共查询到20条相似文献,搜索用时 618 毫秒
1.
Smith MS 《Applied and environmental microbiology》1982,43(4):854-860
Dissimilatory reduction of NO(2) to N(2)O and NH(4) by a soil Citrobacter sp. was studied in an attempt to elucidate the physiological and ecological significance of N(2)O production by this mechanism. In batch cultures with defined media, NO(2) reduction to NH(4) was favored by high glucose and low NO(3) concentrations. Nitrous oxide production was greatest at high glucose and intermediate NO(3) concentrations. With succinate as the energy source, little or no NO(2) was reduced to NH(4) but N(2)O was produced. Resting cell suspensions reduced NO(2) simultaneously to N(2)O and free extracellular NH(4). Chloramphenicol prevented the induction of N(2)O-producing activity. The K(m) for NO(2) reduction to N(2)O was estimated to be 0.9 mM NO(2), yet the apparent K(m) for overall NO(2) reduction was considerably lower, no greater than 0.04 mM NO(2). Activities for N(2)O and NH(4) production increased markedly after depletion of NO(3) from the media. Amendment with NO(3) inhibited N(2)O and NH(4) production by molybdate-grown cells but not by tungstate-grown cells. Sulfite inhibited production of NH(4) but not of N(2)O. In a related experiment, three Escherichia coli mutants lacking NADH-dependent nitrite reductase produced N(2)O at rates equal to the wild type. These observations suggest that N(2)O is produced enzymatically but not by the same enzyme system responsible for dissimilatory reduction of NO(2) to NH(4). 相似文献
2.
Contributions of Autotrophic and Heterotrophic Nitrifiers to Soil NO and N2O Emissions 总被引:2,自引:2,他引:2
下载免费PDF全文

Soil emission of gaseous N oxides during nitrification of ammonium represents loss of an available plant nutrient and has an important impact on the chemistry of the atmosphere. We used selective inhibitors and a glucose amendment in a factorial design to determine the relative contributions of autotrophic ammonium oxidizers, autotrophic nitrite oxidizers, and heterotrophic nitrifiers to nitric oxide (NO) and nitrous oxide (N2O) emissions from aerobically incubated soil following the addition of 160 mg of N as ammonium sulfate kg−1. Without added C, peak NO emissions of 4 μg of N kg−1 h−1 were increased to 15 μg of N kg−1 h−1 by the addition of sodium chlorate, a nitrite oxidation inhibitor, but were reduced to 0.01 μg of N kg−1 h−1 in the presence of nitrapyrin [2-chloro-6-(trichloromethyl)-pyridine], an inhibitor of autotrophic ammonium oxidation. Carbon-amended soils had somewhat higher NO emission rates from these three treatments (6, 18, and 0.1 μg of N kg−1 h−1 after treatment with glucose, sodium chlorate, or nitrapyrin, respectively) until the glucose was exhausted but lower rates during the remainder of the incubation. Nitrous oxide emission levels exhibited trends similar to those observed for NO but were about 20 times lower. Periodic soil chemical analyses showed no increase in the nitrate concentration of soil treated with sodium chlorate until after the period of peak NO and N2O emissions; the nitrate concentration of soil treated with nitrapyrin remained unchanged throughout the incubation. These results suggest that chemoautotrophic ammonium-oxidizing bacteria are the predominant source of NO and N2O produced during nitrification in soil. 相似文献
3.
Regulation of nitrogen fixation by Rhizobia. Export of fixed N2 as NH+4. 总被引:27,自引:0,他引:27
The metabolic fate of gaseous nitrogen (15N2) fixed by free-living cultures of Rhizobia (root nodule bacteria) induced for their N2-fixation system was followed. A majority of the fixed 15N2 was found to be exported into the cell supernatant. For example, as much as 94% of the 15N2 fixed by Rhizobium japonicum (soybean symbiont) was recovered as 15NH+4 from the cell supernatant following alkaline diffusion. Several species of root nodule bacteria also exported large quantities of NH+4 from L-histidine. Evidence is presented that overproduction and export of NH+4 by free-living Rhizobia may be closely linked to the control of several key enzymes of NH+4 assimilation. For instance, NH+4 was found to repress glutamine synthetase whereas L-glutamate repressed glutamate synthase. Assimilation of NH+4 as nitrogen source for growth of Rhizobia was inhibited by glutamate. The mechanism of regulation of NH+4 production by root nodule bacteria is discussed. 相似文献
4.
