首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Summary In vitro synthesized duplex DNA complementary to human foetal globin messenger RNA was integrated into bacterial plasmids and amplified by transformation of Escherichia coli. Recombinants carrying globin DNA were identified by hybridization of foetal globin messenger RNA to bacterial DNA in situ and by liquid hybridization of purified plasmids to specific globin complementary DNA probes. Heteroduplex mapping revealed either a simple insertion loop at the position of the EcoRI site of the parental plasmid or substitution loops due to insertion of globin DNA sequences combined with deletions of the parental plasmid DNA. We provide evidence to suggest that these deletions are the result of a site-specific nicking activity of the EcoRI preparations used in the formation of recombinant plasmids.  相似文献   

3.
A general approach is proposed for development of anti-viral complexes capable of specific intracellular inactivation of viral genetic sequences. Such complexes would consist of a specially designed bifunctional crosslinking agent bound to a single-stranded segment of virus-specific nucleic acid (the carrier). Pairing this complex with its complementary target sequence would generate covalent interstrand crosslinks between carrier and target, thereby irreversibly inactivating the target sequence. Since cells have natural mechanisms for taking up nucleic acids and pairing the newly-taken-up material with complementary sequences within the cell, it is proposed such mechanisms can be exploited for delivery of nucleic acid-agent complexes to their intracellular viral targets. The feasibility of developing and delivering such antiviral complexes is discussed in light of currently available compounds and techniques.  相似文献   

4.
Site-specific photo crosslinking has been used to investigate the RNA neighborhood of 16S rRNA positions U788/ U789 in Escherichia coli 30S subunits. For these studies, site-specific psoralen (SSP) which contains a sulfhydryl group on a 17 A side chain was first added to nucleotides U788/U789 using a complementary guide DNA by annealing and phototransfer. Modified RNA was purified from the DNA and unmodified RNA. For some experiments, the SSP, which normally crosslinks at an 8 A distance, was derivitized with azidophenacylbromide (APAB) resulting in the photoreactive azido moiety at a maximum of 25 A from the 4' position on psoralen (SSP25APA). 16S rRNA containing SSP, SSP25APA or control 16S rRNA were reconstituted and 30S particles were isolated. The reconstituted subunits containing SSP or SSP25APA had normal protein composition, were active in tRNA binding and had the usual pattern of chemical reactivity except for increased kethoxal reactivity at G791 and modest changes in four other regions. Irradiation of the derivatized 30S subunits in activation buffer produced several intramolecular RNA crosslinks that were visualized and separated by gel electrophoresis and characterized by primer extension. Four major crosslink sites made by the SSP reagent were identified at positions U561/U562, U920/U921, C866 and U723; a fifth major crosslink at G693 was identified when the SSP25APA reagent was used. A number of additional crosslinks of lower frequency were seen, particularly with the APA reagent. These data indicate a central location close to the decoding region and central pseudoknot for nucleotides U788/U789 in the activated 30S subunit.  相似文献   

5.
SJG-136, a pyrrolo[2,1-c][1,4]benzodiazepine (PBD) dimer, is a highly efficient interstrand crosslinking agent that reacts with guanine bases in a 5′-GATC-3′ sequence in the DNA minor groove. SJG-136 crosslinks form rapidly and persist compared to those produced by conventional crosslinking agents such as nitrogen mustard, melphalan or cisplatin which bind in the DNA major groove. A panel of Chinese hamster ovary (CHO) cells with defined defects in specific DNA repair pathways were exposed to the bi-functional agents SJG-136 and melphalan, and to their mono-functional analogues mmy-SJG and mono-functional melphalan. SJG-136 was >100 times more cytotoxic than melphalan, and the bi-functional agents were much more cytotoxic than their respective mono-functional analogues. Cellular sensitivity of both SJG-136 and melphalan was dependent on the XPF-ERCC1 heterodimer, and homologous recombination repair factors XRCC2 and XRCC3. The relative level of sensitivity of these repair mutant cell lines to SJG-136 was, however, significantly less than with major groove crosslinking agents. In contrast to melphalan, there was no clear correlation between sensitivity to SJG-136 and crosslink unhooking capacity measured using a modified comet assay. Furthermore, repair of SJG-136 crosslinks did not involve the formation of DNA double-strand breaks. SJG-136 cytotoxicity is likely to result from the poor recognition of DNA damage by repair proteins resulting in the slow repair of both mono-adducts and more importantly crosslinks in the minor groove.  相似文献   

