首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract: Mild depolarisation (20 m M KCI) synergistically enhances the ability of a muscarinic agonist to activate phosphoinositide turnover and to elevate inositol 1,4,5-trisphosphate [Ins(1,4,5)P3] in cerebellar granule cells in primary culture. The effects of lithium on this intense stimulation of phosphoinositide turnover was studied. Lithium causes depletion of cytoplasmic inositol and phosphoinositides, which results in the inhibition of phosphoinositide turnover within 15 min and the return of Ins(1,4,5)P3 to basal levels at this time. This inhibition could not be reversed by culturing and preincubating cerebellar granule cells in concentrations of inositol similar to those detected in the CSF. Inositol concentrations substantially in excess of those in the CSF not only reversed the effects of lithium on stimulated Ins(1,4,5)P3 levels, but significantly enhanced this level in comparison with stimulation in the absence of lithium. sn -1,2-Diacylglycerol elevation during stimulated phosphoinositide turnover was also disrupted by lithium, but in contrast to Ins(1,4,5)3, the presence of lithium resulted in a transient enhancement of the elevation evoked by carbachol plus mild KCI depolarisation, which was reversed by 500 µ M inositol, but not by 200 µ M inositol. The implications of these phenomena in relation to the mechanism of action of lithium in the treatment of manic depression are discussed.  相似文献   

2.
A key event in signal transduction in many eukaryotes is activation of polyphosphoinositide-specific phospholipase C (PIC). This enzyme hydrolyses the plasma membrane-associated lipid, phosphatidylinositol(4,5)bisphosphate (Ptdlns(4,5)P2) which leads to the production of the two second messenger molecules: inositol(1,4,5)trisphosphate (Ins(1,4,5)P3) and 1,2-diacylglycerol (DG). In plants, an enzyme which functionally resembles mammalian PIC is known to exist in the plasma membrane, but little is understood about how its activity is regulated. The recent discovery of several plant proteins with 30–40% homology to the mammalian actin- and phosphoinositide-binding protein, profilin, has prompted an investigation as to whether these proteins (plant profilins) are able to interact with polyphosphoinositides and, if so, whether such interactions have physiological relevance for signal transduction via the plant phosphoinositide system.
In this study it is demonstrated that a direct and highly specific interaction does exist between plant profilin and polyphosphoinositides and that these interactions dramatically affect the ability of plant plasma membrane phosphoinositide phospholipase C to utilize phosphoinositides for second messenger production. These data are the first to demonstrate a functional role of plant profilin in controlling polyphosphoinositide turnover and also provide the first evidence for a direct effect of an actin-binding protein on a membrane-associated signalling enzyme. These findings indicate a novel mechanism for control of plant phosphoinositide turnover, and suggest a possible link between plant cell activation, second messenger production and modulation of cytoskeletal dynamics.  相似文献   

3.
Abstract: An alteration in signal transduction systems in Alzheimer's disease (AD) would likely be of pathophysiological significance, because these processes control normal brain functions. Previously, a diminished β-adrenergic-mediated cyclic AMP response was found in cultured fibroblasts from AD patients. Because cross-talk between the phosphoinositide and cyclic AMP pathways exists, the phosphoinositide cascade was studied under conditions that were similar to those for studying the cyclic AMP response. Cells from AD patients and age-matched controls responded to bradykinin (BK) and released inositol 1,4,5-trisphosphate [Ins(1,4,5)P3] in a time- and dose-dependent manner. The level of Ins(1,4,5)P3 increased rapidly and transiently in response to BK, peaked at 5 s, but still remained 116–132% above the basal level by 30 s. Although the temporal patterns were similar in both groups, the Ins(1,4,5)P3 concentrations in AD fibroblasts were 73 and 89% above levels in the age-matched controls at 5 and 10 s, respectively. Prostaglandin E1 also increased Ins(1,4,5)P3 formation, but this response was not different between the two groups. Although K D (affinity) values for the BK receptor were similar in both control and AD cells, the number of BK receptors ( B max) was significantly elevated in AD fibroblasts (186.8 ± 0.8 fmol/mg of protein) as compared with control fibroblasts (57.2 ± 15.3 fmol/mg of protein). These results indicate that the elevated Ins(1,4,5)P3 production in response to BK in AD fibroblasts is positively correlated with an increase in the receptor numbers.  相似文献   

