首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
DoxA is a cytochrome P-450 monooxygenase involved in the late stages of daunorubicin and doxorubicin biosynthesis that has a broad substrate specificity for anthracycline glycone substrates. Recombinant DoxA was purified to homogeneity from Streptomyces lividans transformed with a plasmid containing the Streptomyces sp. strain C5 doxA gene under the control of the strong SnpR-activated snpA promoter. The purified enzyme was a monomeric, soluble protein with an apparent Mr of 47,000. Purified DoxA catalyzed the 13-hydroxylation of 13-deoxydaunorubicin, the 13-oxidation of 13-dihydrocarminomycin and 13-dihydrodaunorubicin, and the 14-hydroxylation of daunorubicin. The pH optimum for heme activation was pH 7.5, and the temperature optimum was 30°C. The kcat/Km values for the oxidation of anthracycline substrates by purified DoxA, incubated with appropriate electron-donating components, were as follows: for 13-deoxydaunorubicin, 22,000 M−1 · s−1; for 13-dihydrodaunorubicin, 14,000 M−1 · s−1; for 13-dihydrocarminomycin, 280 M−1 · s−1; and for daunorubicin, 130 M−1 · s−1. Our results indicate that the conversion of daunorubicin to doxorubicin by this enzyme is not a favored reaction and that the main anthracycline flux through the late steps of the daunorubicin biosynthetic pathway catalyzed by DoxA is likely directed through the 4-O-methyl series of anthracyclines.  相似文献   

2.
In this study, dienelactone hydrolases (TfdEI and TfdEII) located on plasmid pJP4 of Cupriavidus necator JMP134 were cloned, purified, characterized and three dimensional structures were predicted. tfdEI and tfdEII genes were cloned into pET21b vector and expressed in E. coli BL21(DE3). The enzymes were purified by applying ultra-membrane filtration, anion-exchange QFF and gel-filtration columns. The enzyme activity was determined by using cis-dienelactone. The three-dimensional structure of enzymes was predicted using SWISS-MODEL workspace and the biophysical properties were determined on ExPASy server. Both TfdEI and TfdEII (Mr 25 kDa) exhibited optimum activity at 37°C and pH 7.0. The enzymes retained approximately 50% of their activity after 1 h of incubation at 50°C and showed high stability against denaturing agents. The TfdEI and TfdEII hydrolysed cis-dienelactone at a rate of 0.258 and 0.182 µMs−1, with a Km value of 87 µM and 305 µM, respectively. Also, TfdEI and TfdEII hydrolysed trans-dienelactone at a rate of 0.053 µMs−1 and 0.0766 µMs−1, with a Km value of 84 µM and 178 µM, respectively. The TfdEI and TfdEII kcat/Km ratios were 0.12 µM−1s−1and 0.13 µM−1s−1 and 0.216 µM−1s−1 and 0.094 µM−1s−1 for for cis- and trans-dienelactone, respectively. The kcat/Km ratios for cis-dienelactone show that both enzymes catalyse the reaction with same efficiency even though Km value differs significantly. This is the first report to characterize and compare reaction kinetics of purified TfdEI and TfdEII from Cupriavidus necator JMP134 and may be helpful for further exploration of their catalytic mechanisms.  相似文献   

3.
Martin RC  Mok MC  Shaw G  Mok DW 《Plant physiology》1989,90(4):1630-1635
A reductase catalyzing the conversion of zeatin to dihydrozeatin was detected in soluble fractions of immature Phaseolus vulgaris embryos. The enzyme was partially purified by ammonium sulfate fractionation and affinity, gel filtration, and anion exchange chromatography. NADPH was the only cofactor required for enzyme activity, and the pH optimum was 7.5 to 8.0. The enzyme did not recognize compounds closely related to zeatin, such as ribosylzeatin, cls-zeatin, O-xylosylzeatin, N6-(Δ2-isopentenyl)adenine, or N6-(Δ2-isopentenyl)adenosine. No conversion of dihydrozeatin to zeatin by the enzyme was observed. Two forms of the reductase could be separated by either gel filtration or anion exchange high performance liquid chromatography. The high molecular weight isozyme (Mr 55,000 ± 5,000) eluted as the second peak from the anion exchange column, while the low molecular weight isozyme (Mr 25,000± 5000) was less negatively charged. The results suggest that side chain reduction occurs at the free base level. In addition, Phaseolus embryos are useful for the detection of zeatin-specific metabolic enzymes.  相似文献   