6.
A general approach to the quantitative study of the sequence specificity of DNA interstrand crosslinking agents in synthetic duplex DNA fragments is described. In the first step, a DNA fragment previously treated with an interstrand crosslinking agent is subjected to denaturing PAGE. Not only does this distinguish crosslinked from native or monoadducted DNA, it is shown herein that isomeric crosslinked DNAs differing in position of the crosslink can in some cases be separated. In the second stage, the now fractionated crosslinked DNAs isolated from denaturing PAGE are subjected to fragmentation using iron(II)/EDTA. For those fractions which are structurally homogeneous, analysis of the resulting fragment distribution has previously been shown to reveal the crosslink position at nucleotide resolution. It is shown herein that in fractions which are structurally heterogeneous due to differences in position of crosslink, this analysis quantifies the relative extent of crosslinking at distinct sites. Using this method it is shown that reductively activated mitomycin C crosslinks the duplex sequences 5'-GCGC and 5'-TCGA with 3 +/- 1:1 relative efficiency.  相似文献   

7.
An apparently full-length complementary DNA copy of in vitro polyadenylated MS2 RNA was synthesized with avian myeloblastosis virus RNA-dependent DNA polymerase. After the MS2 RNA template was removed from the complementary DNA strand with T1 and pancreatic RNase digestion, the complementary DNA became a good template for the synthesis of double-stranded MS2 DNA with Escherichia coli DNA polymerase I. We then constructed molecular chimeras by inserting the double-stranded MS2 DNA into the PstI restriction endonuclease cleavage site of the E. coli plasmid pBR322 by means of the poly(dA)· poly(dT) tailing procedure. An E. coli transformant carrying a plasmid with a nearly full-length MS2 DNA insertion, called pMS2-7, was chosen for further study. Correlation between the restriction cleavage site map of pMS2-7 DNA and the cleavage map predicted from the primary structure of MS2 RNA, and nucleotide sequence analysis of the 5′ and 3′ end regions of the MS2 DNA insertion, showed that the entire MS2 RNA had been faithfully copied, and that, except for 14 nucleotides corresponding to the 5′-terminal sequence of MS2 RNA, the fulllength DNA copy of the viral genetic information had been inserted into the plasmid. Restriction endonuclease analysis of the chimera plasmid DNA also revealed the presence of an extra DNA insertion which was identified as the translocatable element IS13 (see following paper).  相似文献   

8.
Organisms like Dictyostelium discoideum, often referred to as DNA damage “extremophiles”, can survive exposure to extremely high doses of radiation and DNA crosslinking agents. These agents form highly toxic DNA crosslinks that cause extensive DNA damage. However, little is known about how Dictyostelium and the other “extremophiles” can tolerate and repair such large numbers of DNA crosslinks. Here we describe a comprehensive genetic analysis of crosslink repair in Dictyostelium discoideum. We analyse three gene groups that are crucial for a replication-coupled repair process that removes DNA crosslinks in higher eukarya: The Fanconi anaemia pathway (FA), translesion synthesis (TLS), and nucleotide excision repair. Gene disruption studies unexpectedly reveal that the FA genes and the TLS enzyme Rev3 play minor roles in tolerance to crosslinks in Dictyostelium. However, disruption of the Xpf nuclease subcomponent results in striking hypersensitivity to crosslinks. Genetic interaction studies reveal that although Xpf functions with FA and TLS gene products, most Xpf mediated repair is independent of these two gene groups. These results suggest that Dictyostelium utilises a distinct Xpf nuclease-mediated repair process to remove crosslinked DNA. Other DNA damage–resistant organisms and chemoresistant cancer cells might adopt a similar strategy to develop resistance to DNA crosslinking agents.  相似文献   

9.
Escherichia coli and bacteriophage T4 DNA containing [2-3H]adenine accumulated crosslinks between the complementary strands. For T4 DNA stored in frozen solution there were 0.41 to 0.54 crosslinks formed per tritium decay. The crosslinks were demonstrated both by an increased DNA sedimentation rate in alkaline sucrose gradients and by an increasing amount of DNA that renatured quickly after denaturation by heat or alkali. Single-strand breaks were also formed with an efficiency of 0.08 to 0.50 breaks per tritium decay. DNA containing both [8-3H]adenine and [8-3H]guanine showed no crosslinking but did undergo single-strand breaks at a rate of 0.08 per tritium decay. T4 bacteriophage containing [2-3H]adenine lost plaque-forming ability when stored at 4 °C, with 0.34 lethal hits per tritium decay, whereas the same phage labeled with a mixture of [8-3H]adenine and [8-3H]guanine sustained only 0.12 lethal hits per tritium decay. The loss of plaque-forming ability in the latter case is probably due to a radiation effect from the emitted beta particle; the high lethal efficiency for tritium decay at 2-adenine is probably caused either by crosslinks between complementary strands or from some undetected lesion produced in the DNA.  相似文献   

