首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We found that the incidence of spontaneous myeloid leukemia in C3H/He male mice was less than 1%, but it could be increased considerably by total-body X irradiation. The induction of myeloid leukemia was seen to increase after doses from 0.47 Gy (3%) to 2.84 Gy (23.9%), and then decrease after a dose of 4.73 Gy (13.6%). The administration of prednisolone acetate (synthesized glucocorticoid) after irradiation resulted in a significant increase in the incidence of myeloid leukemia from 23.9 to 38.5% after a dose of 2.84 Gy; however, corticosterone, a glucocorticoid secreted by cells, did not have such an enhancing effect.  相似文献   

2.
The present analysis of data on the induction of lymphoma and myeloid leukemia in BC3F1 mice has indicated some new and interesting aspects regarding the shapes of the dose-effect curves. The incidence data can be interpreted by radiobiological models of the induction process coupled with cell inactivation. In particular, for malignant lymphoma the dose-response curve after X rays can be described assuming a quadratic model corrected for cell inactivation, while the incidence data after fission neutrons are best fitted by a linear model which also allows for cell inactivation. Myeloid leukemia has also been induced in BC3F1 mice. The bell-shaped dose-response curves observed after irradiation with either X rays or neutrons are explained by assuming simultaneous initial transforming events and cell inactivation with the data for cell inactivation at higher doses being in agreement with data reported for other strains of mice. A value for relative biological effectiveness of 4 is obtained at the lowest neutron dose used. The value of the inactivation parameters can be compared with those of the cell inactivation probability per unit dose for the bone marrow hematopoietic stem cells, which are believed to be the target cells for these tumors.  相似文献   

3.
The dose-response relationship for radiation-induced leukemia was examined in a pooled analysis of three exposed populations: Japanese atomic bomb survivors, women treated for cervical cancer, and patients irradiated for ankylosing spondylitis. A total of 383 leukemias were observed among 283,139 study subjects. Considering all leukemias apart from chronic lymphocytic leukemia, the optimal relative risk model had a dose response with a purely quadratic term representing induction and an exponential term consistent with cell sterilization at high doses; the addition of a linear induction term did not improve the fit of the model. The relative risk decreased with increasing time since exposure and increasing attained age, and there were significant (P < 0.00001) differences in the parameters of the model between datasets. These differences were related in part to the significant differences (P = 0.003) between the models fitted to the three main radiogenic leukemia subtypes (acute myeloid leukemia, acute lymphocytic leukemia, chronic myeloid leukemia). When the three datasets were considered together but the analysis was repeated separately for the three leukemia subtypes, for each subtype the optimal model included quadratic and exponential terms in dose. For acute myeloid leukemia and chronic myeloid leukemia, there were reductions of relative risk with increasing time after exposure, whereas for acute lymphocytic leukemia the relative risk decreased with increasing attained age. For each leukemia subtype considered separately, there was no indication of a difference between the studies in the relative risk and its distribution as a function of dose, age and time (P > 0.10 for all three subtypes). The nonsignificant indications of differences between the three datasets when leukemia subtypes were considered separately may be explained by random variation, although a contribution from differences in exposure dose-rate regimens, inhomogeneous dose distribution within the bone marrow, inadequate adjustment forcell sterilization effects, or errors in dosimetry could have played a role.  相似文献   

