首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We synthesized 3 beta-thiovitamin D3 from 7-dehydrocholesterol and tested its biological activity and protein binding properties. The thiovitamin was found to be a weak vitamin D agonist at high doses in vivo. It was poorly bound by both vitamin D-binding protein as well as by the intestinal cytosol receptor for 1,25-dihydroxyvitamin D. It did not increase the synthesis of calcium binding protein in the chick embryonic duodenum and did not block the activity of 1,25-dihydroxyvitamin D3 in this system. We conclude that 3 beta-thiovitamin D3 is a weak vitamin D agonist in vivo with no agonist activity or antagonist activity to 1,25-dihydroxyvitamin D3 in the chick embryonic duodenum.  相似文献   

2.
Rats treated with varying amounts of 19-hydroxy-10(S),19-dihydrovitamin D3 prior to administration of physiologic doses of vitamin D3 exhibit normal intestinal calcium transport but are unable to mobilize bone calcium. In contrast, 19-hydroxy-10(R),19-dihydrovitamin D3 had no inhibitory activity. Circulating serum levels of 25-hydroxy[3H]vitamin D3 and 1 alpha, 25-dihydroxy[3H]vitamin D3 are markedly suppressed but not totally eliminated in animals predosed with 19-hydroxy-10(S),19-dihydrovitamin D3 before [3H]vitamin D3. Hepatic 25-hydroxy[3H]vitamin D3 levels were approximately equal in both 19-hydroxy-10(S),19-dihydroviotamin D3 treated and untreated rats. However, the rate of conversion of [3H]vitamin D3 to 25-hydroxyvitamin D3 in vivo is greatly reduced in the treated rats. The inhibitory vitamin analogue was also show to block hepatic microsomal 25-hydroxylation in vitro. These results indicate that 19-hydroxy-10(S),19-dihydrovitamin D3 is a specific inhibitor for a hepatic microsomal vitamin D3-25-hydroxylase system.  相似文献   

3.
The Vitamin D(3) lactone analogues, (23S)- and (23R)-25-dehydro-1alpha-hydroxyvitamin D(3)-26,23-lactone (TEI-9647 and TEI-9648) are antagonists of the 1alpha,25-dihydroxyvitamin D(3) (1alpha,25-(OH)(2)D(3)) nuclear receptor (VDR)-mediated differentiation of human leukemia (HL-60) cells. In order to clarify the structure-Vitamin D antagonistic activity relationship, we paid attention to the unique lactone moiety of TEI-9647 and TEI-9648: alpha-exo-methylene-gamma-lactone structure. We synthesized the exo-methylene-modified analogues (methylene saturated, endo-methylene, methylene-deleted, methyl-substituted, dimethyl-substituted, methylene-replaced with dimethyl and cyclopropane) and oxygen-modified analogues (oxygen atom replaced with nitrogen and carbon atom) by convergent method using palladium-catalyzed coupling reaction or direct modification of VD(3) skeleton. The antagonistic activity in HL-60 cell differentiation evaluating system of these analogues revealed that any exo-methylene-modified analogues and nitrogen analogue did not have the antagonistic activity, on the other hand carbon analogue did show. The results suggest that "alpha-exo-methylene carbonyl" structure of VD(3) side-chain is crucial for antagonistic activity. The structure is integral building block of many natural products which have interesting biological and it is thought that Michael-type addition of alpha-exo-methylene carbonyl structure with protein nucleophiles such as cysteine would play an important role for the activities. According to this theory, Michael-type reaction of TEI-9647 and TEI-9648 with cysteine residue in protein related to VDR/VDRE-mediated genomic actions such as VDR would be essential step of the antagonistic action.  相似文献   

4.
The biological activity and the binding affinity for the 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] intestinal receptor of a new fluorine-containing vitamin D compound, namely 6-fluoro-vitamin D3 (6-F-D3), is reported. A significant interaction of 6-F-D3 with the 1,25(OH)2D3 receptor was found, with a relative competitive index (RCI) of 0.26 +/- 0.04, which is intermediate between 25-hydroxyvitamin D3 (0.14 +/- 0.01) and 1 alpha-hydroxyvitamin D3 (0.46 +/- 0.08), where the RCI of 1,25(OH)2D3 is defined to be 100. In contrast, vitamin D3 was unable to interact with the 1,25(OH)2D3 receptor. Also, the biological activity of 6-F-D3 was assessed in vivo in the vitamin D-deficient chick. 6-F-D3 at doses up to 130 nmol displayed no biological action on either intestinal calcium absorption (ICA) or bone calcium mobilization (BCM) over the time interval of 14-48 h after dosing. However, when 130 nmol 6-F-D3 was given 2 h before and 6 h after vitamin D3 (1.62 nmol), a significant inhibition of vitamin D-mediated ICA was noted. Also, a dose of 130 nmol 6-F-D3 given 2 h before and 6 h after 1,25(OH)2D3 (0.26 nmol) significantly inhibited ICA, as measured at 12 h. 6-F-D3 is the first vitamin D analog found which has an ability to both bind to the 1,25(OH)2D3 receptor and to antagonize the production of biological responses by 1,25(OH)2D3.  相似文献   

