首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Our laboratory has worked extensively on glutamatergic and GABA-ergic channels, predominantly in crayfish, but also in locust,Drosophila and recentlyAscaris. Channel currents were recorded in the different modes of the patch-clamp technique (Hamillet al., 1981). The opening kinetics of the channels were derived from open and closed time histograms obtained from single channel recordings. From these, channel conductances could also be evaluated. The most relevant data were obtained by very rapidly rising and falling pulses (time of change about 0.1 ms) of agonists applied to outside-out patches containing the respective channels (Frankeet al., 1987). From such recordings we constructed dose-response curves for peak and steady-state currents, for the rise times of the currents and for the time constants of desensitization. In double-pulse experiments we measured recovery from desensitization and predesensitization due to low agonist concentrations. For most of the channel types, we succeeded in constructing a reaction scheme which in computer simulations mimicked channel behaviour to a good approximation.  相似文献   

2.
Glutamatergic terminals from rat midbrain were characterized by immunolocalization of synaptophysin and the vesicular glutamate transporters, either VGLUT1 or VGLUT2. Terminals containing these markers represent about 31% (VGLUT1) and 16% (VGLUT2) of the total synaptosomal population. VGLUT1-positive glutamatergic terminals responded to ATP or P1,P 5-di(adenosine-5') pentaphosphate (Ap5A) with an increase in the intrasynaptosomal calcium concentration as measured by a microfluorimetric technique in single synaptosomes. Roughly 20% of the VGLUT1-positive terminals responded to ATP, 13% to Ap5A and 11% to both agonists. Finally 56% of the terminals labeled with the anti-VGLUT1 antibody did not show any calcium increase in response to ATP or Ap5A. A similar response distribution was also observed in the VGLUT2-positive terminals. The Ca2+ responses induced by ATP and Ap5A in the glutamatergic terminals could be selectively inhibited by pyridoxal phosphate-6-azophenyl-2',4'-disulfonic acid (PPADS, 80 micro m) and P1,P 5-di(inosine-5') pentaphosphate (Ip5I, 100 nm), respectively. Both ATP and Ap5A, once assayed in the presence of extrasynaptosomal calcium, were able to induce a concentration-dependent glutamate release from synaptosomal populations, EC50 values being 21 micro m and 38 micro m for ATP and Ap5A, respectively. Specific inhibition of glutamate release was obtained with PPADS on the ATP effect and with Ip5I on the dinucleotide response, indicating that separate receptors mediate the secretory effects of both compounds.  相似文献   

3.
Role of glutamatergic and GABAergic systems in alcoholism   总被引:5,自引:0,他引:5  
The pharmacological effects of ethanol are complex and widespread without a well-defined target. Since glutamatergic and GABAergic innervation are both dense and diffuse and account for more than 80% of the neuronal circuitry in the human brain, alterations in glutamatergic and GABAergic function could affect the function of all neurotransmitter systems. Here, we review recent progress in glutamatergic and GABAergic systems with a special focus on their roles in alcohol dependence and alcohol withdrawal-induced seizures. In particular, NMDA-receptors appear to play a central role in alcohol dependence and alcohol-induced neurological disorders. Hence, NMDA receptor antagonists may have multiple functions in treating alcoholism and other addictions and they may become important therapeutics for numerous disorders including epilepsy, Parkinson's disease, amyotrophic lateral sclerosis, Huntington's chorea, anxiety, neurotoxicity, ischemic stroke, and chronic pain. One of the new family of NMDA receptor antagonists, such as DETC-MESO, which regulate the redox site of NMDA receptors, may prove to be the drug of choice for treating alcoholism as well as many neurological diseases.  相似文献   

4.
1. The GABAergic neurotransmission has been implicated in the modulation of many neural networks in forebrain, midbrain and hindbrain, as well as, in several neurological disorders.2. The complete comprehension of GABA system neurochemical properties and the search for approaches in identifying new targets for the treatment of neural diseases related to GABAergic pathway are of the extreme relevance.3. The present review will be focused on the pharmacology and biochemistry of the GABA metabolism, GABA receptors and transporters. In addition, the pathological and psychobiological implications related to GABAergic neurotransmission will be considered.  相似文献   

