首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
In last few years, numerous groups of proteins participating in the regulation of cell proliferation, differentiation and death during ontogenesis have been described. In this study we compared the occurrence of Bcl-2, p53 and myc protein families with the level of proliferative activity and apoptosis during development of duodenal epithelium. Paraffin embedded tissues of eight human embryos and foetuses aged from the 6th-18th week of IUD were used. For the detection of apoptotic cells the TUNEL method was performed, the proliferative marker PCNA and all the proteins studied were detected by means of indirect three-step immunohistochemical method. In the 6th and 8th week of intrauterine development we observed isolated TUNEL positive epithelial cells only and this was accompanied by the disperse presence of PCNA as well as by all the studied proteins: Bcl-2, Bax, Bcl-XL, c-myc, N-myc, p53, p63 and p73. In the early foetal period of duodenal development we registered changes in PCNA and TUNEL positivity in accordance with the constitution of the stem cell pool on base of villi, where more numerous Bcl-2 positive cells were also found. The separation of primitive crypts and villi was not accompanied by any differences in distribution of Bax, Bcl-XL, c-myc, N-myc, p63 and p73 proteins between those compartments: all the studied proteins showed dispersed character. P53 rapidly decreased in this period. In the 18th week of intrauterine development the balance between proliferation in crypts and apoptosis of villi epithelium was well established and no p53 positive cells were found. In the presence of Bcl-2, Bax, Bcl-XL, p63 and p73 we did not find any dramatic changes. The myc proteins were restricted within the epithelium of the Lieberkuhn crypts only.  相似文献   

2.
We investigated the growth inhibitory activity of several flavonoids, including apigenin, luteolin, kaempherol, quercetin, butein, isoliquiritigenin, naringenin, genistein, and daizein against B16 mouse melanoma 4A5 cells. Isoliquiritigenin and butein, belonging to the chalcone group, markedly suppressed the growth of B16 melanoma cells and induced cell death. The other flavonoids tested showed little growth inhibitory activity and scarcely caused cell death. In cells treated with isoliquiritigenin or butein, condensation of nuclei and fragmentation of nuclear DNA, which are typical phenomena of apoptosis, were observed by Hoechst 33258 staining and by agarose gel electrophoresis of DNA. Flowcytometric analysis showed that isoliquiritigenin and butein increased the proportion of hypodiploid cells in the population of B16 melanoma cells. These results demonstrate that isoliquiritigenin and butein inhibit cell proliferation and induce apoptosis in B16 melanoma cells. Extracellular glucose decreased the proportion of hypodiploid cells that appeared as a result of isoliquiritigenin treatment. p53 was not detected in cells treated with either of these chalcones, however, protein of the Bcl-2 family were detected. The level of expression of Bax in cells treated with either of these chalcones was markedly elevated and the level of Bcl-XL decreased slightly. Isoliquiritigenin did not affect Bcl-2 expression, but butein down-regulated Bcl-2 expression. From these results, it seems that the pathway by which the chalcones induce apoptosis may be independent of p53 and dependent on proteins of the Bcl-2 family. It was supposed that isoliquiritigenin induces apoptosis in B16 cells by a mechanism involving inhibition of glucose transmembrane transport and promotion of Bax expression. On the other hand, it was suggested that butein induces apoptosis via down-regulation of Bcl-2 expression and promotion of Bax expression. This mechanism differs from the isoliquiritigenin induction pathway.  相似文献   

