首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.

Background

Murine retroviral vectors have been used in several hundred gene therapy clinical trials, but have fallen out of favor for a number of reasons. One issue is that gene expression from viral or internal promoters is highly variable and essentially unregulated. Moreover, with retroviral vectors, gene expression is usually silenced over time. Mammalian genes, in contrast, are characterized by highly regulated, precise levels of expression in both a temporal and a cell-specific manner. To ascertain if recapitulation of endogenous adenosine deaminase (ADA) expression can be achieved in a vector construct we created a new series of Moloney murine leukemia virus (MuLV) based retroviral vector that carry human regulatory elements including combinations of the ADA promoter, the ADA locus control region (LCR), ADA introns and human polyadenylation sequences in a self-inactivating vector backbone.

Methods

A MuLV-based retroviral vector with a self-inactivating (SIN) backbone, the phosphoglycerate kinase promoter (PGK) and the enhanced green fluorescent protein (eGFP), as a reporter gene, was generated. Subsequent vectors were constructed from this basic vector by deletion or addition of certain elements. The added elements that were assessed are the human ADA promoter, human ADA locus control region (LCR), introns 7, 8, and 11 from the human ADA gene, and human growth hormone polyadenylation signal. Retroviral vector particles were produced by transient three-plasmid transfection of 293T cells. Retroviral vectors encoding eGFP were titered by transducing 293A cells, and then the proportion of GFP-positive cells was determined using fluorescence-activated cell sorting (FACS). Non T-cell and T-cell lines were transduced at a multiplicity of infection (MOI) of 0.1 and the yield of eGFP transgene expression was evaluated by FACS analysis using mean fluorescent intensity (MFI) detection.

Results

Vectors that contained the ADA LCR were preferentially expressed in T-cell lines. Further improvements in T-cell specific gene expression were observed with the incorporation of additional cis-regulatory elements, such as a human polyadenylation signal and intron 7 from the human ADA gene.

Conclusion

These studies suggest that the combination of an authentically regulated ADA gene in a murine retroviral vector, together with additional locus-specific regulatory refinements, will yield a vector with a safer profile and greater efficacy in terms of high-level, therapeutic, regulated gene expression for the treatment of ADA-deficient severe combined immunodeficiency.  相似文献   

2.

Aims

Type 2 diabetes is characterised by increased plasma concentrations of pro-inflammatory cytokines [such as tumour necrosis factor – alpha; TNF-α] and soluble forms of adhesion molecules involved in leukocyte – endothelial interactions. These molecules are synthesised as transmembrane proteins and the plasma soluble forms are generated by ectodomain cleavage from the cell surface by members of the ADAM [a disintegrin and metalloproteinase] proteinase family. We hypothesised that plasma low density lipoprotein [LDL] from subjects with Type 2 diabetes would influence in vitro monocytic ADAM and matrix metalloproteinase [MMP] gene expression differently compared to control LDL.

Methods

We examined relative mRNA expression by real time PCR in a monocytic cell line [THP-1] cultured for 4, 8 and 24 hrs with human plasma LDL derived from subjects with [n = 5] or without [n = 4] Type 2 diabetes. Gene expression for MMP-1 and 9, and ADAM – 8, 15, 17 and 28 was studied.

Results

Type 2 diabetes LDL significantly increased gene expression of MMP – 1 [p < 0.01] MMP – 9 [p < 0.001], and ADAM 17 [p < 0.05], – 28 [p < 0.01] and – 15 [p < 0.01] compared to control LDL. Type 2 diabetes LDL had disparate effects on inhibitors of MMP.

Conclusion

These data suggest that Type 2 diabetes LDL could lead to increased adhesion molecule and TNF alpha cell surface shedding, and vascular plaque instability, by promoting increased expression of ADAM and MMP genes.  相似文献   

3.

Background

Mucopolysaccharidosis type IIIA (MPS IIIA) is the most common of the mucopolysaccharidoses. The disease is caused by a deficiency of the lysosomal enzyme sulphamidase and results in the storage of the glycosaminoglycan (GAG), heparan sulphate. MPS IIIA is characterised by widespread storage and urinary excretion of heparan sulphate, and a progressive and eventually profound neurological course. Gene therapy is one of the few avenues of treatment that hold promise of a sustainable treatment for this disorder.