5.
Several aspects of energy metabolism (glucose utilization, lactate production,14CO2 production from labeled glucose, glutamate or pyruvate, oxygen consumption and contents of ATP and phosphocreatine) were measured in cerebellar granule cells (glutamatergic) in primary cultures and compared with corresponding data for cerebral cortical neurons (mainly GABA-ergic) and astrocytes. Cerebellar granule cells and astrocytes were metabolically more active than cerebral cortical neurons. Glutamate which is utilized as a major metabolic fuel as astrocytes and, to a lesser extent, in cerebral cortical neurons, was virtually not oxidized in cerebellar granule cells.Special Issue dedicated to Prof. Holger Hydén.  相似文献   

6.
We have shown that in embryos treated with ethanol in ovo during days 1–3, a critical period of neuroembryogenesis, cholinergic neuronal phenotypic expression is decreased whereas GABAergic and catecholaminergic neuronal populations are increased as assessed by neuronal markers choline acetyltransferse (ChAT), glutamic acid decarboxylase (GAD) and tyrosine hydroxylase (TH) respectively. In this study, ethanol was administered intracerebrally to embryos at embryonic day 8, embryos were sacrificed at day 9 and ChAT and GAD activities assayed separately in cerebral hemispheres and remaining brain (diencephalon-midbrain and optic lobes). We found that ChAT activity was enhanced in the cerebral hemispheres only, whereas GAD activity was decreased in both cerebral hemispheres and remaining brain. We have concluded that the differential responses of neuronal phenotypes to ethanol may reflect compensatory mechanisms to ethanol insult. Moreover, these findings emphasize the vulnerability of the GABAergic neuronal phenotypes to ethanol neurotoxicity during early brain development in the chick.  相似文献   

7.
Cell death in cerebral ischemia is presumably initiated by neural excitotoxicity resulted from the dysfunction of inhibitory neurons in early stage. Molecular processes underlying the ischemic injury of inhibitory neurons remain to be elusive, which we investigated by biochemical manipulations with cellular imaging and patch clamp at GFP-labeled GABAergic cells in cortical slices. Ischemia induces Ca2+ elevation, acidosis and dysfunction in GABAergic cells. An elevation of cytoplasmic Ca2+ or H+ impairs the encoding of action potentials in these neurons. The effects of Ca2+ and H+ are additive in nature and occlude ischemic outcomes. Ischemia impairs spike production through prolonging spike refractory periods and raising threshold potentials. Therefore, calcium toxicity and acidosis during ischemia synergistically impair the dynamics of sodium channels and function of cortical GABAergic neurons, which lead to neural excitotoxicity. Our results also suggest that the cocktail therapeutics is needed to prevent neuronal death from ischemia.  相似文献   

8.
  相似文献   

9.
Gephyrin is a scaffold protein essential for stabilizing glycine and GABA(A) receptors at inhibitory synapses. Here, recombinant intrabodies against gephyrin (scFv-gephyrin) were used to assess whether this protein exerts a transynaptic action on GABA and glutamate release. Pair recordings from interconnected hippocampal cells in culture revealed a reduced probability of GABA release in scFv-gephyrin-transfected neurons compared with controls. This effect was associated with a significant decrease in VGAT, the vesicular GABA transporter, and in neuroligin 2 (NLG2), a protein that, interacting with neurexins, ensures the cross-talk between the post- and presynaptic sites. Interestingly, hampering gephyrin function also produced a significant reduction in VGLUT, the vesicular glutamate transporter, an effect accompanied by a significant decrease in frequency of miniature excitatory postsynaptic currents. Overexpressing NLG2 in gephyrin-deprived neurons rescued GABAergic but not glutamatergic innervation, suggesting that the observed changes in the latter were not due to a homeostatic compensatory mechanism. Pulldown experiments demonstrated that gephyrin interacts not only with NLG2 but also with NLG1, the isoform enriched at excitatory synapses. These results suggest a key role of gephyrin in regulating transynaptic signaling at both inhibitory and excitatory synapses.  相似文献   

10.
GABAergic neurons play a critical role in maintaining the homeostasis of brain functions for well-organized behaviors. It is not known about the dynamical change in signal encoding at these neurons during postnatal development. We investigated this issue at GFP-labeled GABAergic neurons by whole-cell recording in cortical slices of mice. Our results show that the ability of spike encoding at GABAergic neurons is improved during postnatal development. This change is associated with the reduction of refractory periods and threshold potentials of sequential spikes, as well as the improvement of linear correlations between intrinsic properties and spike capacity. Therefore, the postnatal maturation of the spike encoding capacity at GABAergic neurons will stabilize the excitatory state of cerebral cortex.  相似文献   