4.
Abstract: A detailed analysis of the generation and subsequent metabolism of inositol 1,4,5-trisphosphate [Ins(1,4,5)P3] following muscarinic cholinoceptor stimulation in primary cultures of rat cerebellar granule cells has been undertaken. Following incubation of cerebellar granule cell cultures with [3H]inositol for 48 h, labelling of the inositol phospholipid pool approached equilibrium. Significant basal labelling of inositol pentakisphosphate (InsP5) and inositol hexakisphosphate (InsP6), as well as inositol mono- to tetrakisphosphate, fractions was observed. Addition of carbachol (1 m M ) caused an immediate increase in level of Ins(1,4,5)P3 (peak increase two-fold over basal by 60 s), which was well-maintained over the initial 300 s following agonist addition. In contrast, only a modest, more slowly developing, increase in inositol tetrakisphosphate accumulation was observed, whereas labelling of InsP5 and InsP6 was entirely unaffected by carbachol stimulation. Analysis of the products of Ins(1,4,5)P3 and inositol 1,3,4,5-tetrakisphosphate metabolism in broken cell preparations strongly suggested that Ins(1,4,5)P3 metabolism occurs predominantly via the inositol polyphosphate 5-phosphatase route, with metabolism via the Ins(1,4,5)P3 3-kinase being a relatively minor pathway. In view of the pattern of inositol (poly)phosphate metabolites observed on stimulation of the muscarinic receptor, it seems likely that, over the time course studied, the inositol polyphosphates are derived principally from phosphoinositide-specific phospholipase C hydrolysis of phosphatidylinositol 4,5-bisphosphate, although some hydrolysis of phosphatidylinositol 4-phosphate cannot be excluded.  相似文献   

5.
An increase in phosphatidylcholine (PC), phosphatidyl-ethanolamine (PE), phosphatidylglycerol (PG), and phosphatidylinositol (PI) occurred during bud break induced by decapitation. Inositol-1-phosphate [Ins(l)P1], inositol-1,4-bisphosphate [Ins(1,4)P2], and inositol-1,4,5-triphosphate [Ins(1,4,5)P3] were found in apple buds and increased progressively following decapitation. Ins(1)P1 and Ins(1,4)P2 peaked 48 h after decapitation and Ins(1,4,5)P3 peaked 72 h after decapitation during the metabolic transition when buds emerged from dormancy. Ins(1,4)P2 and Ins(1,4,5)P3 levels declined there after. The lateral buds on shoots with intact terminals and decapitated shoots treated with indole-3-acetic acid (IAA) in the terminals tip remained dormant and there were no significant changes in phospholipid and inositol phosphate contents.  相似文献   

6.
Hydrolysis of Inositol Trisphosphate by Purified Rat Brain Myelin   总被引:1,自引:0,他引:1  
Abstract: Highly purified rat brain myelin was found to hydrolyze inositol 1,4,5-trisphosphate to inositol 1.4-bisphosphate, but subsequent hydrolysis of the latter, characteristic of whole brainstem, did not occur. Inositol 1,4,5-trisphosphate 5-phosphatase in myelin was ∼ 33% of the level in microsomes and 127% that of the cytosolic fraction from brainstem. The myelin and microsomal enzymes had similar properties, as follows: activation by saponin, requirement for Mg2+ and similar Kact (0.16 and 0.13 mM), Km (8.7 ± 2.5 and 7.0 ± 1.0 μM), and pH optima (6.6-6.8). Vmax values were 11.2 ± 1.0 and 26.3 ± 2.0 nmol/mg/min for myelin and microsomes, respectively. A possible role for this enzyme in phosphoinositide-mediated signal transduction within myelin and its subcompartments is discussed.  相似文献   

7.
A hypertonic mannitol shock enhanced K+ uptake by Beta vulgaris L. (cv. early flat Egyptian) storage tissue slices and also increased the inositol 1,4,5-trisphosphate [Ins(1,4,5)P3) content of the slices as well as of Sorghum bicolor L. (cv. Hazera) and Vigna radiata L. (cv. unknown) roots. K+ uptake by B. vulgaris slices could be enhanced, in the absence of mannitol, by application of effectors that mimic products of the phosphatidylinositol 4,5-bisphosphate (PIP2) turnover cycle. Maximal Ins (1,4,5)P3 content was found 10 min after hypertonic induction and maximal K+ uptake was obtained 10 min later. The hypertonic mannitol shock, administered to intact B. vulgaris slices, also enhanced the phosphorylation of a 39 kDa protein in the plasmalemma.  相似文献   