Methods

The murine sulphamidase gene cDNA was cloned into a lentiviral vector and high-titre virus produced. Human MPS IIIA fibroblast cultures were transduced with the sulphamidase vector and analysed using molecular, enzymatic and metabolic assays. High-titre virus was intravenously injected into six 5-week old MPS IIIA mice. Three of these mice were pre-treated with hyperosmotic mannitol. The weight of animals was monitored and GAG content in urine samples was analysed by polyacrylamide gel electrophoresis.

Results

Transduction of cultured MPS IIIA fibroblasts with the sulphamidase gene corrected both the enzymatic and metabolic defects. Sulphamidase secreted by gene-corrected cells was able to cross correct untransduced MPS IIIA cells. Urinary GAG was found to be greatly reduced in samples from mice receiving the vector compared to untreated MPS IIIA controls. In addition, the weight of treated mice became progressively normalised over the 6-months post-treatment.

Conclusion

Lentiviral vectors appear promising vehicles for the development of gene therapy for MPS IIIA.  相似文献   

4.

Background

For many promising target cells (e.g.: haematopoeitic progenitors), the susceptibility to standard adeno-associated viral (AAV) vectors is low. Advancements in vector development now allows the generation of target cell-selected AAV capsid mutants.

Methods

To determine its suitability, the method was applied on a chronic myelogenous leukaemia (CML) cell line (K562) to obtain a CML-targeted vector and the resulting vectors tested on leukaemia, non-leukaemia, primary human CML and CD34+ peripheral blood progenitor cells (PBPC); standard AAV2 and a random capsid mutant vector served as controls.

Results

Transduction of CML (BV173, EM3, K562 and Lama84) and AML (HL60 and KG1a) cell lines with the capsid mutants resulted in an up to 36-fold increase in CML transduction efficiency (K562: 2-fold, 60% ± 2% green fluorescent protein (GFP)+ cells; BV173: 9-fold, 37% ± 2% GFP+ cells; Lama84: 36-fold, 29% ± 2% GFP+ cells) compared to controls. For AML (KG1a, HL60) and one CML cell line (EM3), no significant transduction (<1% GFP+ cells) was observed for any vector. Although the capsid mutant clone was established on a cell line, proof-of-principle experiments using primary human cells were performed. For CML (3.2-fold, mutant: 1.75% ± 0.45% GFP+ cells, p = 0.03) and PBPC (3.5-fold, mutant: 4.21% ± 3.40% GFP+ cells) a moderate increase in gene transfer of the capsid mutant compared to control vectors was observed.

Conclusion

Using an AAV random peptide library on a CML cell line, we were able to generate a capsid mutant, which transduced CML cell lines and primary human haematopoietic progenitor cells with higher efficiency than standard recombinant AAV vectors.  相似文献   

5.
Efficient secretion of human lysozyme from the yeast, Kluyveromyces lactis, was achieved by using more stable vectors in the order of S11 replication origin-containing episomal vector < full-length K. lactis plasmid pKD1-containing vector < centromeric vector < chromosome-integrated vectors. Cells containing a PGK (phosphoglycerate kinase) promoter-driven integration vector grown in non-selective rich medium achieved the highest level of secretion, 100 g lysozyme secretion ml 1 culture: this level was 10-fold higher than that achieved by episomal vectors. An additional copy of the protein disulfide isomerase gene further facilitated the secretion.  相似文献   

6.
7.

Objectives

To determine the effects of the Sus scrofa matrix attachment region (SusMAR) on transgene expression in HEK293T cells.

Results

Three expression vectors with the MAR at different sites in the PiggyBac (PB) transposon vector backbone were compared: two MARs flanking the β-galactosidase (β-gal) expression cassette, and one at the upstream or downstream site. Bos taurus MAR (BosMAR) and a β-gal expression cassette without MARs were the positive and negative controls, respectively. Compared to the control, β-gal activity of all SusMAR and BosMAR vectors was significantly improved in the presence of PB transposase (PBase). However, only the downstream SusMAR and upstream BosMAR vectors showed increased expression in the absence of PBase. Expression was significantly increased in all vectors with the PBase group compared to those without the PBase group. Gene copy numbers were not increased compared to the negative control.

Conclusions

SusMAR enhanced recombinant gene expression levels and stability in HEK293T cells, was not increase transgene copy number. These results could facilitate the development of vectors for stable production of therapeutic proteins.
  相似文献   

8.