3.
The Bcl-2 family proteins that control homeostasis of cells play an important role in apoptosis. This group consists of antiapoptotic (Bcl-2, Bcl-XL) and proapoptotic (Bcl-2 associated protein X, Bax; B-cell homologous antagonist/killer, Bak) molecules. In the thyroid, abnormal apoptotic activity may be involved in a variety of diseases such as autoimmune thyroid diseases. The aim of the current study was to estimate the expression of pro- and antiapoptotic proteins in thyroid tissues from young patients with Graves' disease (GD), nontoxic nodular goiter and toxic nodular goiter using Western Blot and immunohistochemistry. Identification of the antiapoptotic Bcl-2 and Bcl-XL molecules in the thyrocytes revealed higher expression of both proteins in patients with GD (assessed as +++/++ and ++/+, respectively). In adolescents with toxic and nontoxic nodular goiter, this expression was lower (Bcl-2 ++/+ , ++/+; Bcl-XL +, +). The tissue material was additionally subjected to Western Blot analysis, which in GD patients showed the presence of Bcl-2 and Bcl-XL in one band p26 kDa. In patients with toxic and nontoxic nodular goiter, the intensity of expression for these two antiapoptotic proteins was lower (referred to band 26 kDa for Bcl-2 and Bcl-XL). Identification of the proapoptotic proteins Bax and Bak revealed their predominance in thyrocytes of GD patients (+, ++/+, respectively) as compared to patients with toxic and nontoxic nodular goiter (0/+, 0/+ for Bax and 0/+, 0/+ for Bak). In GD patients, Western Blot analysis showed Bax expression in one band 21 kDa and Bak in two bands p50, p24 kDa. In patients with nodular goiter, the degree of expression of both proapoptotic proteins was lower and referred to band 21 kDa for Bax (toxic and nontoxic goiter) and 24 kDa for Bak (toxic goiter only). Patients with GD showed a statistically significant correlation between Bcl-2 expression and antibodies against receptor for thyroid stimulating hormone (R = 0.47, p < 0.03); however, such a correlation was not observed in patients with nodular goiter. In conclusion, our findings suggest that the changes in the expression of regulatory proteins of the Bcl-2 family in the thyroid follicular cells indicate the involvement of apoptosis in the pathogenesis of GD.  相似文献   

4.
5.
6.
Genotoxic stimuli, including anticancer drugs, induce apoptosis in cancer cells through increase of p53, p21WAF1/CIP1 , at least in part. Bcl-2 and Bax modify this pathway or directly regulated by p53. Here we studied Adriamycin (ADM)-induced apoptosis in four human bladder cancer cell lines in respect of p53, p21WAF1/CIP1 and Bcl-2 family proteins. After ADM, treatment bladder cancer cells underwent dose-dependent cell death with typical morphologic features of apoptosis. Among four cell lines RT4 with wt p53, low ratio of Bcl-2 to Bax and induction of p21WAF1/CIP1 after ADM treatment, was the most sensitive to induction of apoptosis. Thus, p53, p21WAF1/CIP1 , Bcl-2 and Bax status might determine susceptibility of bladder cancer cells to ADM induced apoptosis.  相似文献   

7.
The effects of hyperthermia on the expression of p53, the apoptosis-associated genes Bax and Bcl-2, Notch and S100A4 have been studied in the HepG2 cell line and the HUT cell line derived from HepG2, adapted for growth in hyperthermic conditions. Hyperthermia inhibits cell proliferation and induces apoptosis. HepG2 and HUT cells differed in respect of anchorage to growth surface, degree of proliferation and apoptosis and expression of p53, Bax, Bcl-2, Notch, and S100A4 genes. The induction of apoptosis and the inhibition of cell proliferation occurred independently of p53, and independently also of involvement of the apoptosis family genes Bax and Bcl-2. We demonstrate novel and marked differences between transient heat shock and heat adaptation in respect of pathways of signaling and generation of phenotypic effects in vitro. Different signaling patterns have been identified here. Pathways of signaling by S100A4, by its interaction with and sequestration of p53, and by Notch also seem differentially operational in the induction of apoptosis, and both appear to be activated as alternative pathways in the context of hyperthermia signaling independently of p53.  相似文献   