4.
Acute promyelocytic leukemia is characterized by a block of myeloid differentiation. The incubation of cells with 1 micromol/l all-trans retinoic acid (ATRA) for 72 h induced differentiation of HL-60 cells and increased the number of CD11b positive cells. Morphological and functional changes were accompanied by a loss of proliferative capacity. Differentiation caused by preincubation of leukemic cells HL-60 with ATRA is accompanied by loss of clonogenicity (control cells: 870 colonies/10(3) cells, cells preincubated with ATRA: 150 colonies/10(3) cells). D0 for undifferentiated cells was 2.35 Gy, for ATRA differentiated cells 2.46 Gy. Statistical comparison of clonogenity curves indicated that in the whole range 0.5-10 Gy the curves are not significantly different, however, in the range 0.5-3 Gy ATRA differentiated cells were significantly more radioresistant than non-differentiated cells. When HL-60 cells preincubated with 1 micromol/l ATRA were irradiated by a sublethal dose of 6 Gy, more marked increase of apoptotic cells number was observed 24 h after irradiation and the surviving cells were mainly in the G1 phase of the cell cycle, while only irradiated cells were accumulated in G(2) phase. Our results imply that preincubation of cells with ATRA accelerates apoptosis occurrence (24 h) after irradiation by high sublethal dose of 6 Gy. Forty-eight hours after 6 Gy irradiation, late apoptotic cells were found in the group of ATRA pretreated cells, as determined by APO2.7 positivity. This test showed an increased effect (considering cell death induction) in comparison to ATRA or irradiation itself.  相似文献   

5.
This study was designed to examine the dose-response relationships for tumor induction after neutron irradiation in female BALB/c mice, with emphasis on the response in the dose range 0 to 50 rad. Tumors induced after radiation exposure included ovarian tumors, lung adenocarcinomas, and mammary adenocarcinomas. For comparison the dose responses for induction of these tumors after 137Cs gamma irradiation were also examined. As previously described for the female RFM mouse, the data for ovarian tumor induction after neutron and gamma irradiation were consistent with a threshold model. For lung and mammary tumors the dose-response curve after neutron irradiation appeared to "bend over" in the dose range 10 to 20 rad. The factors responsible for this bend-over and their relative contributions to the overall form of the dose-response relationship are not presently known. However, these data strongly indicate that extrapolation from data above 50 rad could result in a significant underestimate of risks. Further, it is clear that current models of neutron carcinogenesis are inadequate, since such a bend-over is not predicted at these low dose levels.  相似文献   

6.
Induction of cell killing and mutation to 6-thioguanine resistance was examined in a radiation-sensitive mutant strain LX830 of mouse leukemia cells following gamma irradiation at dose rates of 30 Gy/h (acute), 20 cGy/h (low dose rate), and 6.2 mGy/h (very low dose rate). LX830 cells were hypersensitive to killing by acute gamma rays. A slight but significant increase was observed in cell survival with decreasing dose rate down to 6.2 mGy/h, where the survival leveled off above certain total doses. The cells were also hypersensitive to mutation induction compared to the wild type. The mutation frequency increased linearly with increasing dose for all dose rates. No significant difference was observed in the frequency of induced mutations versus total dose at the three different dose rates so that the mutation frequency in LX830 cells at 6.2 mGy/h was not significantly different from that for moderate or acute irradiation.  相似文献   

7.
Leukemia following radiotherapy for uterine bleeding   总被引:1,自引:0,他引:1  
Mortality due to leukemia among 4483 women treated with radiation to control uterine bleeding between 1925 and 1965 was twice as high as expected based on U.S. population rates (standardized mortality ratio (SMR) = 2.0; 95% confidence interval (CI): 1.4 to 2.8). Women were followed for an average of 26.4 years. Relative risk was highest 2 to 5 years after treatment (SMR = 8.1) and among women over 55 years at irradiation (SMR = 5.8). The usual method of treatment was intrauterine radium. Average radiation dose to active bone marrow was estimated on the basis of original radiotherapy records (median, 53 cGy). A linear dose-response model provided an adequate fit to the data. The average excess relative risk was 1.9% per cGy (95% CI: 0.8 to 3.2), and the average absolute risk was 2.6 excess leukemia deaths per million women per year per cGy (95% CI: 0.9 to 4.8). Chronic myeloid leukemia predominated during the first 15 years following exposure, whereas acute leukemias and chronic lymphatic leukemia were most common thereafter. The radiation doses experienced during treatment of benign gynecologic disease appear to result in greater leukemia risk per cGy average marrow dose than the considerably higher doses used to treat malignant disease, perhaps because of a decreased likelihood of killing potentially leukemic cells.  相似文献   