8.
Abstract: Recent in vivo microdialysis studies have demonstrated the presence of extracellular levels of inositol 1,4,5-trisphosphate [Ins(1,4,5)P3] that can be increased in a concentration-dependent manner by muscarinic receptor activation. The aim of the present study was to determine whether extracellular levels of Ins(1,4,5)P3 could be measured in vitro. Despite rapid increases in internal Ins(1,4,5)P3 levels after stimulation with 1 m M carbachol, there was no change in external levels in both rat brain cortical slices and human neuroblastoma SH-SY5Y cells. Suprafusion of myo -[3H]inositol-prelabelled hippocampal slices with 1 m M carbachol caused an increase in 3H-inositol phosphates over basal levels in the perfusate after 10 min, reaching a peak (223 ± 56% of basal) 20 min after suprafusion with carbachol was started. This response to carbachol was potentiated in the presence of 30 m M K+. Analysis of the individual 3H-inositol phosphates in the perfusate revealed that levels of [3H]inositol monophosphate, [3H]inositol bisphosphate, [3H]inositol trisphosphate, and [3H]inositol tetrakisphosphate were all significantly increased. A similar increase in extracellular 3H-inositol phosphates was demonstrated in SH-SY5Y cells incubated with 1 m M carbachol for 30 min. This response was again enhanced by 30 m M K+, although the intracellular response was not potentiated. Possible roles for extracellular inositol phosphates are discussed.  相似文献   

9.
Abstract: The ability of lithium to interfere with the metabolism of inositol phosphates in brain may underlie its therapeutic action in manic-depressive illness. In these experiments, lithium, at therapeutic concentrations, enhanced the accumulation of [3H]inpsitol monophosphate but suppressed the accumulation of the putative second messengers [3H]inositol 1,4,5-trisphosphate ([3H]Ins(1,4,5)P3) and f3H]inositol 1,3,4,5-tetrakisphosphate following stimulation of cerebral cortex slices with carbachol. Mass measurements of Ins(1,4,5)P3showed similar inhibitory effects, which could be prevented by preincubation with myo -inositol. These data may reveal the mechanism by which lithium can reduce polyphosphoinositide-midiated neurotransmission in brain.  相似文献   

10.
Fibroblast growth factor 2 (FGF-2) is a mitogen that is exported from cells by an endoplasmic reticulum/Golgi-independent secretory pathway. Recent findings have shown that FGF-2 export occurs by direct translocation from the cytoplasm across the plasma membrane into the extracellular space. Here, we report that FGF-2 contains a binding site for phosphatidylinositol-4,5-bisphosphate [PI(4,5)P2], the principal phosphoinositide species associated with plasma membranes. Intriguingly, in the context of a lipid bilayer, the interaction between FGF-2 and PI(4,5)P2 is shown to depend on a lipid background that resembles plasma membranes. We show that the interaction with PI(4,5)P2 is critically important for FGF-2 secretion as experimental conditions reducing cellular levels of PI(4,5)P2 resulted in a substantial drop in FGF-2 export efficiency. Likewise, we have identified FGF-2 variant forms deficient for binding to PI(4,5)P2 that were found to be severely impaired with regard to export efficiency. These data show that a transient interaction with PI(4,5)P2 associated with the inner leaflet of plasma membranes represents the initial step of the unconventional secretory pathway of FGF-2.  相似文献   