Soil emission of gaseous N oxides during nitrification of ammonium represents loss of an available plant nutrient and has an important impact on the chemistry of the atmosphere. We used selective inhibitors and a glucose amendment in a factorial design to determine the relative contributions of autotrophic ammonium oxidizers, autotrophic nitrite oxidizers, and heterotrophic nitrifiers to nitric oxide (NO) and nitrous oxide (N(2)O) emissions from aerobically incubated soil following the addition of 160 mg of N as ammonium sulfate kg. Without added C, peak NO emissions of 4 mug of N kg h were increased to 15 mug of N kg h by the addition of sodium chlorate, a nitrite oxidation inhibitor, but were reduced to 0.01 mug of N kg h in the presence of nitrapyrin [2-chloro-6-(trichloromethyl)-pyridine], an inhibitor of autotrophic ammonium oxidation. Carbon-amended soils had somewhat higher NO emission rates from these three treatments (6, 18, and 0.1 mug of N kg h after treatment with glucose, sodium chlorate, or nitrapyrin, respectively) until the glucose was exhausted but lower rates during the remainder of the incubation. Nitrous oxide emission levels exhibited trends similar to those observed for NO but were about 20 times lower. Periodic soil chemical analyses showed no increase in the nitrate concentration of soil treated with sodium chlorate until after the period of peak NO and N(2)O emissions; the nitrate concentration of soil treated with nitrapyrin remained unchanged throughout the incubation. These results suggest that chemoautotrophic ammonium-oxidizing bacteria are the predominant source of NO and N(2)O produced during nitrification in soil. 相似文献
5.
Photosynthetic Electron Transport Involved in PxcA-Dependent Proton Extrusion in Synechocystis sp. Strain PCC6803: Effect of pxcA Inactivation on CO2, HCO3−, and NO3− Uptake
下载免费PDF全文

Masatoshi Sonoda Hirokazu Katoh Wim Vermaas George Schmetterer Teruo Ogawa 《Journal of bacteriology》1998,180(15):3799-3803
The product of pxcA (formerly known as cotA) is involved in light-induced Na+-dependent proton extrusion. In the presence of 2,5-dimethyl-p-benzoquinone, net proton extrusion by Synechocystis sp. strain PCC6803 ceased after 1 min of illumination and a postillumination influx of protons was observed, suggesting that the PxcA-dependent, light-dependent proton extrusion equilibrates with a light-independent influx of protons. A photosystem I (PS I) deletion mutant extruded a large number of protons in the light. Thus, PS II-dependent electron transfer and proton translocation are major factors in light-driven proton extrusion, presumably mediated by ATP synthesis. Inhibition of CO2 fixation by glyceraldehyde in a cytochrome c oxidase (COX) deletion mutant strongly inhibited the proton extrusion. Leakage of PS II-generated electrons to oxygen via COX appears to be required for proton extrusion when CO2 fixation is inhibited. At pH 8.0, NO3− uptake activity was very low in the pxcA mutant at low [Na+] (~100 μM). At pH 6.5, the pxcA strain did not take up CO2 or NO3− at low [Na+] and showed very low CO2 uptake activity even at 15 mM Na+. A possible role of PxcA-dependent proton exchange in charge and pH homeostasis during uptake of CO2, HCO3−, and NO3− is discussed. 相似文献
6.
Diazotrophic cultures of three species of Azolla (Az. caroliniana, Az. microphylla, Az. pinnata) symbiotic with Anabaena azollae accumulated some 0.10–0.24 mol organic anion per mol N assimilated (0.010–0.018 mol organic anion per mol C assimilated), with a corresponding efflux of 0.05–0.11 mol H+ per mol N assimilated (0.006–0.009 mol H+ per mol C assimilated). These values are lower than those found for terrestrial diazotrophic vascular plants; this may be related to the decreased possibility of increasing Fe and P availability by rhizosphere acidification in a free-floating plant. Modification of the organic anion content, and of the quantity (and direction) of H+ exchange with the medium, with 5 mol m?3 NH+4 or NO?3 added to diazotrophic cultures, are consistent with substantial N acquisition from combined N as well as N2 assimilation. This conclusion is consistent with previously published work with 15N. 相似文献
7.