8.
The aim of our work was to evaluate mechanisms leading to radiosensitization of MOLT-4 leukemia cells following valproic acid (VA) treatment. Cells were pretreated with 2 mM VA for 24 h followed by irradiation with a dose of 0.5 or 1 Gy. The effect of both noxae, alone and combined, was detected 1 and 24 hours after the irradiation. Induction of apoptosis was evaluated by a flow cytometry. The extent of DNA damage was further determined by phosphorylation of histone H2AX using confocal microscopy. Changes in protein expression were identified by SDS-PAGE/immunoblotting. Two-millimolar VA increased apoptosis induction after irradiation as well as phosphorylation of H2AX and provokes an increase in the level of p53 and its phosphorylation at Ser392 in 4 h post-irradiation. Likewise, p21 protein reached its maximal expression in 4 h after the irradiation of VA-treated cells. Twenty four hours later, only the p53 phosphorylated at Ser15 was detected. At the same time, the protein mdm2 (negative regulator of p53) was maximally activated. The 24-hour treatment of MOLT-4 leukemia cells with 2 mM VA results in radiosensitizing, increases apoptosis induction, H2AX phosphorylation, and also p53 and p21 activation.  相似文献   

9.
The aim of our work was to evaluate mechanisms leading to radiosensitization of MOLT-4 leukemia cells following valproic acid (VA) treatment. Cells were pretreated with 2 mM VA for 24 h followed by irradiation with a dose of 0.5 or 1 Gy. The effect of both noxae, alone and combined, was detected 1 and 24 hours after the irradiation. Induction of apoptosis was evaluated by a flow cytometry. The extent of DNA damage was further determined by phosphorylation of histone H2AX using confocal microscopy. Changes in protein expression were identified by SDS-PAGE/immunoblotting. Two-millimolar VA increased apoptosis induction after irradiation as well as phosphorylation of H2AX and provokes an increase in the level of p53 and its phosphorylation at Ser392 in 4 h post-irradiation. Likewise, p21 protein reached its maximal expression in 4 h after the irradiation of VA-treated cells. Twenty four hours later, only the p53 phosphorylated at Ser15 was detected. At the same time, the protein mdm2 (negative regulator of p53) was maximally activated. The 24-hour treatment of MOLT-4 leukemia cells with 2 mM VA results in radiosensitizing, increases apoptosis induction, H2AX phosphorylation, and also p53 and p21 activation.  相似文献   

10.
The natural polyphenolic alkanone (6)-gingerol (6G) has established anti-inflammatory and antitumoral properties. However, its precise mechanism of action in myeloid leukemia cells is unclear. In this study, we investigated the effects of 6G on myeloid leukemia cells in vitro and in vivo. The results of this study showed that 6G inhibited proliferation of myeloid leukemia cell lines and primary myeloid leukemia cells while sparing the normal peripheral blood mononuclear cells, in a concentration- and time-dependent manner. Mechanistic studies using U937 and K562 cell lines revealed that 6G treatment induced reactive oxygen species (ROS) generation by inhibiting mitochondrial respiratory complex I (MRC I), which in turn increased the expression of the oxidative stress response-associated microRNA miR-27b and DNA damage. Elevated miR-27b expression inhibited PPARγ, with subsequent inhibition of the inflammatory cytokine gene expression associated with the oncogenic NF-κB pathway, whereas the increased DNA damage led to G2/M cell cycle arrest. The 6G induced effects were abolished in the presence of anti-miR-27b or the ROS scavenger N-acetylcysteine. In addition, the results of the in vivo xenograft experiments in mice indicated that 6G treatment inhibited tumor cell proliferation and induced apoptosis, in agreement with the in vitro studies. Our data provide new evidence that 6G-induced myeloid leukemia cell death is initiated by reactive oxygen species and mediated through an increase in miR-27b expression and DNA damage. The dual induction of increased miR-27b expression and DNA damage-associated cell cycle arrest by 6G may have implications for myeloid leukemia treatment.  相似文献   