11.
Sorting of yeast Ist2 to the plasma membrane (PM) or the cortical endoplasmic reticulum (ER) requires a cortical sorting signal (CSSIst2) that interacts with lipids including phosphatidylinositol-4,5-bisphosphate (PI(4,5)P2) at the PM. Here, we show that the expression of Ist2 in mammalian cells resulted in a peripheral patch-like localization without any detection of Ist2 at the cell surface. Attached to C-termini of mammalian integral membrane proteins, the CSSIst2 targeted these proteins to PM-associated domains of the ER and abolished trafficking via the classical secretory pathway. The interaction of integral membrane proteins with PI(4,5)P2 at the PM created ER–PM contacts. This process is similar to the regulated coupling of ER domains to the PM via stromal interaction molecule (STIM) proteins during store-operated Ca2+ entry (SOCE). The CSSIst2 and the C-terminus of the ER-located Ca2+ sensor STIM2 were sufficient to bind PI(4,5)P2 and PI(3,4,5)P3 at the PM, showing that an evolutionarily conserved mechanism is involved in the sorting of integral membrane proteins to PM-associated domains of the ER. Yeast Ist2 and STIM2 share a common basic and amphipathic signal at their extreme C-termini. STIM1 showed binding preference for liposomes containing PI(4,5)P2, suggesting a specific contribution of lipids to the recruitment of ER domains to the PM during SOCE.  相似文献   

12.
Abstract: Regional levels of lactate and inositol 1,4,5-trisphosphate (IP3), a cellular second messenger of the excitatory neurotransmitter system, were measured after lateral fluid percussion (FP) brain injury in rats. At 5 min postinjury, tissue lactate concentrations were significantly elevated in the cortices and hippocampi of both the ipsilateral and contralateral hemispheres. By 20 min postinjury, lactate concentrations were elevated only in the cortices and hippocampus of the ipsilateral hemisphere. Whereas the IP3 concentrations were elevated in the hippocampi of the ipsilateral and contralateral hemisphere and in the cortex of ipsilateral hemisphere at 5 min postinjury, no elevation in these sites was found at 20 min postinjury. Histologic analysis revealed neuronal damage in the cortex and CA3 regions of hippocampus ipsilateral to the injury at 24 h postinjury. The present results suggest activation of the phosphoinositide signal transduction pathway at the onset of injury and of a possible requirement of early persistent metabolic dysfunction (>20 min) such as the lactate accumulation in the delayed neuronal damage.  相似文献   

13.
Abstract: The effects of aluminium (as Al3+) on carbachol-induced inositol 1,4,5-trisphosphate (lnsP3) production arid Ca2+ mobilisation were assessed in electropermeabilised human SH-SY5Y neuroblastoma cells. Al3+ had no effect on lnsP3-induced Ca2+ release but appreciably reduced carbachol-induced Ca2+ release (lC50 of ∼90 μ M ). Aβ3+ also inhibited lnsP3 production (lC60 of ∼15 μ M ). Dimethyl hydroxypyridin-4-one, a potent Al3+ chelator (K5= 31), at 100 μ M was able to abort and reverse the effects of Al3+ on both Ca2+ release and lnsP3 production. These data suggest that, in permeabilised cells, the effect of Al3+ on the phosphoinositide-mediated signalling pathway is at the level of phosphatidylinositol 4,5-bisphosphate hydrolysis. This may reflect interference with receptor-G protein-phospholipase C coupling or an interaction with phosphatidylinositol 4,5-bisphosphate.  相似文献   

14.
Abstract: The regulatory role of A2A adenosine receptors in P2 purinoceptor-mediated calcium signaling was investigated in rat pheochromocytoma (PC12) cells. When PC12 cells were treated with 2- p -(2-carboxyethyl)-phenethylamino-5'- N -ethylcarboxamidoadenosine (CGS-21680), a specific agonist of the A2A adenosine receptor, the extracellular ATP-evoked rise in cytosolic free Ca2+ concentration ([Ca2+]i) was inhibited by 20%. Both intracellular calcium release and inositol 1,4,5-trisphosphate production evoked by ATP were not affected by CGS-21680 treatment. However, ATP-evoked Ca2+ influx was inhibited following CGS-21680 stimulation. The CGS-21680-mediated inhibition occurred independently of nifedipine-induced inhibition of the [Ca2+]i rise. The CGS-21680-induced inhibition was completely blocked by reactive blue 2. The CGS-21680 effect was mimicked by forskolin and dibutyryl-cyclic AMP and blocked by Rp -adenosine 3',5'-cyclic monophosphothioate, a protein kinase A inhibitor, or by staurosporine, a general kinase inhibitor. The data suggest that in PC12 cells activation of A2A adenosine receptors leads to inhibition of P2 purinoceptor-mediated Ca2+ influx through ATP-gated cation channels and involves protein kinase A.  相似文献   