Abiotic Reduction of 4-Chloronitrobenzene to 4-Chloroaniline in a Dissimilatory Iron-Reducing Enrichment Culture 总被引:4,自引:4,他引:4
下载免费PDF全文

Cornelis G. Heijman Christof Holliger Martin A. Glaus Ren P. Schwarzenbach Josef Zeyer 《Applied microbiology》1993,59(12):4350-4353
4-chloronitrobenzene (4-Cl-NB) was rapidly reduced to 4-chloroaniline with half-lives of minutes in a dissimilatory Fe(III)-reducing enrichment culture. The initial pseudo-first-order rate constants at 25°C ranged from 0.11 to 0.19 per minute. The linear Arrhenius correlation in a temperature range of 6 to 85°C and the unchanged reactivity after pasteurization indicated that the nitroreduction occurred abiotically. A fine-grained black solid which was identified as poorly crystalline magnetite (Fe3O4) by X-ray diffraction accumulated in the enrichments. Magnetite produced by the Fe(III)-reducing bacterium Geobacter metallireducens GS-15 and synthetic magnetite also reduced 4-Cl-NB. These results suggest that the reduction of 4-Cl-NB by the enrichment material was a surface-mediated reaction by dissimilatory formed Fe(II) associated with magnetite. 相似文献
8.
J C Meeks C P Wolk W Lockau N Schilling P W Shaffer W S Chien 《Journal of bacteriology》1978,134(1):125-130
Daughter strand gaps are secondary lesions caused by interrupted DNA synthesis in the proximity of UV-induced pyrimidine dimers. The relative roles of DNA recombination and de novo DNA synthesis in filling such gaps have not been clarified, although both are required for complete closure. In this study, the Escherichia coli E486 and E511 dnaE(Ts) mutants, in which DNA polymerase I but not DNA polymerase III is active at 43 degrees C, were examined. Both mutants demonstrated reduced gap closure in comparison with the progenitor strain at the nonpermissive temperature. These results and those of previous studies support the hypothesis that both DNA polymerase I and DNA polymerase III contribute to gap closure, suggesting a cooperative effort in the repair of each gap. Benzoylated, naphthoylated diethylaminoethyl-cellulose chromatography analysis for persistence of single-strand DNA in the absence of DNA polymerase III activity suggested that de novo DNA synthesis initiates the filling of daughter strand gaps. 相似文献
9.
Biochar (BC) application to soil suppresses emission of nitrous- (N2O) and nitric oxide (NO), but the mechanisms are unclear. One of the most prominent features of BC is its alkalizing effect in soils, which may affect denitrification and its product stoichiometry directly or indirectly. We conducted laboratory experiments with anoxic slurries of acid Acrisols from Indonesia and Zambia and two contrasting BCs produced locally from rice husk and cacao shell. Dose-dependent responses of denitrification and gaseous products (NO, N2O and N2) were assessed by high-resolution gas kinetics and related to the alkalizing effect of the BCs. To delineate the pH effect from other BC effects, we removed part of the alkalinity by leaching the BCs with water and acid prior to incubation. Uncharred cacao shell and sodium hydroxide (NaOH) were also included in the study. The untreated BCs suppressed N2O and NO and increased N2 production during denitrification, irrespective of the effect on denitrification rate. The extent of N2O and NO suppression was dose-dependent and increased with the alkalizing effect of the two BC types, which was strongest for cacao shell BC. Acid leaching of BC, which decreased its alkalizing effect, reduced or eliminated the ability of BC to suppress N2O and NO net production. Just like untreated BCs, NaOH reduced net production of N2O and NO while increasing that of N2. This confirms the importance of altered soil pH for denitrification product stoichiometry. Addition of uncharred cacao shell stimulated denitrification strongly due to availability of labile carbon but only minor effects on the product stoichiometry of denitrification were found, in accordance with its modest effect on soil pH. Our study indicates that stimulation of denitrification was mainly due to increases in labile carbon whereas change in product stoichiometry was mainly due to a change in soil pH. 相似文献
10.