4.
Synthetic and natural polymers are often used as drug delivery systems in vitro and in vivo. Biodegradable chitosan of different sizes were used to encapsulate antitumor drug tamoxifen (Tam) and its metabolites 4-hydroxytamoxifen (4-Hydroxytam) and endoxifen (Endox). The interactions of tamoxifen and its metabolites with chitosan 15, 100 and 200 KD were investigated in aqueous solution, using FTIR, fluorescence spectroscopic methods and molecular modeling. The structural analysis showed that tamoxifen and its metabolites bind chitosan via both hydrophilic and hydrophobic contacts with overall binding constants of K tam-ch-15  = 8.7 (±0.5)×103 M−1, K tam-ch-100  = 5.9 (±0.4)×105 M−1, K tam-ch-200  = 2.4 (±0.4)×105 M−1 and K hydroxytam-ch-15  = 2.6(±0.3)×104 M−1, K hydroxytam – ch-100  = 5.2 (±0.7)×106 M−1 and K hydroxytam-ch-200  = 5.1 (±0.5)×105 M−1, K endox-ch-15  = 4.1 (±0.4)×103 M−1, K endox-ch-100  = 1.2 (±0.3)×106 M−1 and K endox-ch-200  = 4.7 (±0.5)×105 M−1 with the number of drug molecules bound per chitosan (n) 2.8 to 0.5. The order of binding is ch-100>200>15 KD with stronger complexes formed with 4-hydroxytamoxifen than tamoxifen and endoxifen. The molecular modeling showed the participation of polymer charged NH2 residues with drug OH and NH2 groups in the drug-polymer adducts. The free binding energies of −3.46 kcal/mol for tamoxifen, −3.54 kcal/mol for 4-hydroxytamoxifen and −3.47 kcal/mol for endoxifen were estimated for these drug-polymer complexes. The results show chitosan 100 KD is stronger carrier for drug delivery than chitosan-15 and chitosan-200 KD.  相似文献   

5.
The common bean, Phaseolus vulgaris, contains a glycoprotein that inhibits the activity of mammalian and insect α-amylases, but not of plant α-amylases. It is therefore classified as an antifeedant or seed defense protein. In P. vulgaris cv Greensleeves, α-amylase inhibitor (αAl) is present in embryonic axes and cotyledons, but not in other organs of the plant. The protein is synthesized during the same time period that phaseolin and phytohemagglutinin are made and also accumulates in the protein storage vacuoles (protein bodies). Purified αAl can be resolved by SDS-PAGE into five bands (Mr 15,000-19,000), four of which have covalently attached glycans. These bands represent glycoforms of two different polypeptides. All the glycoforms have complex glycans that are resistant to removal by endoglycosidase H, indicating transport of the protein through the Golgi apparatus. The two different polypeptides correspond to the N-terminal and C-terminal halves of a lectin-like protein encoded by an already identified gene or a gene closely related to it (LM Hoffman [1984] J Mol Appl Genet 2: 447-453; J Moreno, MJ Chrispeels [1989] Proc Natl Acad Sci USA 86:7885-7889). The primary translation product of αAl is a polypeptide of Mr 28,000. Immunologically cross-reacting glycopolypeptides of Mr 30,000 to 35,000 are present in the endoplasmic reticulum, while the smaller polypeptides (Mr 15,000-19,000) accumulate in protein storage vacuoles (protein bodies). Together these data indicate that αAl is a typical bean lectin-type protein that is synthesized on the rough endoplasmlc reticulum, modified in the Golgi, and transported to the protein storage vacuoles.  相似文献   

