共查询到20条相似文献,搜索用时 15 毫秒
1.
Movement of Indole-3-acetic Acid and Tryptophan-derived Indole-3-acetic Acid from the Endosperm to the Shoot of Zea mays L 总被引:1,自引:14,他引:1
下载免费PDF全文

The structures and the concentrations of all of the indolylic compounds that occur in the endosperm of the seeds of corn (Zea mays L.) are known. Thus, it should be possible to determine which, if any, of the indolylic compounds of the endosperm can be transported to the seedling in significant amounts and thus help identify the seed-auxin precursor of Cholodny (1935. Planta 23:289-312) and Skoog (1937. J. Gen. Physiol. 20:311-334). Of interest is the transport of tryptophan, indole-3-acetic acid (IAA), and the esters of IAA, which comprise 95% of the IAA compounds of the seed. We have shown that: (a) IAA can move from the endosperm to the shoot; (b) the rate of movement of IAA from endosperm to shoot is that of simple diffusion; (c) 98% of the transported IAA is converted into compounds other than IAA, or IAA esters, en route; (d) some of the IAA that has moved into the shoot has been esterified; (e) labeled tryptophan applied to the endosperm can be found as labeled IAA in the shoot; and (f) with certain assumptions concerning IAA turnover, the rate of movement of IAA and tryptophan-derived IAA from the endosperm to shoot is inadequate for shoot growth or to maintain IAA levels in the shoot. 相似文献
2.
3.
Indole-3-acetic Acid Levels and the Role of Indole-3-acetic Acid Oxidase in the Normal Root and Club-root of Cabbage 总被引:2,自引:0,他引:2
JAN RAA 《Physiologia plantarum》1971,25(1):130-134
The auxin content of club-root (Plasmodiophora brassicae Wor.) is 50–100 times higher than that of normal cabbage root. The importance of this difference in the disease development is discussed. Both normal root and club-root of cabbage contain allosteric IAA oxidase and IAA oxidase with ordinary kinetic properties. In normal cabbage root the allosteric one is associated with cell fractions sedimenting at 20,000 × g and 105,000 × g, in club-root it remains in the supernatant after 105,000 × g centrifugation. IAA oxidase with conventional kinetic properties is present in both these tissues in the cell fraction sedimenting at 10,000 × g, which contains mainly cell wall fragments. It is concluded that IAA oxidase is not primarily involved in regulation of the endogenous IAA level. 相似文献
4.
Muhammad-Asyraf Khairul-Anuar Mazumdar Purabi Lum Sam Harikrishna Jennifer Ann 《Biology Bulletin》2021,48(6):740-745
Biology Bulletin - Mostly, orchid flowers undergo a process of resupination before blooming because of twisting or rotation of the pedicel at the bud stage, positioning the lip below all other... 相似文献
5.
A prior study (13) from this laboratory showed that oxidation of exogenously applied indole-3-acetic acid (IAA) to oxindole-3-acetic acid (OxIAA) is the major catabolic pathway for IAA in Zea mays endosperm. In this work, we demonstrate that OxIAA is a naturally occurring compound in shoot and endosperm tissue of Z. mays and that the amount of OxIAA in both shoot and endosperm tissue is approximately the same as the amount of free IAA. Oxindole-3-acetic acid has been reported to be inactive in growth promotion, and thus the rate of oxidation of IAA to OxIAA could be a determinant of IAA levels in Z. mays seedlings and could play a role in the regulation of IAA-mediated growth. 相似文献
6.