The Impact of Nitrogen Placement and Tillage on NO, N2O, CH4 and CO2 Fluxes from a Clay Loam Soil 总被引:4,自引:0,他引:4
Xuejun J. Liu Arvin R. Mosier Ardell D. Halvorson Fusuo S. Zhang 《Plant and Soil》2006,280(1-2):177-188
To evaluate the impact of N placement depth and no-till (NT) practice on the emissions of NO, N2O, CH4 and CO2 from soils, we conducted two N placement experiments in a long-term tillage experiment site in northeastern Colorado in 2004. Trace gas flux measurements were made 2–3 times per week, in zero-N fertilizer plots that were cropped continuously to corn (Zea mays L.) under conventional-till (CT) and NT. Three N placement depths, replicated four times (5, 10 and 15 cm in Exp. 1 and 0, 5 and 10 cm in Exp. 2, respectively) were used. Liquid urea–ammonium nitrate (UAN, 224 kg N ha−1) was injected to the desired depth in the CT- or NT-soils in each experiment. Mean flux rates of NO, N2O, CH4 and CO2 ranged from 3.9 to 5.2 μg N m−2 h−1, 60.5 to 92.4 μg N m−2 h−1, −0.8 to 0.5 μg C m−2 h−1, and 42.1 to 81.7 mg C m−2 h−1 in both experiments, respectively. Deep N placement (10 and 15 cm) resulted in lower NO and N2O emissions compared with shallow N placement (0 and 5 cm) while CH4 and CO2 emissions were not affected by N placement in either experiment. Compared with N placement at 5 cm, for instance, averaged N2O emissions from N placement at 10 cm were reduced by more than 50% in both experiments. Generally, NT decreased NO emission and CH4 oxidation but increased N2O emissions compared with CT irrespective of N placement depths. Total net global warming potential (GWP) for N2O, CH4 and CO2 was reduced by deep N placement only in Exp. 1 but was increased by NT in both experiments. The study results suggest that deep N placement (e.g., 10 cm) will be an effective option for reducing N oxide emissions and GWP from both fertilized CT- and NT-soils. 相似文献
11.
Keitaro Kudo Noriko Yamaguchi Tomoyuki Makino Toshihiko Ohtsuka Kenta Kimura Dian Tao Dong Seigo Amachi 《Applied and environmental microbiology》2013,79(15):4635-4642
A novel arsenate-reducing bacterium, designated strain PSR-1, was isolated from arsenic-contaminated soil. Strain PSR-1 was phylogenetically closely related to Anaeromyxobacter dehalogenans 2CP-1T with 16S rRNA gene similarity of 99.7% and coupled the oxidation of acetate with the reduction of arsenate. Arsenate reduction was inhibited almost completely by respiratory inhibitors such as dicumarol and 2-heptyl-4-hydroxyquinoline N-oxide. Strain PSR-1 also utilized soluble Fe(III), ferrihydrite, nitrate, oxygen, and fumarate as electron acceptors. Strain PSR-1 catalyzed the release of arsenic from arsenate-adsorbed ferrihydrite. In addition, inoculation of washed cells of strain PSR-1 into sterilized soil successfully reproduced arsenic release. Arsenic K-edge X-ray absorption near-edge structure (XANES) analysis revealed that the proportion of arsenite in the soil solid phase actually increased from 20% to 50% during incubation with washed cells of strain PSR-1. These results suggest that strain PSR-1 is capable of reducing not only dissolved arsenate but also arsenate adsorbed on the soil mineral phase. Arsenate reduction by strain PSR-1 expands the metabolic versatility of Anaeromyxobacter dehalogenans. Considering its distribution throughout diverse soils and anoxic sediments, Anaeromyxobacter dehalogenans may play a role in arsenic release from these environments. 相似文献
12.
Summary Immobilized cells of a strain of a Citrobacter sp. were effective in the removal of cadmium, lead and copper from single and mixed metal flows, and from synthetic effluents. About 80% of the presented metal was removed, and this was increased to nearly 100% by the incorporation of additional immobilized cell column units. 相似文献
13.
* Hydroponic studies suggest that plant nitrogen (N) demand determines the rate of mineral N uptake; however, field observations show N limitation to be widespread. Field experiments are needed to understand soil factors controlling mineral N uptake. * We planted Picea engelmannii seedlings that had initially been grown from sterilized seeds, on a recently clearcut site. We applied a hybrid isotope dilution/pulse labelling technique to compare the gross production rate, concomitantly to the plant uptake rate, of soil mineral N. We also measured mineral N concentrations, microbial N, and percent ectomycorrhizal root tips. * Gross NH4+ production rate was the most important determinant of plant uptake rate. Exploratory path analysis suggested that plant uptake was also determined by microbial N, which was, in turn, determined by soil mineral N concentrations. Percent ectomycorrhizal root tips was negatively related to gross NO3- production rate and microbial N concentrations. * We conclude that nutrient flux density is important in controlling plant uptake. Mycorrhizal colonization may alter N dynamics in the rhizosphere without affecting mineral N uptake by seedlings. 相似文献
14.