8.
The p53- and Bcl-2-negative leukemic K562 cell line showed resistant to DNA damage-induced Bax activation and apoptosis. The constitutive balanced ratio of Bax/Bcl-XL in K562 mitochondria allowed the formation of active Bax and cytochrome c release from mitochondria in the presence of a BH3-only protein, tBid, in a cell-free system. Bax transfection led to Bax undergoing a conformational change, translocation to mitochondria and homo-oligomerization but not apoptosis in the K562 cell line. After treatment with UV light, while Bcl-XL but not Bax translocated to mitochondria in K562, both Bax and Bcl-XL translocated to mitochondria in the Bax stable transfectant K/Bax cells. The increased ratio of Bax/Bcl-XL in K/Bax mitochondria led to an increased conformationally changed Bax, formation of the homo-multimer of Bax-Bax, and a reduced hetero-dimerization of Bax-Bcl-XL. Increased proportion of active Bax was accompanied with increased percentage of apoptosis. We therefore demonstrate that direct increase in the ratio of mitochondrial Bax/Bcl-XL can induce Bax activation in the p53- and Bcl-2-negative leukemic cells. Increased Bcl-XL translocation and failure in Bax translocation from cytosol to mitochondria play important roles in preventing Bax activation.  相似文献   

9.
本文旨在探讨大田软海绵酸对人羊膜细胞DNA的损伤及凋亡相关蛋白表达的影响。实验用0、20、40、608、0、100 nmol/L OA诱导FL细胞4h后,检测DNA损伤程度的彗星实验表明,OA对FL细胞DNA的损伤随染毒浓度的升高而增加。蛋白免疫印迹法显示凋亡相关蛋白Bcl-2、Bax和p53的表达与染毒浓度呈负相关;用100 nmol/L OA分别诱导2h、4h、8h后发现,三种蛋白的表达与染毒时间也呈负相关。由此可知在OA诱导的FL细胞凋亡中,损伤DNA,降低Bcl-2蛋白的表达可能参与了凋亡的部分作用,而Bax和p53蛋白则可能与OA诱导的细胞增殖有关。  相似文献   

10.
Bcl-2 family proteins play an evolutionarily conserved role in regulating the life and death of the cell. Certain proapoptotic members of the Bcl-2 family, Bax and Bak, have intrinsic cytotoxic activities in that they not only induce or sensitize mammalian cells to undergo apoptosis but also display a lethal phenotype when ectopically expressed in two yeast species Saccharomyces cerevisiae and Schizosaccharomyces pombe. Furthermore, the antiapoptotic Bcl-2 and Bcl-XL proteins can protect yeast against Bax-mediated lethality, suggesting that the death-regulatory functions of these Bcl-2 family proteins are well preserved in yeast. These observations provide the opportunity to study the function of Bcl-2 family proteins in genetically tractable yeast and to apply classical yeast genetics and functional cloning approaches to the dissection of programmed cell death pathway regulated by Bcl-2 family proteins. We describe here methods used in our laboratory to express and to study the functions of Bcl-2 family proteins in both the budding yeast S. cerevisiae and the fission yeast S. pombe.  相似文献   

11.
Li Fraumeni syndrome (LFS) is characterised by a predisposition to the early onset of certain tumors and is associated with germline mutation of the anti-oncogene p53. In this study we analysed the in vitro responses of lymphocytes from two LFS patients to chemotherapeutic drugs in terms of apoptosis induction and the expression of key intracellular proteins that regulate this process. One of the LFS patients also suffered from B-cell chronic lymphocytic leukemia (B-CLL) and hence presented with a light-chain restricted B-cell lymphocytosis while the other patient had entirely normal blood counts. The B-lymphocytes from both LFS patients showed a marked degree of resistance to chlorambucil and fludarabine when compared to age-matched controls but were remarkably sensitive to the novel flavone, flavopiridol. Loss of function of p53 was demonstrated by a failure to induce Bax and p21 protein expression. In addition, altered basal expression patterns of Bcl-2 and Bax, two key regulators of apoptosis, were found in the LFS lymphocytes when compared with controls. These results suggest that LFS lymphocytes carrying a p53 mutation show intrinsic resistance to conventional chemotherapeutic drugs and this is associated with dysregulation of Bcl-2 family proteins. Furthermore, The innate resistance profile was similar in leukemic and non-leukemic lymphocytes and was therefore independent of genetic changes acquired during malignant transformation. Novel agents that induce p53-independent cell killing may be useful not only in the treatment of LFS-associated tumors but also drug resistant tumors in general where p53 and/or Bcl-2 family dysregulation is a feature.  相似文献   