11.
Valproic acid (VPA) is a branched-chain saturated fatty acid with a long history of clinical use as an antiepileptic drug (AED). VPA is also known to inhibit histone deacetylases (HDACs) and to cause diverse effects on neural progenitor cells (NPCs) and neurons. Although the neuroprotective or neurodestructive effects of VPA have been investigated in heterogeneous cell populations, in this study, we used homogeneous populations of NPCs and glutamatergic cortical pyramidal neurons, which were differentiated from embryonic stem (ES) cells. At therapeutic concentrations, VPA had a proapoptotic effect on ES cell-derived NPCs of glutamatergic neurons, but not on their progeny. This effect of VPA most likely occurred through the inhibition of HDACs, because similar phenotypes were observed following treatment with other HDAC inhibitors (HDACis) such as trichostatin A and sodium butyrate. The proapoptotic phenotype was not observed when cells were exposed to a structural analog of VPA, valpromide (VPM), which has the same antiepileptic effect as VPA, but does not inhibit HDACs. Western blotting confirmed that treatment with HDACis, but not VPM, significantly increased the levels of histone H3 acetylation in NPCs. HDACi treatments did not affect the survival of neurons, although the acetylation levels were increased to a limited extent. These results, which are based on a homogeneous culture system, suggest that VPA inhibits HDAC activity and induces the apoptosis of NPCs that are fated to differentiate into glutamatergic neurons. The dose-dependent effects of VPA both on apoptosis and hyperacetylation of histone H3 in NPCs supported this notion. These cell type- and differentiation stage-specific effects of VPA imply that dysfunction of HDACs during pregnancy significantly increase the risk of congenital malformations associated with VPA administration.  相似文献   

12.
Circadian rhythms generated by the hypothalamic suprachiasmatic nucleus (SCN) are synchronized with the external light/dark cycle by photic information transmitted directly from the retina via the retinohypothalamic tract (RHT). The RHT contains the neurotransmitters glutamate and pituitary adenylate cyclase-activating polypeptide (PACAP), which code chemically for 'light' or 'darkness' information, respectively. We investigated interactions of PACAP and glutamate by analysing effects on the second messenger calcium in individual SCN neurons using the Fura-2 technique. PACAP did not affect NMDA-mediated calcium increases, but influenced signalling cascades of non-NMDA glutamate receptors, which in turn can regulate NMDA receptors. On the one hand, PACAP amplified/induced glutamate-dependent calcium increases by interacting with alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA)/kainate signalling. This was not related to direct PACAPergic effects on the second messengers cAMP and calcium. On the other hand, PACAP reduced/inhibited calcium increases elicited by glutamate acting on metabotropic receptors. cAMP analogues mimicked this inhibition. Most neurons displaying PACAPergic neuromodulation were immunoreactive for vasoactive intestinal polypeptide, which is a marker for retinorecipient SCN neurons. The observed PACAPergic effects provide a broad range of interactions that allow a fine-tuning of the endogenous clock by the integration of 'light' and 'darkness' information on the level of single SCN neurons.  相似文献   

13.
GABA is synthesized by glutamate decarboxylase (GAD), which has two forms, GAD65 and GAD67. To elucidate the molecular mechanisms of mouse GAD65 (mGAD65) gene expression, we isolated and characterized the mGAD65 gene. The mGAD65 gene was found to be divided into 16 exons and spread over 75 kb. The sequence of the first exon and the 5'-flanking region indicated the presence of potential neuron-specific cis-regulatory elements. We used transgenic mice to examine the expression pattern conferred by a 9.2-kb promoter-proximal DNA fragment of the mGAD65 gene fused to the bacterial lacZ reporter gene. Transgenic mice showed high beta-galactosidase activity specifically in brain and testis. They also showed characteristic patterns of transgene expression in olfactory bulb, cerebellar cortex, and spinal cord, a similar expression pattern to that of endogenous mGAD65. However, no transgene expression was observed in the ventral thalamus or hypothalamus, in which high mGAD65 gene expression levels have been observed. These results suggest that the 9.2-kb DNA fragment of the mGAD65 gene is associated with its tissue-specific expression and its targeted expression in GABAergic neurons of specific brain regions but that additional regulatory elements are necessary to obtain fully correct expression.  相似文献   