5.
Chemically synthesized 1 alpha-hydroxy-25-fluorovitamin D3 was compared to 1,25-dihydroxyvitamin D3 for potency in the chick intestinal cytosol-binding protein assay, induction of intestinal calcium transport, mobilization of calcium from bone, and epiphyseal plate calcification in the rat. The 25-fluorinated analogue causes 50% displacement of 1,25-dihydroxy[23,24-3H]D3 at 1.8 X 10(-8) M in the competitive protein-binding assay, whereas only 5.6 X 10(-11) M of unlabeled 1,25-dihydroxyvitamin D3 is needed for equal competition. This 315-fold difference between and 1 alpha-hydroxy-25-fluorovitamin D3 indicates that the fluoro analogue is about equipotent with 1 alpha-hydroxyvitamin D3 in the protein-binding assay. However, 1 alpha-hydroxy-25-fluorovitamin D3 is 1/50 as active as 1,25-dihydroxyvitamin D3 in vivo in the stimulation of intestinal calcium transport and bone calcium mobilization in vitamin D deficient rats on a low-calcium diet. Likewise, 1 alpha-hydroxy-25-fluorovitamin D3 is about 40 times less active than 1,25-dihydroxyvitamin D3 in inducing endochondrial calcification in rachitic rats. No selective actions of 1alpha-hydroxy-25-fluorovitamin D3 were noted. Since the 25 position of the analogue is blocked by a fluorine atom, it appears that 25-hydroxylation of 1 alpha-hydroxylated vitamin D compounds in vivo is not an obligatory requirement for appreciable vitamin D activity.  相似文献   

6.
The alteration in the biologic activity of the vitamin D3 molecule resulting from the replacement of a hydrogen atom with a fluorine atom is a subject of fundamental interest. To investigate this problem we synthesized 3 beta-fluorovitamin D3 6 and its hydrogen analog, 3-deoxyvitamin D3 7, and tested the biologic activity of each by in vitro and in vivo methods. Contrary to previous reports which showed that 3 beta-fluorovitamin D3 was as active as vitamin D3 in vivo, we found that the fluoro-analog was less active than vitamin D3. With regard to stimulation of intestinal calcium transport and bone calcium mobilization in the D-deficient hypocalcemic rat, 3 beta-fluorovitamin D3 showed significantly greater biologic activity than its hydrogen analog, 3-deoxyvitamin D3. In the organ-cultured, embryonic chick duodenum, 3 beta-fluorovitamin D3 was approx 1/1000th as active as the native hormone, 1,25-dihydroxyvitamin D3, while 3-deoxyvitamin D3 was inactive even at microM concentrations, in the induction of the vitamin D-dependent, calcium-binding protein. With regard to in vitro activity in displacing radiolabeled 25-hydroxyvitamin D3 from vitamin D binding protein and radiolabelled 1,25-dihydroxyvitamin D3 from a chick intestinal cytosol receptor, 3 beta-fluorovitamin D3 and 3 beta-deoxyvitamin D3 both showed very poor binding efficiencies when compared with vitamin D3. Our results show that the substitution of a fluorine atom for a hydrogen atom at the C-3 position of the vitamin D3 molecule results in a fluorovitamin 6 with significantly more biological activity than its hydrogen analog, 3-deoxyvitamin D3 7.  相似文献   