M.R. Rady 《Biologia Plantarum》1997,39(4):515-522
Friable calli were induced from mature excised shoots of Bambusa vulgaris on Murashige and Skoog's (MS) medium supplemented with 2.2 μM6-benzylamino-purine (BAP), 9.04 μM 2,4-dichlorophenoxyacetic
acid and 14.76 μM indole-3-butyric acid (IBA) with 3 % (m/v) saccharose. Adventitious shoots with root hairs were achieved
from calli on MS medium supplemented with 13.33 μM BAP and 1.23 - 2.46 μM IBA within 4 weeks of subculture. The frequency
of shoot bud regeneration was better in the light incubated cultures than in the dark incubated cultures. Isolated shoots
were rooted on liquid half-strength MS basal medium supplemented with 0.49 μM IBA and 2 % (m/v) saccharose. Histological observations
confirmed the regeneration of shoot buds from calli. The rooted plantlets were successfully transferred to greenhouse.
This revised version was published online in July 2006 with corrections to the Cover Date. 相似文献
7.
8.
9.
10.
Seeds of oat, coconut, soybean, sunflower, rice, millet, kidney bean, buckwheat, wheat, and corn and vegetative tissue of oat, pea, and corn were assayed for free indole-3-acetic acid (IAA), esterified IAA, and peptidyl IAA. Three conclusions were drawn: (a) all plant tissues examined contained most of their IAA as derivatives, either esterified or as a peptide; (b) the cereal grains examined contained mainly ester IAA; (c) the legume seeds examined contained mainly peptidyl IAA. Errors in analysis of free and bound IAA are discussed. 相似文献
11.
《Bioscience, biotechnology, and biochemistry》2013,77(11):2345-2347
Previously we identified aminooxy compounds as auxin biosynthesis inhibitors. One of the compounds, aminooxyacetic acid (AOA) inhibited indole-3-acetic acid (IAA) biosynthesis in rice and tomato. Here, we found that AOA induced auxin over-accumulation in Arabidopsis. The results suggest that auxin-related metabolic pathways are divergent among these plant species. 相似文献
12.
Krul WR 《Plant physiology》1972,50(6):784-787
Polar indole-3-acetic acid movement was observed in killed plant segments and in artificial model systems. The polar diffusion of indole-3-acetic acid was observed in tissue killed by chemical or physical means in an agar-plant system and in a multicelled Plexiglas dialysis chamber containing hypocotyl tissue gradients or gradients of anion exchange material. 相似文献
13.
L. Wijayanti S. Fujioka M. Kobayashi A. Sakurai 《Journal of Plant Growth Regulation》1997,16(2):115-119
The involvement of abscisic acid (ABA) and indole-3-acetic acid (IAA) in the regulation of flowering of Pharbitis nil was investigated through exogenous applications and analyses of endogenous levels. Both hormones inhibited the flowering
of P. nil when they were applied before or after a single 15-h dark treatment. The inhibitory effect of ABA and IAA was significant
when they were applied before the dark treatment, and the application to plumules was more effective than that to cotyledons.
In all applications, the inhibitory effect of IAA was stronger than that of ABA. Endogenous levels of ABA and IAA in the plumules
were compared between flower-inductive (15-h dark treatment) and noninductive (continuous light) light conditions. There was
no significant difference in the ABA level between light and dark conditions, whereas the level of IAA was decreased by the
dark treatment. These results suggest that biosynthesis and/or catabolism of IAA is affected by the light treatment and therefore
may be involved in the regulation of early flowering processes in the apex. The inhibitory effects of ABA and IAA were reversed
by an application of gibberellin A3, indicating that gibberellin A3 counteracts the flowering processes affected by ABA and IAA. Application of aminoethoxyvinylglycine restored the flowering
response inhibited by IAA, which suggests the possibility that the inhibitory effect of IAA is the result of enhanced ethylene
biosynthesis.
Received November 22, 1996; accepted February 17, 1997 相似文献
14.