14.
Differential roles of alanine in GABAergic and glutamatergic neurons   总被引:3,自引:0,他引:3  
Studies in different preparations of neurons and astrocytes of alanine transport and activities of its metabolizing enzyme alanine aminotransferase have led to the proposal that this amino acid is preferentially synthesized in astrocytes and transferred from the astrocytic to the neuronal compartment. From a functional point of view this may well be the case in a GABAergic synapse since theoretically alanine can be utilized as a metabolic fuel in GABAergic neurons where the GABA shunt is operating. Thus, a metabolic scheme is proposed, according to which alanine catabolism is coupled to the TCA cycle where the GABA shunt replaces the alpha-ketoglutarate dehydrogenase/succinyl CoA synthetase reactions. In a glutamatergic synapse in which the large demand for synthesis of neurotransmitter glutamate leads to a large production of ammonia, it is possible that alanine could play a completely different role. Hence, experimental evidence is reviewed suggesting that alanine may serve as a carrier of ammonia nitrogen from the neuronal compartment to the astrocytic compartment using a flux of lactate in the opposite direction to account for transfer of the C-3 carbon skeleton.  相似文献   

15.
Spike encoding at GABAergic neurons plays an important role in maintaining the homeostasis of brain functions for well-organized behaviors. The rise of intracellular Ca2+ in GABAergic neurons causes synaptic plasticity. It is not clear how intracellular Ca2+ influences their spike encoding. We have investigated this issue at GFP-labeled GABAergic cortical neurons and cerebellar Purkinje cells by whole-cell recording in mouse brain slices. Our results show that an elevation of intracellular Ca2+ by infusing adenophostin-A lowers spike encoding at GABAergic cortical neurons and enhances encoding ability at cerebellar Purkinje cells. These differential effects of cytoplasmic Ca2+ on spike encoding are mechanistically associated with Ca2+-induced changes in the refractory periods and threshold potentials of sequential spikes, as well as with various expression ratios of CaM-KII to calcineurin in GABAergic cortical neurons and cerebellar Purkinje cells.  相似文献   

16.
Coordinated development of excitatory and inhibitory synapses is crucial for normal function of neuronal circuits. Using homo- and heterochronic cultures of hippocampal neurons, we compared the formation of glutamatergic and GABAergic synapses at different stages and asked whether the age of dendrites affects their ability to accept new glutamatergic and GABAergic synapses. Neurons were transfected with either CFP-actin as a dendritic marker or GFP-synaptophysin as a presynaptic marker. We found that GFP-synaptophysin clusters formed on CFP-actin-labeled dendrites at similar density regardless of pre- and postsynaptic cell type or the age of dendrites (0-2 weeks) upon co-culturing. Therefore, the age of mature dendrites does not affect their ability to accept new synapses. Because GABAergic transmission switches from depolarizing to hyperpolarizing during 1-2 weeks in these cultures, our observations also suggest that this developmental switch does not alter the formation of GABAergic synapses.  相似文献   

17.
Nucleus raphe magnus (NRM) sends the projection to spinal dorsal horn and inhibits nociceptive transmission. Analgesic effect produced by mu-opioid receptor agonists including morphine partially results from activating the NRM-spinal cord pathway. It is generally believed that mu-opioid receptor agonists disinhibit spinally projecting neurons of the NRM and produce analgesia by hyperpolarizing GABAergic interneurons. In the present study, whole-cell patch-clamp recordings combined with single-cell RT-PCR analysis were used to test the hypothesis that DAMGO ([D-Ala(2),N-methyl-Phe(4),Gly-ol(5)]enkephalin), a specific mu-opioid receptor agonist, selectively hyperpolarizes NRM neurons expressing mRNA of glutamate decarboxylase (GAD(67)). Homologous desensitization of mu-opioid receptors in NRM neurons could result in the development of morphine-induced tolerance. G protein-coupled receptor kinase (GRK) is believed to mediate mu-opioid receptor desensitization in vivo. Therefore, we also investigated the involvement of GRK in mediating homologous desensitization of DAMAMGO-induced electrophysiological effects on NRM neurons by using two experimental strategies. First, single-cell RT-PCR assay was used to study the expression of GRK2 and GRK3 mRNAs in individual DAMGO-responsive NRM neurons. Whole-cell recording was also performed with an internal solution containing the synthetic peptide, which corresponds to G(betagamma)-binding domain of GRK and inhibits G(betagamma) activation of GRK. Our results suggest that DAMGO selectively hyperpolarizes NRM GABAergic neurons by opening inwardly rectifying K(+) channels and that GRK2 mediates short-term homologous desensitization of mu-opioid receptors in NRM GABAergic neurons.  相似文献   