Background

Adenovirus serotype 5 (Ad5) has many favourable characteristics for development as a gene therapy vector. However, the utility of current Ad5 vectors is limited by transient transgene expression, toxicity and immunogenicity. The most promising form of vector is the high capacity type, which is deleted for all viral genes. However, these vectors can only be produced to relatively low titres and with the aid of helper virus. Therefore a continuing challenge is the generation of more effective Ad5 vectors that can still be grown to high titres. Our approach is to generate complementing cell lines to support the growth of Ad5 vectors with novel late gene deficiencies.

Results

We have used LoxP/Cre recombination mediated cassette exchange (RMCE) to generate cell lines expressing Ad5 proteins encoded by the L4 region of the genome, the products of which play a pivotal role in the expression of Ad5 structural proteins. A panel of LoxP parent 293 cell lines was generated, each containing a GFP expression cassette under the control of a tetracycline-regulated promoter inserted at a random genome location; the cassette also contained a LoxP site between the promoter and GFP sequence. Clones displayed a variety of patterns of regulation, stability and level of GFP expression. Clone A1 was identified as a suitable parent for creation of inducible cell lines because of the tight inducibility and stability of its GFP expression. Using LoxP-targeted, Cre recombinase-mediated insertion of an L4 cassette to displace GFP from the regulated promoter in this parent clone, cell line A1-L4 was generated. This cell line expressed L4 100K, 22K and 33K proteins at levels sufficient to complement L4-33K mutant and L4-deleted viruses.

Conclusions

RMCE provides a method for rapid generation of Ad5 complementing cell lines from a pre-selected parental cell line, chosen for its desirable transgene expression characteristics. Parent cell lines can be selected for high or low gene expression, and for tight regulation, allowing viral protein expression to mirror that found during infection. Cell lines derived from a single parent will allow the growth of different vectors to be assessed without the complication of varying complementing protein expression.  相似文献   

9.
10.

Background

Conditional expression vectors have become a valuable research tool to avoid artefacts that may result from traditional gene expression studies. However, most systems require multiple plasmids that must be independently engineered into the target system, resulting in experimental delay and an increased potential for selection of a cell subpopulation that differs significantly from the parental line. We have therefore developed pHUSH, an inducible expression system that allows regulated expression of shRNA, miRNA or cDNA cassettes on a single viral vector.

Results

Both Pol II and Pol III promoters have been successfully combined with a second expression cassette containing a codon-optimized tetracycline repressor and selectable marker. We provide examples of how pHUSH has been successfully employed to study the function of target genes in a number of cell types within in vitro and in vivo assays, including conditional gene knockdown in a murine model of brain cancer.

Conclusion

We have successfully developed and employed a single vector system that enables Doxycycline regulated RNAi or transgene expression in a variety of in vitro and in vivo model systems. These studies demonstrate the broad application potential of pHUSH for conditional genetic engineering in mammalian cells.  相似文献   

11.
12.
Episomal gene expression vectors offer a safe and attractive alternative to integrating vectors. Here we describe the development of a high capacity episomal vector system exploiting human episomal retention sequences to provide efficient vector maintenance and regulated gene expression through the delivery of a genomic DNA locus. The iBAC-S/MAR vector is capable of the infectious delivery and retention of large genomic DNA transgenes by exploiting the high transgene capacity of herpes simplex virus type 1 (HSV-1) and the episomal retention properties of the scaffold/matrix attachment region (S/MAR). The iBAC-S/MAR vector was used to deliver and maintain a 135kb genomic DNA insert carrying the human low density lipoprotein receptor (LDLR) genomic DNA locus at high efficiency in CHO ldlr/ a7 cells. Long-term studies on CHO ldlr/ a7 clonal cell lines carrying iBAC-S/MAR-LDLR demonstrated low copy episomal stability of the vector for >100 cell generations without selection. Expression studies demonstrated that iBAC-S/MAR-LDLR completely restored LDLR function in CHO ldlr/ a7 cells to physiological levels and that this expression can be repressed by ~70% by high sterol levels, recapitulating the same feedback regulation seen at the endogenous LDLR locus. This vector overcomes the major problems of vector integration and unregulated transgene expression.  相似文献   

13.

Background

Lentiviral vectors allow gene transfer into non‐dividing cells. Further development of these vector systems requires stable packaging cell lines that enable adequate safety testing.

Methods

To generate a packaging cell line for vectors based on simian immunodeficiency virus (SIV), expression plasmids were constructed that contain the codon‐optimized gag‐pol gene of SIV and the gene for the G protein of vesicular stomatitis virus (VSV‐G) under the control of an ponasterone‐inducible promoter. Stable cell lines expressing these packaging constructs were established and characterized.