11.
A modified mouse splenocyte culture system was standardized after testing different mitogens (i.e., phytohemagglutinin (PHA), concanavalin A (Con A)). The mitotic index was determined for comparison between different mitogens. Following selection of appropriate mitogen (PHA 16, Flow), a series of experiments were conducted to evaluate the application of a cytokinesis-block for scoring micronuclei and assays for chromosomal aberrations produced by treatment in G0 and G2 for the purposes of biological dosimetry following in vivo and/or in vitro exposure to X-rays, fission neutrons and bleomycin. In the X-irradiation studies, the frequencies of micronuclei and chromosomal aberrations (i.e., dicentrics and rings) increased in a dose-dependent manner. These data could be fitted to a linear-quadratic model. No difference was observed between irradiation in vivo and in vitro, suggesting that measurement of dicentrics and micronuclei in vitro after X-irradiation can be used as an in vivo dosimeter. Following in vivo irradiation with 1 MeV fission neutrons and in vitro culturing of mouse splenocytes, linear dose-response curves were obtained for induction of micronuclei and chromosomal aberrations. The lethal effects of neutrons were shown to be significantly greater than for a similar dose of X-rays. The relative biological effectiveness (RBE) was 6-8 in a dose range of 0.25-3 Gy for radiation-induced asymmetrical exchanges (dicentrics and rings), and about 8 for micronuclei in a dose range of 0.25-2 Gy. Furthermore, the induction of chromosomal aberrations by bleomycin was investigated in mouse G0 splenocytes (in vitro) and compared with X-ray data. Following bleomycin treatment (2 h) a similar pattern of dose-response curve was obtained as with X-rays. In this context a bleomycin rad equivalent of 20 micrograms/ml = 0.50 Gy was estimated.  相似文献   

12.
BACKGROUND: In this work we studied the relationship between the enhanced expression of DR5 receptor and the effect of combination of TRAIL and ionizing radiation on cell cycle arrest and apoptosis induction in human leukemia cell line HL-60. MATERIAL AND METHODS: DR5, APO2.7 and cell cycle were analyzed by flow cytometry. Proteins Bid and Mcl-1 were analyzed by Western-blotting. For clonogenic survival, colony assay on methylcellulose was used. RESULTS: Ionizing radiation caused significantly enhanced positivity of DR5 receptors 24 h after irradiation with high doses (6 and 8 Gy). An increase of DR5 receptor positivity after a dose of 2 Gy was not statistically significant and application of TRAIL 48 h after irradiation did not increase the apoptosis induction. However, a decrease of radiation-induced G(2) phase arrest and an increase of apoptosis were observed when TRAIL was applied 16 h before irradiation with the dose of 2 Gy. Incubation with 6 microg/l TRAIL for 16 h reduced D(0) value from 2.9 Gy to 1.5 Gy. The induction of apoptosis by TRAIL was accompanied by Bid cleavage and a decrease of antiapoptotic Mcl-1 16 h after incubation with TRAIL. CONCLUSION: TRAIL in concentration of 6 microg/l applied 16 h before irradiation by the dose of 1.5 Gy caused the death of 63% of clonogenic tumor cells, similarly as the dose of 2.9 Gy alone, which is in good correlation with the enhanced apoptosis induction.  相似文献   

13.
Therapeutic nucleoside analogue 3-deazauridine (DU) exerts cytotoxic activity against cancer cells by disruption of DNA synthesis resulting in cell death. The present study evaluates whether DU alone at doses 2.5-15 microM or in combination with all trans retinoic acid (RA) or dibutyryl cAMP (dbcAMP) is effective against myelogenous leukemia. The data of this study indicate that DU induces dose-dependent cell death by apoptosis in myeloid leukemia cell lines HL-60, NB4, HEL and K562 as demonstrated by cell staining or flow cytometry and agarose gel electrophoresis. 24h-treatment with DU produced dose-dependent HL-60 cell growth inhibition and dose-independent S phase arrest that was not reversed upon removal of higher doses of DU (10-15 microM). Exposition to nontoxic dose of DU (2.5 microM) for 24h followed by RA or dbcAMP and 96 h-cotreatment with DU significantly enhanced RA- but not dbcAMP-mediated granulocytic differentiation. Cell maturation was paralleled with an increase in the proportion of cells in G1 or G2+M phase. We conclude that, depending on the dose or the sequence of administration with RA, an inhibitor of DNA replication, DU triggers a process of either differentiation or apoptosis in myeloid leukemia cells.  相似文献   