7.
Qiao S  Tuohimaa P 《FEBS letters》2004,577(3):451-454
FAS and FACL3 are enzymes of fatty acid metabolism. In our previous studies, we found that FAS and FACL3 genes were vitamin D3-regulated and involved in the antiproliferative effect of 1alpha,25(OH)2D3 in the human prostate cancer LNCaP cells. Here, we elucidated the mechanism behind the downregulation of FAS expression by vitamin D3. Triacsin C, an inhibitor of FACL3 activity, completely abolished the downregulation of FAS expression by vitamin D3, whereas an inhibitor of FAS activity, cerulenin, had no significant effect on the upregulation of FACL3 expression by vitamin D3 in LNCaP cells. In human prostate cancer PC3 cells, in which FACL3 expression is not regulated by vitamin D3, no regulation of FAS expression was seen. This suggests that the downregulation of FAS expression by vitamin D3 is mediated by vitamin D3 upregulation of FACL3 expression. Myristic acid, one of the substrates preferential for FACL3, enhanced the repression of FAS expression by vitamin D3. The action of myristic acid was abrogated by inhibition of FACL3 activity, suggesting that the enhancement in the downregulation of FAS expression by vitamin D3 is due to the formation of myristoyl-CoA. The data suggest that vitamin D3-repression of FAS mRNA expression is the consequence of feedback inhibition of FAS expression by long chain fatty acyl-CoAs, which are formed by FACL3 during its upregulation by vitamin D3 in human prostate cancer LNCaP cells.  相似文献   

8.
9.
The antiproliferative effect of 1alpha,25(OH)(2)D(3) on human prostate cancer cells is well known, but the mechanism is still not fully understood, especially its androgen-dependent action. Based on cDNA microarray results, we found that long-chain fatty-acid-CoA ligase 3 (FACL3/ACS3) might play an important role in vitamin D(3) and androgen regulation of LNCaP cell growth. The expression of FACL3/ACS3 was found to be significantly upregulated by 1alpha,25(OH)(2)D(3) and the regulation was shown to be time-dependent, with the maximal regulation over 3.5-fold at 96h. FACL3/ACS3 was a dominant isoform of FACL/ACS expressed in LNCaP cells as indicated by measuring the relative expression of each isoform. 1alpha,25(OH)(2)D(3) had no significant effect on the expression of FACL1(FACL2), FACL4 and FACL6 except for its downregulation of FACL5 at 24 and 48h by around twofold. The upregulation of FACL3/ACS3 expression by 1alpha,25(OH)(2)D(3) was accompanied with increased activity of FACL/ACS as demonstrated by enzyme activity assay using a (14)C-labeled substrate preferential for FACL3/ACS3. The growth inhibitory effect of 1alpha,25(OH)(2)D(3) on LNCaP cells was significantly attenuated by FACL3/ACS3 activity inhibitor. Androgen withdrawal (DCC-serum), in the presence of antiandrogen Casodex or in AR-negative prostate cancer cells (PC3 and DU145), vitamin D(3) failed to regulate FACL3/ACS3 expression. The upregulation of FACL3/ACS3 expression by vitamin D(3) was recovered by the addition of DHT in DCC-serum medium. Western blot analysis showed that the expression of androgen receptor (AR) protein was consistent with vitamin D(3) regulation of FACL3/ACS3 expression. Taken together, the data suggest that the upregulation of FACL3/ACS3 expression by vitamin D(3) is through an androgen/AR-mediated pathway and might be one of the contributions of the vitamin D(3) antiproliferative effect in prostate cancer LNCaP cells.  相似文献   

10.
The ability of four vitamin D analogs to inhibit the liver microsomal vitamin D-25-hydroxylase was determined. 19-Hydroxy-10(S),19-dihydrovitamin D3,25-fluorovitamin D3, 3 beta-hydroxy-9,10-seco-5,7,10(19)-choletrien-24-oic acid dimethylamide and 25-aza-vitamin D3 were competitive inhibitors with apparent KI values of 44, 137, and 870 nM, and 6.4 microM, respectively. The values for the 19-hydroxy-10(S), 19-dihydrovitamin D3, 25-fluorovitamin D3, and 25-aza-vitamin D3 correspond well to other literature reports with respect to their relative in vivo inhibitory properties. 24-Oxovitamin D3 oxime also proved to be a potent inhibitor but a detailed analysis was prohibited by the lack of material. The 3 beta-hydroxy-9,10-seco-5,7,10(19)-choletrien-24-oic acid dimethylamide was also tested in vivo but had no antagonistic activity when provided at a 2000-fold excess over vitamin D3.  相似文献   