10.
We describe details of procedures to analyze RNA-RNA crosslinks made by far-UV irradiation (< 300 nm) or made by irradiation with near-UV light (320-365 nm) on RNA containing photosensitive nucleotides, in the present case containing 4-thiouridine. Zero-length crosslinks of these types must occur because of the close proximity of the participants through either specific interactions or transient contacts in the folded RNA structure, so they are valuable monitors of the conformation of the RNA. Procedures to produce crosslinks in the 16S ribosomal RNA and between the 16S rRNA and mRNA or tRNA are described. Gel electrophoresis conditions are described that separate the products according to their structure to allow the determination of the number and frequency of the crosslinking products. Gel electrophoresis together with an ultracentrifugation procedure for the efficient recovery of RNA from the polyacrylamide gels allows the purification of molecules containing different crosslinks. These separation techniques allow the analysis of the sites of crosslinking by primer extension and RNA sequencing techniques. The procedures are applicable to other types of RNA molecules with some differences to control levels of crosslinking and separation conditions.  相似文献   

11.
Poly(ADP-ribose) polymerase (PARP) is a nuclear enzyme which catalyzes the transfer of ADP-ribose units from NAD+ to a variety of nuclear proteins under the stimulation of DNA strand break. To examine its role in DNA repair, we have been studying the interaction of PARP with other nuclear proteins using disulfide cross-linking, initiated by sodium tetrathionate (NaTT). Chinese Hamster Ovary (CHO) cells were extracted sequentially with Nonidet P40 (detergent), nucleases (DNase + RNase), and high salt (1.6 M NaCl) with and without the addition of a sulfhydryl reducing agent. The residual structures are referred to as the nuclear matrix, and are implicated in the organization of DNA repair and replication. Treatment of the cells with NaTT causes the crosslinking of PARP to the nuclear matrix. Activating PARP by pretreating the cells with H2O2 did not increase the cross-linking of PARP with the nuclear matrix, suggesting a lack of additional interaction of the enzyme with the nuclear matrix during DNA repair. Both NaTT and H2O2 induced crosslinks of PARP that were extractable with high salt. To shorten the procedure, these crosslinks were extracted from cells without nucleases and high salt treatment, using phosphate buffer. Using western blotting, these crosslinks appeared as a smear of high molecular weight species including a possible dimer of PARP at 230 kDa, which return to 116 kDa following reduction with -mercaptoethanol.  相似文献   

12.
The transducing bacteriophage φ80psuIII+ carries one structural Escherichia coli gene specifying tyrosine tRNA.The r strand of bacteriophage φ80psuIII+ was hybridized with E. coli transfer RNA and the hybrid digested with Neurospora crassa endonuclease. The analysis of the products of enzymic digestion demonstrated the release of a cistron-hybrid composed of tyrosine tRNA and its complementary DNA sequence. The cistron-hybrid was purified from unhybridized DNA by cesium sulphate density-gradient centrifugation and gel filtration.The ratio between tyrosine tRNA and its complementary DNA sequence in the final product was 1:1 as demonstrated by radioisotopic analysis. This purification represents a 30,000-fold enrichment of the E. coli genome for a specific DNA sequence.  相似文献   

13.
Expression of the structural proteins of human immunodeficiency virus type 1 (HIV-1) requires the direct interaction of multiple copies of the viral protein Rev with its target RNA, the Rev response element (RRE). RRE is a complex 351-nt RNA that is highly structured and located within the viral env gene. During initial Rev-RRE recognition, Rev binds with high affinity to a bubble structure located within the RRE RNA stem-loop II. We have used a site-specific photocrosslinking method based on 6-thioguanosine (6-thioG) photochemistry to probe the conformation of the high-affinity binding site of RRE RNA and its interactions with Rev protein under physiological conditions. A minimal duplex RNA containing the bubble region of RRE and 12 flanking base pairs was synthesized chemically. Two different RRE constructs with a single photoactive nucleoside (6-thio-dG or 6-thioG) at position 47 or 48 were synthesized. Upon UV irradiation, 6-thioG at both positions formed interstrand covalent crosslinks in RRE RNA. Mapping of crosslink sites by RNA sequencing revealed that 6-thioG at position 47 or 48 crosslinked to A73. In the presence of Rev, both RNA-RNA and RNA-protein crosslinks were observed, however, the RNA-RNA crosslink site was unchanged. Our results provide direct evidence that, during RNA-protein recognition, Rev is in close proximity to O6 of G47 and G48 in the major groove of RRE RNA. Our results also show that the bubble region of RRE RNA has a biologically relevant structure where G47 and G48 are in close proximity to A73 and this RNA structure is not changed significantly upon Rev binding. We propose that Rev protein recognizes and binds to specific structural elements of RRE RNA containing non-Watson-Crick base pairs and such structures could be a determinant for recognition by other RNA-binding proteins. Our site-specific crosslinking methods provide a general approach to capture dynamic states of biologically relevant RNA structures that are otherwise missed by NMR and X-ray crystallographic studies.  相似文献   