14.
Effect of low-dose radiation on repair of DNA and chromosome damage   总被引:1,自引:0,他引:1  
In this report results of studies on the effect of different doses of low LET (linear energy transfer) radiations on the unscheduled DNA synthesis (UDS) and DNA polymerase activity as well as the induction of adaptive response in bone marrow cells (BMC) by low dose radiation were presented. It was found that whole-body irradiation (WBI) with X-ray doses above 0.5 Gy caused a dose-dependent depression of both UD5 and DNA polymerase activity, while low dose radiation below 250 mGy could stimulate the DNA repair synthesis and the enzyme activity. WBI of mice with low doses of X-rays in the range of 2-100 mGy at a dose rate of 57.3 mGy per minute induced an adaptive response in the BMC expressed as a reduction of chromosome aberrations following a second exposure to a larger dose (0.65 mGy). It was demonstrated that the magnitude of the adaptive response seemed to be inversely related to the induction dose. The possibility of induction of adaptive response in GO phase of the cell cycle and the possibility of a second induction of the adaptive response were discussed.  相似文献   

15.
The induction of chromosome aberrations in Hordeum vulgare germinated seeds was studied after ionizing irradiation with doses in the range of 10–1,000 mGy. The relationship between the frequency of aberrant cells and the absorbed dose was found to be nonlinear. A dose-independent plateau in the dose range from about 50 to 500 mGy was observed, where the level of cytogenetic damage was significantly different from the spontaneous level. The comparison of the goodness of the experimental data fitting with mathematical models of different complexity, using the most common quantitative criteria, demonstrated the advantage of a piecewise linear model over linear and polynomial models in approximating the frequency of cytogenetical disturbances. The results of the study support the hypothesis of indirect mechanisms of mutagenesis induced by low doses. Fundamental and applied implications of these findings are discussed. An erratum to this article can be found at  相似文献   

16.
A retroviral insertion into the c-myb gene, which resulted in a 3' truncation, was found in an in vitro-derived myeloid cell line. The retroviral insertion occurred at precisely the same nucleotide at which another murine leukemia virus insertion occurred in an in vivo-induced myeloid leukemia. These findings suggest that comparable events may be required for the derivation of myeloid cell lines in vitro and for induction of myeloid leukemia in vivo.  相似文献   

17.
In acute myeloid leukemia (AML), the chances of achieving disease-free survival are low. Studies have demonstrated a supportive role of endothelial cells (ECs) in normal hematopoiesis. Here we show that similar intercellular relationships exist in leukemia. We demonstrate that leukemia cells themselves initiate these interactions by directly modulating the behavior of resting ECs through the induction of EC activation. In this inflammatory state, activated ECs induce the adhesion of a sub-set of leukemia cells through the cell adhesion molecule E-selectin. These adherent leukemia cells are sequestered in a quiescent state and are unaffected by chemotherapy. The ability of adherent cells to later detach and again become proliferative following exposure to chemotherapy suggests a role of this process in relapse. Interestingly, differing leukemia subtypes modulate this process to varying degrees, which may explain the varied response of AML patients to chemotherapy and relapse rates. Finally, because leukemia cells themselves induce EC activation, we postulate a positive-feedback loop in leukemia that exists to support the growth and relapse of the disease. Together, the data defines a new mechanism describing how ECs and leukemia cells interact during leukemogenesis, which could be used to develop novel treatments for those with AML.  相似文献   