Results

The RT activity and vector titers of cell clones stably transfected with the inducible gag‐pol expession plasmid could be induced by ponasterone by more than a factor of 1000. One of these clones was subsequently transfected with the ponasterone‐inducible VSV‐G expression plasmid to generate packaging cells. Clones of the packaging cells were screened for vector production by infection with an SIV vector and subsequent induction by ponasterone. In the supernatant of selected ponasterone‐induced producer clones vector titers of more than 1×105 transducing units/ml were obtained. Producer cell clones were stable for at least five months, as tested by vector production.

Conclusions

The packaging cells described should be suitable for most preclinical applications of SIV‐based vectors. By avoiding regions of high homology between the vector and the packaging constructs, the design of the SIV packaging cell line should reduce the risk of transfer of packaging genes to target cells and at the same time provide flexibility with respect to the SIV vector constructs that can be packaged. Copyright © 2002 John Wiley & Sons, Ltd.
  相似文献   

14.

Background

As engineered biological systems become more complex, it is increasingly common to express multiple operons from different plasmids and inducible expression systems within a single host cell. Optimizing such systems often requires screening combinations of origins of replication, expression systems, and antibiotic markers. This procedure is hampered by a lack of quantitative data on how these components behave when more than one origin of replication or expression system are used simultaneously. Additionally, this process can be time consuming as it often requires the creation of new vectors or cloning into existing but disparate vectors.

Results

Here, we report the development and characterization of a library of expression vectors compatible with the BglBrick standard (BBF RFC 21). We have designed and constructed 96 BglBrick-compatible plasmids with a combination of replication origins, antibiotic resistance genes, and inducible promoters. These plasmids were characterized over a range of inducer concentrations, in the presence of non-cognate inducer molecules, and with several growth media, and their characteristics were documented in a standard format datasheet. A three plasmid system was used to investigate the impact of multiple origins of replication on plasmid copy number.

Conclusions

The standardized collection of vectors presented here allows the user to rapidly construct and test the expression of genes with various combinations of promoter strength, inducible expression system, copy number, and antibiotic resistance. The quantitative datasheets created for these vectors will increase the predictability of gene expression, especially when multiple plasmids and inducers are utilized.  相似文献   

15.

Background

The production of cell-based cancer vaccines by gene vectors encoding proteins that stimulate the immune system has advanced rapidly in model systems. We sought to develop non-viral transfection methods that could transform patient tumor cells into cancer vaccines, paving the way for rapid production of autologous cell-based vaccines.

Methods

As the extended culture and expansion of most patient tumor cells is not possible, we sought to first evaluate a new technology that combines electroporation and chemical transfection in order to determine if plasmid-based gene vectors could be instantaneously delivered to the nucleus, and to determine if gene expression was possible in a cell-cycle independent manner. We tested cultured cell lines, a primary murine tumor, and primary human leukemia cells from diagnostic work-up for transgene expression, using both RFP and CD137L expression vectors.

Results

Combined electroporation-transfection directly delivered plasmid DNA to the nucleus of transfected cells, as demonstrated by confocal microscopy and real-time PCR analysis of isolated nuclei. Expression of protein from plasmid vectors could be detected as early as two hours post transfection. However, the kinetics of gene expression from plasmid-based vectors in tumor cell lines indicated that optimal gene expression was still dependent on cell division. We then tested to see if pediatric acute lymphocytic leukemia (ALL) would also display the rapid gene expression kinetics of tumor cells lines, determining gene expression 24 hours after transfection. Six of 12 specimens showed greater than 17% transgene expression, and all samples showed at least some transgene expression.

Conclusion

Given that transgene expression could be detected in a majority of primary tumor samples analyzed within hours, direct electroporation-based transfection of primary leukemia holds the potential to generate patient-specific cancer vaccines. Plasmid-based gene therapy represents a simple means to generate cell-based cancer vaccines and does not require the extensive infrastructure of a virus-based vector system.  相似文献   

16.

Background

Intrathecal (IT) gene transfer is an attractive approach for targeting spinal mechanisms of nociception but the duration of gene expression achieved by reported methods is short (up to two weeks) impairing their utility in the chronic pain setting. The overall goal of this study was to develop IT gene transfer yielding true long-term transgene expression defined as ≥ 3 mo following a single vector administration. We defined "IT" administration as atraumatic injection into the lumbar cerebrospinal fluid (CSF) modeling a lumbar puncture. Our studies focused on recombinant adeno-associated virus (rAAV), one of the most promising vector types for clinical use.