Matthew C. F. Wander Martin A. A. Schoonen 《Origins of life and evolution of the biosphere》2008,38(2):127-137
Because of their high kinetic barrier and thermodynamic favorability under moderately reducing atmospheric composition photochemical
approaches appear to be ideally suited to the direct reduction of solvated nitrogen gas. Ferrous iron has been investigated
as an electron donor, as it has a highly tunable redox character and is environmentally ubiquitous. Recent advances in mineralogy
connected to the field of environmental remediation have led to the identification of an important class of rusts which have
reductive potentials comparable to Fe(0). These materials possess redox couples that are, potentially, capable of overcoming
the kinetic barrier to the production of NH3. In this study, we attempted to produce ammonia from N2 by oxidizing white rust both photochemically and in a dark reaction. All results indicated the reaction was inhibited by
competing reactions; primarily the reduction of H2O to H2. However, the dark reactions showed limited potential for reduction up to 1.4 mM. As a result, we turned to the question
of closure temperature; the minimum temperature of rapid reaction based on a choice of reductant, which we demonstrate a model
for its estimation. Due to the high thermodynamic energy of the intermediate, we conclude that aqueous photochemical reduction under the conditions studied here is an unlikely prebiotic
source for reactive, i.e. reduced, nitrogen. 相似文献
15.
N M Weare 《Biochimica et biophysica acta》1978,502(3):486-494
A mutant of Rhodospirillum rubrum has been isolated, after mutagenesis with nitrosoguanidine, which is characterized by its inability to grow in the light on malate-minimal media with exogenous ammonia or alanine, poor growth on glutamine and vigorous growth on glutamate. This mutant produces low levels of a key NH+4 assimilation enzyme, glutamate synthase (NADPH-dependent). It also exhibits significant derepression of nitrogenase biosynthesis in the presence of ammonia or alanine, being 15% derepressed for the former and about 70% derepressed for the latter. Some of this mutant's fixed N2 is excreted into the medium as NH+4 (1 mumol NH+4 per mg cell protein in 50 h). Nitrogenase-mediated H2 production by this strain is considerable (42 mumol H2 per mg cell protein in 50 h), approximately twice that of the wild type assayed under similar conditions. These results demonstrate that genetic alteration of the photosynthetic N2-fixer's NH+4 assimilation system disrupts the tight coupling of N2 fixation and NH+4 assimilation normally observed in these organisms, enabling photochemical conversion steps to be utilized for the photoproduction of NH+4 and H2. 相似文献
16.
J. M. KRUL 《Journal of applied microbiology》1976,40(3):245-260
The oxygen uptake of an Alcaligenes sp., isolated from activated sludge, was inhibited by small amounts of nitric oxide. The occurrence of this inhibition was dependent on the growth conditions and the pretreatment of the cells. Anaerobically grown cells, which had subsequently been aerated in a nitrogen-free medium, accumulated nitric oxide, after the addition of nitrate or nitrite. When the oxygen uptake was inhibited by nitric oxide, dissimilatory reduction of nitrate and nitrite proceeded under aerobic conditions at the same rate as in the absence of oxygen. Activated sludge removed nitric oxide actively under aerobic conditions and as a consequence the oxygen uptake of the sludge was not inhibited in the presence of nitrite. The rate of nitrate reduction under aerobic conditions was about 20% of that in the absence of oxygen. 相似文献
17.
Abstract A Citrobacter sp. was reported previously to accumulate heavy metals as cell-bound heavy metal phosphates. Metal uptake is mediated by the activity of a periplasmic acid-type phosphatase that liberates inorganic phosphate to provide the precipitant ligand for heavy metals presented to the cells. Amino acid sequencing of peptide fragments of the purified enzyme revealed significant homology to the phoN product (acid phosphatase) of some other enterobacteria. These organisms, together with Klebsiella pneumoniae , previously reported to produce acid phosphatase, were tested for their ability to remove uranium and lanthanum from challenge solutions supplemented with phosphatase substrate. The coupling of phosphate liberation to metal bioaccumulation was limited to the metal accumulating Citrobacter sp.; therefore the participation of species-specific additional factors in metal bioaccumulation was suggested. 相似文献
18.