18.
In the past, most mechanistic studies of ionizing radiation response have employed very large doses, then extrapolated the results down to doses relevant to human exposure. It is becoming increasingly apparent, however, that this does not give an accurate or complete picture of the effects of most environmental exposures, which tend to be of low dose and protracted over time. We have initiated direct studies of low dose exposures, and using the relatively responsive ML-1 cell line, have shown that changes in gene expression can be triggered by doses of gamma-rays of 10 cGy and less in human cells. We have now extended these studies to investigate the effects on gene induction of reducing the rate of irradiation. In the ML-1 human myeloid leukemia cell line, we have found that reducing the dose rate over three orders of magnitude results in some protection against the induction of apoptosis, but still causes linear induction of the p53-regulated genes CDKN1A, GADD45A, and MDM2 between 2 and 50 cGy. Reducing the rate of exposure reduces the magnitude of induction of CDKN1A and GADD45A, but not the magnitude or duration of cell cycle delay. In contrast, MDM2 is induced to the same extent regardless of the rate of dose delivery. Microarray analysis has identified additional low dose-rate-inducible genes, and indicates the existence of two general classes of low dose-rate responders in ML-1. One group of genes is induced in a dose rate-dependent fashion, similar to GADD45A and CDKN1A. Functional annotation of this gene cluster indicates a preponderance of genes with known roles in apoptosis regulation. Similarly, a group of genes with dose rate-independent induction, such as seen for MDM2, was also identified. The majority of genes in this group are involved in cell cycle regulation. This apparent differential regulation of stress signaling pathways and outcomes in response to protracted radiation exposure has implications for carcinogenesis and risk assessment, and could not have been predicted from classical high dose studies.  相似文献   

19.
Radiation therapy is one of the most common and effective strategies used to treat cancer. The irradiation is usually performed with a fractionated scheme, where the dose required to kill tumour cells is given in several sessions, spaced by specific time intervals, to allow healthy tissue recovery. In this work, we examined the DNA repair dynamics of cells exposed to radiation delivered in fractions, by assessing the response of histone-2AX (H2AX) phosphorylation (γ-H2AX), a marker of DNA double strand breaks. γ-H2AX foci induction and disappearance were monitored following split dose irradiation experiments in which time interval between exposure and dose were varied. Experimental data have been coupled to an analytical theoretical model, in order to quantify key parameters involved in the foci induction process. Induction of γ-H2AX foci was found to be affected by the initial radiation exposure with a smaller number of foci induced by subsequent exposures. This was compared to chromatin relaxation and cell survival. The time needed for full recovery of γ-H2AX foci induction was quantified (12 hours) and the 1:1 relationship between radiation induced DNA double strand breaks and foci numbers was critically assessed in the multiple irradiation scenarios.  相似文献   

20.
Effects and consequences of prenatal irradiation   总被引:1,自引:0,他引:1  
After a brief introduction about the historic development of risk estimates and maximum permissible doses of ionizing radiation, the risks of prenatal irradiation are discussed. Experimental data mainly obtained with mice indicate that the most important risk exists during the period of organogenesis and concerns the induction of malformations. Although in man this period lies between about 10 and 80 days after fertilization for most organs, the main development of the brain occurs later, namely between the 8th and 15th week after conception. Data from Japanese victims of the atomic bomb explosions above Hiroshima and Nagasaki indicate that during development the brain is the most sensitive organ to irradiation and maximal sensitivity is found between the 8th and 15th week after fertilization. A dose of one Gray received during this period induces a severe mental retardation in about 45% of the newborns. The dose response relationship is not significantly different from a linear one without a threshold dose. Studies of intelligence and school performance have shown that 1 Gray received during the 8th-15th week causes a shift of the average intelligence of about 30 points. Irradiation before the 8th week and after the 25th week had no effect on intelligence or mental retardation. During the 16th and 25th week sensitivity was about one fourth of that during the 8th-15th week. Although the irradiation of the embryo and fetus should be avoided as much as possible, the new data have led to an abandonment of the so-called 10-day rule. Generally an accidental irradiation of the embryo or fetus of less than 5 cGy is not considered as a medical indication for abortion. Retrospective studies showed that mothers from children who died from leukemia or other childhood tumors, had been subjected to a diagnostic irradiation of the pelvis or lower abdomen more frequently than mothers from children that did not develop a tumor. It has been estimated that prenatal sensitivity for induction of leukemia and tumors is higher than sensitivity after birth. However, it is still in discussion, whether the relationship between prenatal irradiation and a higher incidence of tumors is of a causal nature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号