Thomas L. Davenport David W. Pearce Stewart B. Rood 《Journal of Plant Growth Regulation》2001,20(3):308-315
Stems of mango (Mangifera indica L.) rest in a nongrowing, dormant state for much of the year. Ephemeral flushes of vegetative or reproductive shoot growth are periodically evoked in apical or lateral buds of these resting stems. The initiation of shoot growth is postulated to be primarily regulated by a critical ratio of root-produced cytokinins, which accumulate in buds and by leaf-produced auxin, which decreases in synthesis and transport over time. Exogenously applied gibberellic acid (GA3) delays initiation of bud break but does not determine whether the resulting flush of growth is vegetative or reproductive. We tested the hypothesis that endogenous GA3, which influences release of these resting buds, may decrease in stem tips or leaves with increasing age of mango stems. GA3 and several other GAs in stem tip buds and leaves were identified and quantified in stems of different ages. The major endogenous GAs found in apical buds and leaves of vegetative mango stems were early 13-hydroxylation pathway gibberellins: GA1, epi-GA1, GA3, GA19, GA20, and GA29, as identified by gas chromatography-mass spectrometry (GC-MS). A novel but unidentified GA-like compound was also present. The most abundant GAs in apical stem buds were GA3 and GA19. Contrary to the hypothesis, the concentration of GA3 increased within buds with increasing age of the stems. The concentrations of other GAs in buds were variable. The concentration of GA3 did not change significantly with age in leaves, whereas that of most of the other GAs declined. GA1 levels were greatest in leaves of elongating shoots. These results are consistent with the concept that rapid shoot growth is associated with synthesis of GAs leading to GA1. The role of GA3 in delaying bud break in mango is not known, but it is proposed that it may enhance or maintain the synthesis or activity of endogenous auxin. It, thereby, maintains a high auxin/cytokinin ratio similar to responses to GA3 that maintain apical dominance in other plant species. 相似文献
15.
Observations were made of the effects of several plant regulators, indole-3-acetic acid, kinetin, abscisic acid, and gibberellic acid, as well as of extracts prepared from leaves and fruit stalks on the respiration pattern, ethylene production, and the number of days to ripen of avocado fruits (Persea americana Mill.). These substances were vacuum infiltrated to insure good penetration and distribution. Kinetin, abscisic acid, gibberellic acid, and the extracts had no effect on either ripening time or on the respiration pattern and ethylene production of the fruits. Indoleacetic acid, however, had a marked effect on ripening. At high concentrations (100 and 1000 mum), indoleacetic acid stimulated respiration and induced preclimacteric ethylene production, resulting in accelerated ripening of the fruits. At the low concentrations (1 and 10 mum), it delayed ripening of fruits and suppressed the climacteric respiration and ethylene production. The results reinforce several previous observations with other fruits that auxins may largely constitute ;resistance to ripening' and may be responsible for the lack of ripening shown by unpicked fruits. 相似文献
16.
生长素类物质在木本植物生根过程中发挥重要作用。杨树生根与生长素的关系及生根过程中内源激素的变化已有大量报道,而生根过程中生长素的组织定位分析则尚未见报道。该文应用免疫化学分析方法对741杨(Populus alba×(P.davidiana×P.simonii)×P.tomentosa)嫩茎生根过程中内源IAA在组织中的分布进行了研究。结果显示,741杨的嫩茎在无外源激素的1/2MS培养基上诱导10天后可生根,14天后生根率达100%。诱导前,嫩茎基部组织中几乎没有IAA信号;诱导8天后,嫩茎基部维管组织中有大量的IAA积累,而且中部的维管组织中也有明显的IAA信号(主要分布在韧皮部和维管形成层);10天后,形成不定根原基,此时IAA主要分布在根原基;12天后,根原基分化成不定根并突破表皮,IAA在不定根中的分布主要集中在根尖和中柱。该文对741杨的嫩茎生根过程中IAA的组织分布特点及运输途径进行了讨论。 相似文献
17.