Masako Chou Takafumi Matsunaga Y. Takada Noriyuki Fukunaga 《Extremophiles : life under extreme conditions》1999,3(2):89-95
NH4
+ transport system of a psychrophilic marine bacterium Vibrio sp. strain ABE-1 (Vibrio ABE-1) was examined by measuring the uptake of [14C]methylammonium ion (14CH3NH3
+) into the intact cells. 14CH3NH3
+ uptake was detected in cells grown in medium containing glutamate as the sole nitrogen source, but not in those grown in
medium containing NH4Cl instead of glutamate. Vibrio ABE-1 did not utilize CH3NH3
+ as a carbon or nitrogen source. NH4Cl and nonradiolabeled CH3NH3
+ completely inhibited 14CH3NH3
+ uptake. These results indicate that 14CH3NH3
+ uptake in this bacterium is mediated via an NH4
+ transport system and not by a specific carrier for CH3NH3
+. The respiratory substrate succinate was required to drive 14CH3NH3
+ uptake and the uptake was completely inhibited by KCN, indicating that the uptake was energy dependent. The electrochemical
potentials of H+ and/or Na+ across membranes were suggested to be the driving forces for the transport system because the ionophores carbonylcyanide
m-chlorophenylhydrazone and monensin strongly inhibited uptake activities at pH 6.5 and 8.5, respectively. Furthermore, KCl
activated 14CH3NH3
+ uptake. The 14CH3NH3
+ uptake activity of Vibrio ABE-1 was markedly high at temperatures between 0° and 15°C, and the apparent K
m value for CH3NH3
+ of the uptake did not change significantly over the temperature range from 0° to 25°C. Thus, the NH4
+ transport system of this bacterium was highly active at low temperatures.
Received: August 1, 1998 / Accepted: October 8, 1998 相似文献
19.
Production of Reactive Oxygen Intermediates (O2˙−, H2O2, and ˙OH) by Maize Roots and Their Role in Wall Loosening and Elongation Growth
下载免费PDF全文

Cell extension in the growing zone of plant roots typically takes place with a maximum local growth rate of 50% length increase per hour. The biochemical mechanism of this dramatic growth process is still poorly understood. Here we test the hypothesis that the wall-loosening reaction controlling root elongation is effected by the production of reactive oxygen intermediates, initiated by a NAD(P)H oxidase-catalyzed formation of superoxide radicals (O2˙−) at the plasma membrane and culminating in the generation of polysaccharide-cleaving hydroxyl radicals (˙OH) by cell wall peroxidase. The following results were obtained using primary roots of maize (Zea mays) seedlings as experimental material. (1) Production of O2˙−, H2O2, and ˙OH can be demonstrated in the growing zone using specific histochemical assays and electron paramagnetic resonance spectroscopy. (2) Auxin-induced inhibition of growth is accompanied by a reduction of O2˙− production. (3) Experimental generation of ˙OH in the cell walls with the Fenton reaction causes wall loosening (cell wall creep), specifically in the growing zone. Alternatively, wall loosening can be induced by ˙OH produced by endogenous cell wall peroxidase in the presence of NADH and H2O2. (4) Inhibition of endogenous ˙OH formation by O2˙− or ˙OH scavengers, or inhibitors of NAD(P)H oxidase or peroxidase activity, suppress elongation growth. These results show that juvenile root cells transiently express the ability to generate ˙OH, and to respond to ˙OH by wall loosening, in passing through the growing zone. Moreover, inhibitor studies indicate that ˙OH formation is essential for normal root growth. 相似文献
20.
Sun-Young An Sang-Ki Min In-Ho Cha Yong-Lark Choi Young-Su Cho Cherol-Ho Kim Young-Choon Lee 《Biotechnology letters》2002,24(12):1037-1040
A Citrobacter sp., isolated from soil at an effluent treatment plant of a textile and dyeing industry, decolorized several recalcitrant dyes except Bromophenol Blue. More than 90% of Crystal Violet and Methyl Red at 100 M were reduced within 1 h. Gentian Violet, Malachite Green and Brilliant Green lost over 80% of their colors in the same condition, but the percentage decolorization of Basic Fuchsin and Congo Red were less than the others, 66 and 26%, respectively. Decolorization of Congo Red was mainly due to adsorption to cells. Color removal was optimal at pH 7–9 and 35–40 °C. Decolorization of dyes was also observed with extracellular culture filtrate, indicating the color removal by enzymatic biodegradation. 相似文献