11.
In a continuing effort to explore the 2-methylene-1alpha-hydroxy-19-norvitamin D(3) class of pharmacologically important vitamin D compounds, two novel 2-methylene-19-nor-25-dehydro-1alpha-hydroxyvitamin D(3)-26,23-lactones, GC-3 and HLV, were synthesized and biologically tested. Based on reports of similarly structured molecules, it was hypothesized that these compounds might act as antagonists, at least in vitro. The pathway designed to synthesize these compounds was based on two key steps: first, the Lythgoe-type Wittig-Horner coupling of Windaus-Grundmann-type ketone 18, with phosphine oxide 15, followed, later in the synthesis, by the Zn-mediated Reformatsky-type allylation of aldehyde 20 with methylbromomethylacrylate 8. Our biological data show that neither compound has antagonistic activity but acts as weak agonists in vitro and in vivo.  相似文献   

12.
3-Epivitamin D3, the 3 alpha epimer of vitamin D3, was synthesized, and its biological activity in the rat was evaluated. It was found to be approximately 4 times less active on a weight basis than vitamin D3 with respect to intestinal calcium transport, bone calcium mobilization, and calcification score as determined by the line-test assay. Tritiated 3-epivitamin D3 was prepared, and its metabolism in the rat was compared with that of vitamin D3 to investigate the reasons for this diminished activity. 3-Epivitamin D3 was converted to two polar metabolites, for which the chromatographic properties and the origin of biosynthesis (in the liver and kidney, respectively) correspond to 25-hydroxy-3-epivitamin D3 and 1 alpha,25-dihydroxy-3-epivitamin D3. The fact that the concentration of 1 alpha,25-dihydroxy-3-epivitamin D3 in the intestine is half that of 1 alpha,25-dihydroxyvitamin D3 may be one explanation for the reduced biological activity of this epimer.  相似文献   

13.
Y Sorgue  L Miravet 《Steroids》1978,31(5):653-660
This paper describes a simple chromatographic technique on Sephadex LH20 for the separation of vitamin D3 sulfate from free vitamin D3 and its metabolites. This technique has been used in the study of vitamin D3 sulfate metabolism in rats. Seven hours after injection of vitamin D3 sulfate (35S or 35S and 3H) only the peak of vitamin D sulfoconjugate was found in chromatographic elution of serum extracts.  相似文献   

14.
Skin is in the site of previtamin D3 and vitamin D3 synthesis and their isomerization in response to ultraviolet irradiation. At present, little is known about the function of the photoisomers of previtamin D3 and the vitamin D3 in skin cells. In this study we investigated the antiproliferative activity of the major photoisomers and their metabolites in the cultured human keratinocytes by determining their influence on 3H-thymidine incorporation into DNA. Our results demonstrated at both 10(-8) and 10(-6) M in a dose-dependent manner. Lumisterol, tachysterol3, 5,6-trans-vitamin D3, and 25-hydroxy-5,6-trans-vitamin D3 only induced significant inhibition at 10(-6) M. 25-Hydroxytachysterol3 was approximately 10- to 100-fold more active than tachysterol3. 7-Dehydrocholesterol was not active even at 10(-6) M. The dissociation constants of vitamin D receptor (VDR) for 25-hydroxytachysterol3, 25-hydroxy-5,6-trans-vitamin D3, and 5,6-trans-vitamin D3 were 22, 58, and 560 nM, respectively. The dissociation constants for 7-dehydrocholesterol, tachysterol, and lumisterol were greater than 20 microM. In conclusion, vitamin D3, its photoisomers and the photoisomers of previtamin D3 have antiproliferative activity in cultured human keratinocytes. However, the antiproliferative activity did not correlate with their binding affinity for VDR. The results suggest that some of the photoproducts may be metabolized to their 25-hydroxylated and 1 alpha,25-dihydroxylated counterparts before acting on VDR. Alternatively, a different receptor may recognize these photoproducts or another mechanism may be involved in modulating the antiproliferative activity of the photoisomers examined.  相似文献   