15.
Abstract— Recent work indicates that the therapeutic action of lithium may be mediated through perturbation of postreceptor second messenger systems. To elucidate further the postreceptor cellular sites of action(s) of lithium, the effect of chronic lithium treatment on various components of the receptor-activated phosphoinositide pathway was investigated. We found that chronic administration of lithium (0.2% LiCI, 21 days) to adult male rats did not significantly affect phosphoinositide hydrolysis in cerebral cortical slices induced by carbachol (1 m M ) or NaF (10 m M ). Nor did the same treatment alter the carbachol (1 m M ) potentiation of guanosine 5'-(γ-thio)triphosphate (30 μ M ) stimulation of phosphoinositide hydrolysis (an index of receptor/G protein coupling) in cortical membranes. Immunoblotting studies revealed no changes in the levels of Gαq/11 immunoreactivity in the cortex after chronic lithium treatment. The levels of protein kinase C, as revealed by specific binding of [3H]phorbol dibutyrate ([3H]PDBu), were significantly reduced in the cytosolic fraction and increased in the particulate fraction of rat cortex after chronic lithium, whereas the K D of [3H]PDBu binding remained relatively constant. A small and insignificant decrease in the density of [3H]inositol 1,4,5-trisphosphate binding was also found in the cortex. The above data suggest that chronic lithium treatment affects neither the muscarinic cholinergic-linked phosphoinositide turnover nor the putative G protein α subunit (Gαq/11) responsible for phospholipase C activation. However, a possible translocation and activation of protein kinase C activity may be significant in the therapeutic effect of this mood-stabilizing agent.  相似文献   

16.
Abstract: The ability of receptors coupled to phosphoinositide turnover to evoke accumulation of inositol 1,4,5-trisphosphate (InsP3) over extended incubation periods, and consequently to affect the level of InsP3 receptor expression, was studied in cultured cerebellar granule cells. The cholinergic agonist carbachol (CCh; 1 m M ) evoked a biphasic accumulation of InsP3, a rapid three- to fourfold peak increase over control levels at ∼10 s, decreasing within 1 min to a long-lasting plateau elevation. Using an antibody against the type I InsP3 receptor, it was demonstrated that >50% down-regulation of type I InsP3 receptor expression in cerebellar granule cells occurred within 1 h of incubation with 1 m M CCh. Over 24 h, 1 m M CCh caused an ∼85% decrease in type I InsP3 receptor levels, and significant decreases in immunoreactivity were evident at much lower concentrations of CCh. Direct assessment of total InsP3 receptor expression using a radioligand binding method also detected down-regulation, but to an apparently lesser extent. 1-Aminocyclopentane-1 S ,3 R -dicarboxylic acid (200 µ M ), an agonist of metabotropic glutamate receptors, evoked a marked decrease in type I InsP3 receptors after 24 h of incubation. These findings demonstrate that a functional consequence of maintained InsP3 production in cerebellar granule cells is the down-regulation of InsP3 receptor expression and that this down-regulation may be a common mechanism of action of phosphoinositide-linked receptors during prolonged stimulation.  相似文献   

17.
Abstract: The extracellular concentration of inositol 1,4,5-trisphosphate (IP3) has been monitored in the ventral hippocampus of the anesthetized rat by using a microdialysis technique coupled to a radioreceptor assay. Three hours after the implantation of the cannula, basal extracellular concentration of IP3 (corrected for a 9% recovery) was 71 n M (0.39 pmol/60-µl fraction) and remained stable for at least 5 h. Local infusion of carbachol for 60 min caused a significant concentration-related increase in extracellular IP3 levels (0, 24, and 57% at 1, 50, and 100 µ M , respectively). Acetylcholine (100 µ M ) and muscarine (100 µ M ) increased IP3 outflow by 40 and 42%, respectively. The effect of carbachol was fully prevented by coinfusion of 10 µ M pirenzepine and reduced by 1 µ M tetrodotoxin indicating that the carbachol response is mediated by neuronal muscarinic receptors. These data demonstrate the feasibility of using microdialysis and a radioreceptor assay to measure IP3 in the extracellular space. This approach could prove useful for the study of the in vivo operation of muscarinic and, by extension, a number of receptors coupled to phosphoinositide turnover.  相似文献   