12.
We report that transfection of insulin-like growth factor-binding protein-3 (IGFBP-3) cDNA in human breast cancer cell lines expressing either mutant p53 (T47D) or wild-type p53 (MCF-7) induces apoptosis. IGFBP-3 also increases the ratio of pro-apoptotic to anti-apoptotic members of the Bcl-2 family. In MCF-7, an increase in Bad and Bax protein expression and a decrease in Bcl-x(L) protein and Bcl-2 protein and mRNA were observed. In T47D, Bax and Bad proteins were up-regulated; Bcl-2 protein is undetectable in these cells. As T47D expresses mutant p53 protein, these modulations of pro-apoptotic proteins and induction of apoptosis are independent of p53. The effect of IGFBP-3 on the response of T47D to ionizing radiation (IR) was examined. These cells do not G(1) arrest in response to IR and are relatively radioresistant. Transfection of IGFBP-3 increased the radiosensitivity of T47D and increased IR-induced apoptosis but did not effect a rapid G(1) arrest. IR also caused a much greater increase in Bax protein in IGFBP-3 transfectants compared with vector controls. Thus, IGFBP-3 increases the expression of pro-apoptotic proteins and apoptosis both basally and in response to IR, suggesting it may be a p53-independent effector of apoptosis in breast cancer cells via its modulation of the Bax:Bcl-2 protein ratio.  相似文献   

13.
It has been proposed that mutations in copper/zinc-superoxide dismutase (SOD1), the only proven cause of amyotrophic lateral sclerosis (ALS), induce the disease by a toxic property that promotes apoptosis. Consistent with this, we have demonstrated that overexpression of Bcl-2, a protein that inhibits apoptosis, attenuates neurodegeneration produced by the familial ALS-linked SOD1 mutant G93A (mSOD1). Herein, we assessed the status of key members of the Bcl-2 family in the spinal cord of transgenic mSOD1 mice at different stages of the disease. In asymptomatic transgenic mSOD1 mice, expression of Bcl-2, Bcl-XL, Bad, and Bax does not differ from that in nontransgenic mice. In contrast, in symptomatic mice, expression of Bcl-2 and Bcl-XL, which inhibit apoptosis, is reduced, whereas expression of Bad and Bax, which stimulate apoptosis, is increased. These alterations are specific to affected brain regions and are caused by the mutant and not by the normal SOD1 enzyme. Relevant to the neuroprotective effects of Bcl-2 in transgenic mSOD1 mice, overexpression of Bcl-2 increases the formation of Bcl-2:Bax heterodimers, which abolish the Bax proapoptotic property. This study demonstrates significant alterations in the expression of key members of the Bcl-2 family associated with mSOD1 deleterious effects. That these changes contribute to the neurodegenerative process in this model of ALS is supported by our observations in double transgenic mSOD1/Bcl-2 mice in which the pernicious increase of Bax is tempered by an increase in formation of Bcl-2:Bax heterodimers. Based on these findings, it may be concluded that Bcl-2 family members appear as invaluable targets for the development of new neuroprotective therapies in ALS.  相似文献   