Results

Conventional single stranded rAAV2 vectors performed poorly after IT delivery in rats. Pseudotyping of rAAV with capsids of serotypes 1, 3, and 5 was tested alone or in combination with a modification of the inverted terminal repeat. The former alters vector tropism and the latter allows packaging of self-complementary rAAV (sc-rAAV) vectors. Combining both types of modification led to the identification of sc-rAAV2/l as a vector that performed superiorly in the IT space. IT delivery of 3 × 10e9 sc-rAAV2/l particles per animal led to stable expression of enhanced green fluorescent protein (EGFP) for ≥ 3 mo detectable by Western blotting, quantitative PCR, and in a blinded study by confocal microscopy. Expression was strongest in the cauda equina and the lower sections of the spinal cord and only minimal in the forebrain. Microscopic examination of the SC fixed in situ with intact nerve roots and meninges revealed strong EGFP fluorescence in the nerve roots.

Conclusion

sc-rAAVl mediates stable IT transgene expression for ≥ 3 mo. Our findings support the underlying hypothesis that IT target cells for gene transfer lack the machinery for efficient conversion of the single-stranded rAAV genome into double-stranded DNA and favor uptake of serotype 1 vectors over 2. Experiments presented here will provide a rational basis for utilizing IT rAAV gene transfer in basic and translational studies on chronic pain.  相似文献   

17.
The low-density lipoprotein receptor (LDLR) mediates the hepatic uptake of circulating low-density lipoproteins (LDLs), a process that modulates the development of atherosclerotic cardiovascular disease. We recently identified RAB10, encoding a small GTPase, as a positive regulator of LDL uptake in hepatocellular carcinoma cells (HuH7) in a genome-wide CRISPR screen, though the underlying molecular mechanism for this effect was unknown. We now report that RAB10 regulates hepatocyte LDL uptake by promoting the recycling of endocytosed LDLR from RAB11-positive endosomes to the plasma membrane. We also show that RAB10 similarly promotes the recycling of the transferrin receptor, which binds the transferrin protein that mediates the transport of iron in the blood, albeit from a distinct RAB4-positive compartment. Taken together, our findings suggest a model in which RAB10 regulates LDL and transferrin uptake by promoting both slow and rapid recycling routes for their respective receptor proteins.Supplementary key words: low density lipoprotein receptor, receptors, protein trafficking, cholesterol, lipoproteins, CRISPR screen, HuH7 cells, endocytosis, RAB10, RAB11

An elevated level of circulating low-density lipoprotein (LDL) cholesterol is a major risk factor for atherosclerotic cardiovascular diseases, including myocardial infarction and stroke (1, 2, 3, 4, 5, 6, 7). Regulation of plasma cholesterol is governed by a complex interplay between dietary absorption, de novo biosynthesis, and clearance from the bloodstream. Therapeutic targeting of LDL clearance has been a highly successful strategy for the prevention and treatment of atherosclerosis. LDL clearance is mediated by the LDL receptor (LDLR), a cell-surface glycoprotein that directly binds to the apolipoprotein B component of LDL particles and triggers clathrin-mediated endocytosis. The acidic environment of the endosomal lumen induces complex dissociation, with LDL subsequently transported to the lysosome for hydrolysis, and free LDLR recycled back to the plasma membrane (8, 9). Many regulatory proteins affecting the endocytic pathway and cell-surface expression of LDLR have been identified, including PCSK9, a negative regulator that redirects LDLR to the lysosome for degradation (10), and IDOL, a ubiquitin ligase that induces proteasomal degradation of LDLR (11, 12). Although much is known about the regulation of LDLR expression and endocytosis, questions remain concerning the molecular determinants of LDLR recycling.We recently reported a genome-wide CRISPR screen for modifiers of LDL uptake in HuH7 cells (13). This screen identified RAB10, a small GTPase known to mediate trafficking of vesicles between intracellular compartments, as a key regulator of LDL uptake. Deletion of RAB10 decreased cellular endocytosis of LDL but increased accumulation of another endocytic cargo, transferrin. The receptors for LDL (LDLR) and transferrin receptor (TFR) are both endocytosed from the cell surface via clathrin-coated vesicles and transported through intracellular recycling pathways (14, 15, 16, 17, 18, 19, 20). In this study, we investigated the role of RAB10 in LDL and transferrin endocytosis. Our results demonstrate that GTP-bound RAB10 positively regulates the activity of LDLR and TFR by accelerating the recycling of both proteins to the plasma membrane.  相似文献   

18.