15.
CYP27A1 is a mitochondrial cytochrome P450 which can hydroxylate vitamin D3 and cholesterol at carbons 25 and 26, respectively. The product of vitamin D3 metabolism, 25-hydroxyvitamin D3, is the precursor to the biologically active hormone, 1α,25-dihydroxyvitamin D3. CYP27A1 is attached to the inner mitochondrial membrane and substrates appear to reach the active site through the membrane phase. We have therefore examined the ability of bacterially expressed and purified CYP27A1 to metabolize substrates incorporated into phospholipid vesicles which resemble the inner mitochondrial membrane. We also examined the ability of CYP27A1 to metabolize 20-hydroxyvitamin D3 (20(OH)D3), a novel non-calcemic form of vitamin D derived from CYP11A1 action on vitamin D3 which has anti-proliferative activity on keratinocytes, leukemic and myeloid cells. CYP27A1 displayed high catalytic activity towards cholesterol with a turnover number (k(cat)) of 9.8 min(-1) and K(m) of 0.49 mol/mol phospholipid (510 μM phospholipid). The K(m) value of vitamin D3 was similar for that of cholesterol, but the k(cat) was 4.5-fold lower. 20(OH)D3 was metabolized by CYP27A1 to two major products with a k(cat)/K(m) that was 2.5-fold higher than that for vitamin D3, suggesting that 20(OH)D3 could effectively compete with vitamin D3 for catalysis. NMR and mass spectrometric analyses revealed that the two major products were 20,25-dihydroxyvitamin D3 and 20,26-dihydroxyvitamin D3, in almost equal proportions. Thus, the presence of the 20-hydroxyl group on the vitamin D3 side chain enables it to be metabolized more efficiently than vitamin D3, with carbon 26 in addition to carbon 25 becoming a major site of hydroxylation. Our study reports the highest k(cat) for the 25-hydroxylation of vitamin D3 by any human cytochrome P450 suggesting that CYP27A1 might be an important contributor to the synthesis of 25-hydroxyvitamin D3, particularly in tissues where it is highly expressed.  相似文献   

16.
Serum 1,25-dihydroxyvitamin D3 concentration and renal 25-hydroxyvitamin D 1 alpha-hydroxylase activity were measured in rats fed various levels of calcium, phosphorus and vitamin D3. Both calcium deprivation and phosphorus deprivation greatly increased circulating levels of 1,25-dihydroxyvitamin D3. The circulating level of 1,25-dihydroxyvitamin D3 in rats on a low-calcium diet increased with increasing doses of vitamin D3, whereas it did not change in rats on a low-phosphorus diet given increasing doses of vitamin D3. In concert with these results, the 25-hydroxyvitamin D 1 alpha-hydroxylase activity was markedly increased by vitamin D3 administration to rats on a low-calcium diet, whereas the same treatment of rats on a low-phosphorus diet had no effect and actually suppressed the 1 alpha-hydroxylase in rats fed an adequate-calcium/adequate-phosphorus diet. The administration of 1,25-dihydroxyvitamin D3 to vitamin D-deficient rats on a low-calcium diet also increased the renal 25-hydroxy-vitamin D 1 alpha-hydroxylase activity. These results demonstrate that the regulatory action of 1,25-dihydroxyvitamin D3 on the renal 25-hydroxyvitamin D3 1 alpha-hydroxylase is complex and not simply a suppressant of this system.  相似文献   

17.
Novel A-ring analogues of the vitamin D receptor (VDR) antagonist (3a), ZK-159222, and its 24-epimer (3b) were convergently synthesized. Preparation of the CD-ring portions with the side chains of 3a,b, followed by palladium-catalyzed cross-coupling with the A-ring enyne precursors (15a,b), (3S,4S,5R)- and (3S,4S,5S)-bis[(tert-butyldimethylsilyl)oxy]-4-methyloct-1-en-7-yne, afforded the 2alpha-methyl-introduced analogues (4a,b) and their 3-epimers (5a,b). The biological profiles of the hybrid analogues were assessed in terms of affinity for VDR, and antagonistic activity to inhibit HL-60 cell differentiation induced by the natural hormone, 1alpha,25-dihydroxyvitamin D(3). The analogue 4a showed an approximately fivefold higher antagonistic activity compared with 3a. The 2alpha-methyl introduction into 3a increased the receptor affinity, thereby enhancing VDR antagonism. This approach to design potent antagonists based on hybridization of structural motifs in the A-ring and in the side chain may prove to be valuable.  相似文献   

18.
All four possible A-ring stereoisomers of 2,2-dimethyl-1,25-dihydroxyvitamin D(3) (4) were designed and convergently synthesized. Nine-step conversion of methyl hydroxypivalate 6 provided the desired A-ring enyne synthon (13a,b) in good overall yield. Cross-coupling reaction of the A-ring synthon 13a,b with the CD-ring portion in the presence of palladium catalyst, followed by deprotection, gave the vitamin analogues (4a-d). We also synthesized four stereoisomers of 2,2-ethano-1,25-dihydroxyvitamin D(3) (5), as novel spiro-ring analogues having cyclopropane fused at the C2 position. Biological potencies of the synthesized compounds were assessed in terms of the vitamin D receptor (VDR) binding affinity, as well as the HL-60 cell differentiation-inducing activity. The 2,2-ethano analogue 5a showed a comparable activity to the natural hormone 1, while the 2,2-dimethyl analogue 4a exhibited one-third of the activity of 1 in cell differentiation, with the reduced VDR binding affinity.  相似文献   