14.
15.
Apoptosis (programmed cell death) is an important process participating in the formation of organs and tissues during embryogenesis. Our aim of the work is studying the role of the apoptosis during the human embryonic differentiation. We tend to give acquired findings into the correlation with expression of proteins Bcl-2 and Bax (products of genes regulating apoptosis). Detection of the apoptosis was carried out on 25 routinely processed human embryos by means of TUNEL technique. The level of expression of Bcl-2 and Bax was determined using standard three-step immunohistochemical procedure. Results were achieved by the comparison of apoptoic index and the level expression of Bcl-2 and Bax was semiquantitatively evaluated. The low value of apoptotic index was mostly accompanied by the high expression of Bcl-2 and the Bax expression was not proportionally related to the value of apoptic index.  相似文献   

16.
17.
18.
Keshan disease is an endemic dilated cardiomyopathy (DCM) which is closely related with selenium-deficient diet in China. In the previous study, we reported that the low selenium status plays a pivotal role in the myocardial apoptosis in the DCM rats, however, the underlying mechanism remains unclear. The present study aimed to determine whether the intrinsic, extrinsic pathways and the upstream regulators were involved in the myocardial apoptosis of selenium deficiency-induced DCM rats. Therefore, the rat model of endemic DCM was induced by a selenium-deficient diet for 12 weeks. Accompanied with significant dilation and impaired systolic function of left ventricle, an enhanced myocardial apoptosis was detected by TUNEL assay. Western blot analysis showed remarkably increased protein levels of cleaved caspase-3, caspase-8, caspase-9, and cytosolic cytochrome c released from the mitochondria. In addition, the immunoreactivities of p53 and Bax were significantly up-regulated, while the anti-apoptotic Bcl-2 family members Bcl-2 and Bcl-XL were down-regulated. Furthermore, appropriate selenium supplement for another 4 weeks could partially reverse all the above changes. In conclusion, the intrinsic, extrinsic pathways and the upstream regulators such as p53, Bax, Bcl-2, and Bcl-XL were all involved in selenium deficiency-induced myocardial apoptosis.  相似文献   

19.
To study molecular mechanisms underlying neuronal cell death, we have used sympathetic neurons from superior cervical ganglia which undergo programmed cell death when deprived of nerve growth factor. These neurons have been microinjected with expression vectors containing cDNAs encoding selected proteins to test their regulatory influence over cell death. Using this procedure, we have shown previously that sympathetic neurons can be protected from NGF deprivation by the protooncogene Bcl-2. We now report that the E1B19K protein from adenovirus and the p35 protein from baculovirus also rescue neurons. Other adenoviral proteins, E1A and E1B55K, have no effect on neuronal survival. E1B55K, known to block apoptosis mediated by p53 in proliferative cells, failed to rescue sympathetic neurons suggesting that p53 is not involved in neuronal death induced by NGF deprivation. E1B19K and p35 were also coinjected with Bcl-Xs which blocks Bcl-2 function in lymphoid cells. Although Bcl-Xs blocked the ability of Bcl- 2 to rescue neurons, it had no effect on survival that was dependent upon expression of E1B19K or p35.  相似文献   

20.
Alteration of the Bcl-2:Bax ratio in the placenta as pregnancy proceeds   总被引:12,自引:0,他引:12  
The placenta is the primary site of nutrient and gas exchange between mother and foetus. During human placental development, proliferation, differentiation and apoptosis occur at different stages. In order to clarify some of the molecular mechanisms underlying these events, we investigated the pattern of expression of two members of the Bcl-2 family in human placenta samples and compared them to the level of apoptosis detected by the TUNEL method.In particular, we evaluated the expression of Bcl-2 and Bax and their ratio during the first and third trimester. We found that Bcl-2 was generally expressed at low levels during the entire gestational period. On the other hand, Bax was low during the first trimester but increased towards the end of gestation. In accordance with the change of ratio of these two molecules, the increase of apoptotic cells was observable in the third trimester. These data indicate that Bcl-2 and Bax are spatio-temporally regulated during placental development and that the different expression of the above mentioned genes is at least in part responsible for the delicate balance between cell proliferation and programmed cell death in the human placenta during pregnancy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号