14.
15.
We have used photo-crosslinking to investigate the structure and dynamics of four-way junction hairpin ribozyme constructs. Four phenylazide photo-crosslinkers were coupled to 2′-NH2-modified U+2 in the substrate and irradiated at different Mg2+ concentrations and temperatures. Consistent with the role of divalent metal ions in hairpin ribozyme folding, we observed more interdomain crosslinks in the presence of Mg2+ than in its absence. In general, we observed intradomain crosslinks to nucleotides 2–11 and interdomain crosslinks to the U1A binding loop. Crosslinks to A26 and G36 in domain B were also observed when crosslinking was carried out at −78°C. In contrast to crosslinking results at higher temperatures (0, 25 and 37°C), similar crosslinks were obtained in the presence and absence of Mg2+ at −78°C, suggesting Mg2+ stabilizes a low-energy hairpin ribozyme conformation. We also evaluated the effects of photo-crosslinker structure and mechanism on crosslinks. First, most crosslinks were to unpaired nucleotides. Second, shorter and longer photo-crosslinkers formed crosslinks to intradomain locations nearer to and farther from photo-crosslinker modification, respectively. Finally, fluorine substitutions on the phenylazide ring did not change the locations of crosslinks, but rather decreased crosslinking efficiency. These findings have implications for the use of phenylazide photo-crosslinkers in structural studies of RNA.  相似文献   

16.
DNA interstrand crosslinks (ICLs) are the primary mechanism for the cytotoxic activity of many clinical anticancer drugs, and numerous strategies for forming ICLs have been developed. One such method is using crosslink-forming oligonucleotides (CFOs). In this study, we designed a 4-amino-6-oxo-2-vinylpyrimidine (AOVP) derivative with an acyclic spacer to react selectively with guanine. The AOVP CFO exhibited selective crosslinking reactivity with guanine and thymine in DNA, and with guanine in RNA. These crosslinking reactions with guanine were accelerated in the presence of CoCl2, NiCl2, ZnCl2 and MnCl2. In addition, we demonstrated that the AOVP CFO was reactive toward 8-oxoguanine opposite AOVP in the duplex DNA. The structural analysis of each guanine and 8-oxoguanine adduct in the duplex DNA was investigated by high-resolution NMR. The results suggested that AOVP reacts at the N2 amine in guanine and at the N1 or N2 amines in 8-oxoguanine in the duplex DNA. This study demonstrated the first direct determination of the adduct structure in duplex DNA without enzyme digestion.  相似文献   

17.
18.
Based on the amino acid sequence of the molt-inhibiting hormone of Carcinus maenas, two degenerated oligonucleotide primers were synthesized and used in the polymerase chain reaction. By use of complementary DNA of a library constructed from medulla terminalis-X-organ RNA of C. maenas as template, the specific complementary DNA between the primers was amplified, cloned and sequenced. This strategy revealed a DNA sequence for which the deduced amino acid sequence is identical to the recently published C. maenas molt-inhibiting hormone sequence as determined by Edman degradation. Visualization of messenger RNAs encoding molt-inhibiting hormone and crustacean hyperglycemic hormone in different perikarya of the X-organ was obtained using digoxigenin-labelled complementary RNA probes. Combination of immunocytochemical staining using polyclonal antisera against the native C. maenas neuropeptides and in situ hybridization performed on alternating sections confirmed the specificity of the reaction. The results show that there is no co-localization of molt-inhibiting hormone and crustacean hyperglycemic hormone at the messenger RNA and the protein level.  相似文献   

19.
Samples of epichlorohydrin crosslinked potato starch were prepared by using a high ratio of starch to water and alkali concentration below the gelatinization level. This yielded crosslinked samples that were partially crystalline, and where the number of crosslinks could be varied between 1 and 20 crosslinks per 100 anhydroglucose units. The degree of swelling varied regularly with degree of crosslinking, and the molecular weight between crosslinks Mc as derived from swelling data in a good swelling agent compared favorably with Mc derived from chemical analysis. From the heat of gelatinization of the crosslinked starches, as observed in a differential scanning calorimeter, for gelatinization in glycerol, water, and dimethylsulfoxide, a model for the gel state of the crosslinked starch is proposed. It is concluded that the entropy of melting is the determining factor in establishing the temperature of gelatinization.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号