Background

The subcloning of a DNA fragment from an entry vector into a destination vector is a routinely performed task in molecular biology labs.

Results

We here present a novel benchtop procedure to achieve rapid recombination into any destination vector of choice with the sole requirement of an endonuclease recognition site. The method relies on a specifically designed entry vector and the combined action of type II and type IIs endonucleases with ligase. The formulation leads to accumulation of a single stable cloning product representing the desired insert carrying destination vector.

Conclusion

The described method provides a fast single step procedure for routine subcloning from an entry vector into a series of destination vectors with the same restriction enzyme recognition site.  相似文献   

19.
The low density lipoprotein receptor (LDLR) plays a key role in plasma cholesterol homeostasis by binding and internalizing lipoprotein ligands. Studies have revealed that one or more of the seven LDL type A repeats (LA1–LA7) in the receptor are responsible for apolipoprotein binding. In the present study, protein engineering was performed to swap or replace key LA repeats in a recombinant soluble LDLR (sLDLR). Although wild type sLDLR showed strong ligand binding activity, an sLDLR variant in which LA repeat 5 was replaced by a second copy of LA repeat 2 showed low binding activity. Likewise, a variant wherein LA repeats 2 and 5 were swapped displayed low binding activity. At the same time, substitution of LA repeat 2 with a second a copy of repeat 5 resulted in a receptor with ligand binding activity similar to wild type LDLR. When binding assays were conducted with human low density lipoprotein as ligand, LA repeat order was a less important determinant of binding activity. Taken together, the data indicate that the sequential order of LA repeats plays a key role in ligand binding properties of LDLR.The low density lipoprotein receptor (LDLR)3 plays an important role in plasma cholesterol homeostasis (1). A fundamental function of LDLR is transport of cholesterol-rich lipoproteins into cells via receptor-mediated endocytosis (2). Human LDLR is 839 amino acids in length and is comprised of five distinct modules that arose from gene duplication. At the N terminus of LDLR, there exists a series of seven imperfect, disulfide bond-rich, LDL type A (LA) repeats, each ∼40 amino acids in length. Calcium binding induces LA repeats to fold into a ligand binding-competent conformation (3). Adjacent to the ligand binding module is a ∼400-residue module that bears homology to epidermal growth factor (EGF) precursor. This module consists of two disulfide bond-rich EGF-like repeats (A and B) and a YWTD β-propeller motif followed by a third EGF-like repeat C (4). The third module of LDLR is distinguished by an abundance of O-linked sugars, whereas the fourth module is comprised of a single membrane-spanning sequence. Finally, a short intracellular C-terminal cytoplasmic domain, required for receptor internalization, is present (5).LDLR binds two apolipoprotein ligands, apolipoprotein (apo) E and apoB (6). Although these proteins do not share structural similarity, sequence elements rich in positively charged amino acid side chains are present in each that are required for binding. Deletion studies have demonstrated that specific LA repeats are required for apolipoprotein binding to LDLR (7, 8).Recently, another LDLR ligand, termed proprotein convertase subtilisin-like kexin type 9 (PCSK9), has emerged (9): PCSK9 serves to regulate cholesterol homeostasis by modulating LDLR processing. Unlike lipoprotein ligands, PCSK9 binds EGF repeat A and, apparently, is not released from the receptor at endosomal pH.LA1–LA7 are ∼40–50% identical in primary sequence. Each repeat contains a Ca2+ binding site and three disulfide bonds. The importance of these structural features for ligand binding is widely recognized. For example, it is known that LA5 is essential for optimal binding of apoB- and apoE-containing ligands (7, 8). On the other hand, deletion of LA2 had no effect on binding of apoE-containing lipoproteins. X-ray crystal structure information is available for isolated LA5 at pH 5.0 (10) as well as the entire ectodomain of LDLR (residues 1–699) at endosomal pH (11). Based on this structural information and complementary data on apolipoprotein ligands, it has been postulated that electrostatic interactions modulate LDLR conformation and ligand binding. Given this, it remains unclear whether the precise order of LA repeats within the ligand binding module may impact ligand binding.In the present study, protein engineering of a soluble LDLR (sLDLR) was performed to swap or replace specific LA repeats within the ligand binding module of sLDLR. Ligand binding to wild type (WT) and engineered sLDLR was then determined. The results show that LA repeat 5 must not only be present, it must exist in the correct context with respect to other LA repeats within the ligand binding module.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号