Thomas L. Davenport David W. Pearce Stewart B. Rood 《Journal of Plant Growth Regulation》2000,19(4):445-452
Stems of mango (Mangifera indica L.) rest in a nongrowing, dormant state for much of the year. Ephemeral flushes of vegetative or reproductive shoot growth are periodically evoked in apical or lateral buds of these resting stems. The initiation of shoot growth is postulated to be primarily regulated by a critical ratio of root-produced cytokinins, which accumulate in buds and by leaf-produced auxin, which decreases in synthesis and transport over time. Exogenously applied gibberellic acid (GA3) delays initiation of bud break but does not determine whether the resulting flush of growth is vegetative or reproductive. We tested the hypothesis that endogenous GA3, which influences release of these resting buds, may decrease in stem tips or leaves with increasing age of mango stems. GA3 and several other GAs in stem tip buds and leaves were identified and quantified in stems of different ages. The major endogenous GAs found in apical buds and leaves of vegetative mango stems were early 13-hydroxylation pathway gibberellins: GA1, epi-GA1, GA3, GA19, GA20, and GA29, as identified by gas chromatography-mass spectrometry (GC-MS). A novel but unidentified GA-like compound was also present. The most abundant GAs in apical stem buds were GA3 and GA19. Contrary to the hypothesis, the concentration of GA3 increased within buds with increasing age of the stems. The concentrations of other GAs in buds were variable. The concentration of GA3 did not change significantly with age in leaves, whereas that of most of the other GAs declined. GA1 levels were greatest in leaves of elongating shoots. These results are consistent with the concept that rapid shoot growth is associated with synthesis of GAs leading to GA1. The role of GA3 in delaying bud break in mango is not known, but it is proposed that it may enhance or maintain the synthesis or activity of endogenous auxin. It, thereby, maintains a high auxin/cytokinin ratio similar to responses to GA3 that maintain apical dominance in other plant species. 相似文献
18.
Excised embryo shoot apices of wheat were grown on media containingeither indolylacetic acid (IAA), kinetin, gibberellic acid (GA),or adenine. GA and adenine stimulate the activity of the apicalmeristem whereas IAA and kinetin do not. No combination of anytwo substances significantly stimulated growth when comparedwith the most active substance present. GA can overcome theinhibitory effect of IAA or kinetin. The possible function ofthese substances in the apical meristem is discussed. 相似文献
19.
The Binding of Indole-3-acetic Acid and 3-Methyleneoxindole to Plant Macromolecules 总被引:3,自引:0,他引:3
下载免费PDF全文

Homogenates of pea (Pisum sativum L., var. Alaska) seedlings exposed to 14C-indole-3-acetic acid or 14C-3-methyleneoxindole, an oxidation product of indole-3-acetic acid, were extracted with phenol. In both cases 90% of the bound radioactivity was found associated with the protein fraction and 10% with the water-soluble, ethanol-insoluble fraction. The binding of radioactivity from 14C-indole-3-acetic acid is greatly reduced by the addition of unlabeled 3-methyleneoxindole as well as by chlorogenic acid, an inhibitor of the oxidation of indole-3-acetic acid to 3-methyleneoxindole. Chlorogenic acid does not inhibit the binding of 14C-3-methyleneoxindole. The labeled protein and water-soluble, ethanol-insoluble fractions of the phenol extract were treated with an excess of 2-mercaptoethanol. Independently of whether the seedlings had been exposed to 14C-indole-3-acetic acid or 14C-3-methyleneoxindole, the radioactivity was recovered from both fractions in the form of a 2-mercaptoethanol-3-methyleneoxindole adduct. These findings indicate that 3-methyleneoxindole is an intermediate in the binding of indole-3-acetic acid to macromolecules. 相似文献
20.
An isotope-dilution method has been developed for the assay of free indole-3-acetic acid and ester indole-3-acetic acid as measured by indole-3-acetic acid liberated by mild alkaline hydrolysis. Application of this method to seedlings of Avena sativa and Zea mays indicates the upper limit of free indole-3-acetic acid in Avena to be about 16 μg per kg and in Zea, about 24 μg. The amount of 1 n alkali-labile indole-3-acetic acid in Zea is about 330 μg per kg and there is very little 1 n alkali-labile IAA in Avena. A chemical characterization of the indole-3-acetic acid of Avena and a confirmation of the chemical characterization of the indole-3-acetic acid of Zea is presented. 相似文献