18.
The adenosinergic modulation of GABAergic spontaneous miniature inhibitory postsynaptic currents (mIPSCs) was investigated in mechanically dissociated rat tuberomammillary nucleus (TMN) neurons using a conventional whole-cell patch clamp technique. Adenosine (100 microM) reversibly decreased mIPSC frequency without affecting the current amplitude, indicating that adenosine acts presynaptically to decrease the probability of spontaneous GABA release. The adenosine action on GABAergic mIPSC frequency was completely blocked by 1 microM DPCPX, a selective A(1) receptor antagonist, and mimicked by 1 microM CPA, a selective A(1) receptor agonist. This suggests that presynaptic A(1) receptors were responsible for the adenosine-mediated inhibition of GABAergic mIPSC frequency. CPA still decreased GABAergic mIPSC frequency even either in the presence of 200 microM Cd(2+), a general voltage-dependent Ca(2+) channel blocker, or in the Ca(2+)-free external solution. However, the inhibitory effect of CPA on GABAergic mIPSC frequency was completely occluded by 1 mM Ba(2+), a G-protein coupled inwardly rectifying K(+) (GIRK) channel blocker. In addition, the CPA-induced decrease in mIPSC frequency was completely occluded by either 100 microM SQ22536, an adenylyl cyclase (AC) inhibitor, or 1 muM KT5720, a specific protein kinase A (PKA) inhibitor. The results suggest that the activation of presynaptic A(1) receptors decreases spontaneous GABAergic transmission onto TMN neurons via the modulation of GIRK channels as well as the AC/cAMP/PKA signal transduction pathway. This adenosine A(1) receptor-mediated modulation of GABAergic transmission onto TMN neurons may play an important role in the fine modulation of the excitability of TMN histaminergic neurons as well as the regulation of sleep-wakefulness.  相似文献   

19.
Serotoninergic modulation of GABAergic mIPSCs was investigated in immature (postnatal 12–16-days old) rat CA3 pyramidal neurons using a conventional whole-cell patch clamp technique. Serotonin or 5-hydroxytryptamine (5-HT) (10 μmol/L) transiently and explosively increased mIPSC frequency with a small increase in the current amplitude. However, 5-HT did not affect the GABA-induced postsynaptic currents, indicating that 5-HT acts presynaptically to facilitate the probability of spontaneous GABA release. The 5-HT action on GABAergic mIPSC frequency was completely blocked by 100 nmol/L MDL72222, a selective 5-HT3 receptor antagonist, and mimicked by mCPBG, a selective 5-HT3 receptor agonist. The 5-HT action on GABAergic mIPSC frequency was completely occluded either in the presence of 200 μmol/L Cd2+ or in the Na+-free external solution, suggesting that the 5-HT3 receptor-mediated facilitation of mIPSC frequency requires a Ca2+influx passing through voltage-dependent Ca2+channels from the extracellular space, and that presynaptic 5-HT3 receptors are less permeable to Ca2+. The 5-HT action on mIPSC frequency in the absence or presence of extracellular Na+ gradually increased with postnatal development. Such a developmental change in the 5-HT3 receptor-mediated facilitation of GABAergic transmission would play important roles in the regulation of excitability as well as development in CA3 pyramidal neurons.  相似文献   

20.
Early models for the etiology of schizophrenia focused on dopamine neurotransmission because of the powerful anti-psychotic action of dopamine antagonists. Nevertheless, recent evidence increasingly supports a primarily glutamatergic dysfunction in this condition, where dopaminergic disbalance is a secondary effect. A current model for the pathophysiology of schizophrenia involves a dysfunctional mechanism by which the NMDA receptor (NMDAR) hypofunction leads to a dysregulation of GABA fast- spiking interneurons, consequently disinhibiting pyramidal glutamatergic output and disturbing the signal-to-noise ratio. This mechanism might explain better than other models some cognitive deficits observed in this disease, as well as the dopaminergic alterations and therapeutic effect of anti-psychotics. Although the modulation of glutamate activity has, in principle, great therapeutic potential, a side effect of NMDAR overactivation is neurotoxicity, which accelerates neuropathological alterations in this illness. We propose that metabotropic glutamate receptors can have a modulatory effect over the NMDAR and regulate excitotoxity mechanisms. Therefore, in our view metabotropic glutamate receptors constitute a highly promising target for future drug treatment in this disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号