18.
Phosphoinositide recognition domains   总被引:10,自引:0,他引:10  
Domains or modules known to bind phosphoinositides have increased dramatically in number over the past few years, and are found in proteins involved in intracellular trafficking, cellular signaling, and cytoskeletal remodeling. Analysis of lipid binding by these domains and its structural basis has provided significant insight into the mechanism of membrane recruitment by the different cellular phosphoinositides. Domains that target only the rare (3-phosphorylated) phosphoinositides must bind with very high affinity, and with exquisite specificity. This is achieved solely by headgroup interactions in the case of certain pleckstrin homology (PH) domains [which bind PtdIns(3,4,5)P3 and/or PtdIns(3,4)P2], but requires an additional membrane-insertion and/or oligomerization component in the case of the PtdIns(3)P-targeting phox homology (PX) and FYVE domains. Domains that target PtdIns(4,5)P2, which is more abundant by some 25-fold, do not require the same stringent affinity and specificity characteristics, and tend to be more diverse in structure. The mode of phosphoinositide binding by different domains also appears to reflect their distinct functions. For example, pleckstrin homology domains that serve as simple targeting domains recognize only phosphoinositide headgroups. By contrast, certain other domains, notably the epsin ENTH domain, appear to promote bilayer curvature by inserting into the membrane upon binding .  相似文献   

19.
Abstract: Phosphatidylethanol is formed by phospholipase D in animal cells exposed to ethanol. Previous reports have demonstrated that the degradation of phosphatidylethanol is slow, indicating that this lipid may be present in the cells after ethanol itself has disappeared. Accumulation of an abnormal alcohol metabolite may influence cellular functions. In the present study, cultivation of NG108–15 neuroblastoma × glioma hybrid cells in the presence of ethanol resulted in an accumulation of phosphatidylethanol and a simultaneous increase in basal inositol 1,4,5-trisphosphate levels. The direct effects of phosphatidylethanol on the phosphoinositide signal transduction system were examined through incorporation of exogenous phosphatidylethanol into membranes of ethanol-naive cells. An incorporation amounting to 2.8% of cellular phospholipids was achieved after a 5-h incubation with 30 μ M phosphatidylethanol. Phosphatidylethanol was found to cause a time-and dose-dependent increase in the basal levels of inositol 1,4,5-trisphosphate. The effects on inositol 1,4,5-trisphosphate levels of exogenously added phosphatidylethanol and ethanol exposure for 2 days were not additive. No effect on bradykinin-stimulated inositol 1,4,5-trisphosphate production could be detected. However, the increase in basal inositol 1,4,5-trisphosphate levels indicates that phosphatidylethanol affects inositol 1,4,5-trisphosphate turnover and emphasizes the importance of considering phosphatidylethanol as a possible mediator of ethanol-induced effects on cellular processes.  相似文献   

20.
Abstract: We examined the effects of cyclic AMP on dopamine receptor-coupled activation of phosphoinositide hydrolysis in rat striatal slices. Forskolin, dibutyryl cyclic AMP, and the protein kinase A activator Sp -cyclic adenosine monophosphothioate ( Sp -cAMPS) significantly inhibited inositol phosphate formation stimulated by the dopamine D1 receptor agonist SKF 38393. Conversely, the protein kinase A antagonist Rp -cyclic adenosine monophosphothioate ( Rp -cAMPS) dose-dependently potentiated the SKF 38393 effect. In the presence of 200 µ M Rp -cAMPS, the dose-response curves of the dopamine D1 receptor agonists SKF 38393 and fenoldopam were shifted to the left and maximal agonist responses were markedly increased. The agonist EC50 values, however, were not significantly altered by protein kinase A inhibition. Neither Sp -cAMPS nor Rp -cAMPS significantly affected basal inositol phosphate accumulation. These findings demonstrate that dopaminergic stimulation of phosphoinositide hydrolysis is inhibited by elevations in intracellular cyclic AMP. Dopamine receptor agonists that stimulate adenylyl cyclase could suppress their activation of phosphoinositide hydrolysis by concomitantly stimulating the formation of cyclic AMP in striatal tissue. The interaction between dopamine D1 receptor-stimulated elevations in cyclic AMP and dopaminergic stimulation of inositol phosphate formation suggests a cellular colocalization of these dopamine-coupled transduction pathways in at least some cells of the rat striatum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号