19.
We synthesized a novel vitamin D analog, 22-hydroxyvitamin D3 9 and tested its biologic activity (and antivitamin properties) in vivo in vitamin D-deficient rats, and in vitro in the chick embryonic duodenum. We examined its ability to bind to the sterol carrier protein, vitamin D binding protein and the chick intestinal cytosol receptor for 1,25-dihydroxyvitamin D3. The new vitamin 9 was synthesized from 3 beta-hydroxy-22,23-dinorcholenic acid 1 in 12 steps. The vitamin 9 displayed no vitamin D agonist activity in the intestine or in bone in vivo and did not block the activity of vitamin D3 or 25-hydroxyvitamin D3. It was a weak vitamin D3 agonist in the chick embryonal duodenum in vitro. It did not antagonize the activity of 1,25-dihydroxyvitamin D3. Vitamin 9 bound to the chick intestinal cytosol receptor with low affinity. 22-Hydroxyvitamin D3 and various vitamin D sterols were bound to vitamin D binding protein in the following order: 25-hydroxyvitamin D3. (24R)-24,25-dihydroxyvitamin D3, and (25S)-25,26-dihydroxyvitamin D3 greater than 22-hydroxyvitamin D3 greater than 11 alpha-hydroxyvitamin D3 greater than 1,25-dihydroxyvitamin D3 greater than vitamin D3. We conclude that the introduction of a hydroxyl group at C-22 in the side chain of the vitamin D3 molecule decreases its biological activity.  相似文献   

20.
1,25-(OH)2D3 (1,25) and 24,25-(OH)2D3 (24,25) mediate their effects on chondrocytes through the classic vitamin D receptor (VDR) as well as through rapid membrane-mediated mechanisms, which result in both nongenomic and genomic effects. In intact cells, it is difficult to distinguish between genomic responses via the VDR and genomic and nongenomic responses via membrane-mediated pathways. In this study, we used two analogues of 1,25 that have been modified on the A-ring (2a, 2b) and are only 0.1% as effective in binding to the VDR as 1,25, to examine the role of the VDR in the response of rat costochondral resting zone (RC) and growth zone (GC) chondrocytes to 1,25 and 24,25. Chondrocyte proliferation ([3H]-thymidine incorporation), proteoglycan production ([35S]-sulfate incorporation), and second messenger activation (activity of protein kinase C) were measured after treatment with 10-8 M 1,25, 10-7 M 24,25, or the analogues at 10-9–10-6 M. Both analogues inhibited proliferation of both cell types, as did 1,25 and 24,25. Neither 2a nor 2b had an effect on proteoglycan production by GCs or RCs. 2a caused a dose-dependent stimulation of protein kinase C (PKC) that was not inhibited by cycloheximide or actinomycin D in either GC or RC cells. 2b, on the other hand, had no effect on PKC activity in RCs and only a slight stimulatory effect in GCs. Both cells produce matrix vesicles, extracellular organelles associated with the initial stages of calcification, in culture that are regulated by vitamin D metabolites. Since these organelles contain no DNA or RNA, they provide an excellent model for studying the mechanisms used by vitamin D metabolites to mediate their nongenomic effects. When matrix vesicles were isolated from naive cultures of growth zone cells and treated with 2a, a dose-dependent inhibition of PKC activity was observed that was similar to that found with 1,25-(OH)2D3. Plasma membranes contained increased PKC activity after treatment with 2a, but the magnitude of the effect was less than that seen with 1,25-(OH)2D3. Analogue 2b had no affect on PKC activity in either membrane fraction. When matrix vesicles from resting zone chondrocyte cultures were treated with 24,25-(OH)2D3, a significant decrease in PKC activity was observed. No change in enzyme activity was found for either 1,25-(OH)2D3 or the analogues. PKC activity in the plasma membrane fraction, however, was increased by 24,25-(OH)2D3 as well as by analogue 2a. This study shows that these analogues, with little or no binding to the vitamin D receptor, can affect cell proliferation and PKC activity, but not proteoglycan production. The direct membrane effect is analogue specific and cell maturation dependent. Further, by eliminating the VDR-mediated component of the cellular response, we have provided further evidence for the existence of a membrane receptor(s) involved in mediating nongenomic effects of vitamin D metabolites. J. Cell. Physiol. 171:357–367, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号