleic acid (DNA) made available by gently lysing a stable L-form or protoplast suspension was 3 to 10-fold more efficient than DNA isolated by conventional procedures. This increased transformation was not influenced by digestion with pronase, trypsin, or ribonuclease. Preincubation of isolated DNA with L-form lysates did not increase the transformation efficiency above that achieved with untreated, isolated DNA. In addition to displaying a higher efficiency of transformation, the DNA found in these gently prepared lysates was also able to co-transform heretofore unlinked markers at frequencies in excess of those found by congression. Comparison of the frequency of multiple marker transformations to single marker events as a function of DNA dilution conclusively proves that these markers originated from the same continuous strand of DNA.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号