6.
A purification procedure for a new kind of extradiol dioxygenase, termed chlorocatechol 2,3-dioxygenase, that converts 3-chlorocatechol productively was developed. Structural and kinetic properties of the enzyme, which is part of the degradative pathway used for growth of Pseudomonas putida GJ31 with chlorobenzene, were investigated. The enzyme has a subunit molecular mass of 33.4 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Estimation of the native Mr value under nondenaturating conditions by gel filtration gave a molecular mass of 135 ± 10 kDa, indicating a homotetrameric enzyme structure (4 × 33.4 kDa). The pI of the enzyme was estimated to be 7.1 ± 0.1. The N-terminal amino acid sequence (43 residues) of the enzyme was determined and exhibits 70 to 42% identity with other extradiol dioxygenases. Fe(II) seems to be a cofactor of the enzyme, as it is for other catechol 2,3-dioxygenases. In contrast to other extradiol dioxygenases, the enzyme exhibited great sensitivity to temperatures above 40°C. The reactivity of this enzyme toward various substituted catechols, especially 3-chlorocatechol, was different from that observed for other catechol 2,3-dioxygenases. Stoichiometric displacement of chloride occurred from 3-chlorocatechol, leading to the production of 2-hydroxymuconate.  相似文献   

7.
Transient Phases of the Isometric Tetanus in Frog's Striated Muscle   总被引:3,自引:3,他引:0       下载免费PDF全文
In an isometric tetanus in frog's sartorius muscle tension approaches the plateau exponentially with rate constant α. α a depends on sarcomere length, s, and temperature, T, according to the Arrhenius equation See PDF for Equation for temperatures between 1 and 20°C and for sarcomere lengths 2.0–2.8 µm. The energy of activation, E, does not vary significantly with s; E = 13.9 ± 2.4 kcal/mole. A(s) decreases monotonically with s; A(2.1 µm) is about three times greater than A(2.8 µm). Late in relaxation active tension approaches zero exponentially with rate constant r. r decreases exponentially with increasing duration of tetanus, D, from r0 in a twitch to r for large D. The rate constant for decrease of r with D increases with s and with T. r0 and r obey the Arrhenius equation and decrease with increasing s.  相似文献   

8.
The mevalonate-based isoprenoid biosynthetic pathway is responsible for producing cholesterol in humans and is used commercially to produce drugs, chemicals, and fuels. Heterologous expression of this pathway in Escherichia coli has enabled high-level production of the antimalarial drug artemisinin and the proposed biofuel bisabolane. Understanding the kinetics of the enzymes in the biosynthetic pathway is critical to optimize the pathway for high flux. We have characterized the kinetic parameters of phosphomevalonate kinase (PMK, EC 2.7.4.2) from Saccharomyces cerevisiae, a previously unstudied enzyme. An E. coli codon-optimized version of the S. cerevisiae gene was cloned into pET-52b+, then the C-terminal 6X His-tagged protein was expressed in E. coli BL21(DE3) and purified on a Ni2+ column. The KM of the ATP binding site was determined to be 98.3 µM at 30°C, the optimal growth temperature for S. cerevisiae, and 74.3 µM at 37°C, the optimal growth temperature for E. coli. The KM of the mevalonate-5-phosphate binding site was determined to be 885 µM at 30°C and 880 µM at 37°C. The Vmax was determined to be 4.51 µmol/min/mg enzyme at 30°C and 5.33 µmol/min/mg enzyme at 37°C. PMK is Mg2+ dependent, with maximal activity achieved at concentrations of 10 mM or greater. Maximum activity was observed at pH = 7.2. PMK was not found to be substrate inhibited, nor feedback inhibited by FPP at concentrations up to 10 µM FPP.  相似文献   

9.
An enolase has been purified to apparent homogeneity, as measured by gel electrophoresis, some 400-fold from spinach (Spinacia oleracea). This is the first plant enolase that has been purified to homogeneity. At moderate ionic strengths, the 5,5-dithio-bis-2-(nitrobenzoate) (DTNB)-or parachloromercuribenzoate-reacted enzyme elutes from a Bio-Gel P-200 column with somewhat greater volumes than the yeast enzyme (Mr = 93,000) indicating a greater size. Its elution volume from Ultrogel in 50% ammonium sulfate, however, suggests it exists as an active monomer (Mr = 47,000). Sodium dodecyl sulfate-gel electrophoresis indicates the subunit molecular weight is 50,000 ± 3,000, like that of yeast enolase.

The enzyme contains 23 ± 4 half-cystines per mole of subunit. Titrations with DTNB in guanidine hydrochloride or nondenaturing media indicate that most of these, if not all, are in the reduced state. Reaction of one or more of the sulfhydryls with DTNB or parachloromercuribenzoate stabilizes the enzyme.

The kinetic parameters of the reaction catalyzed by spinach enolase, as well as the inhibitions by transition metal ions and fluoride, are similar to those properties of the yeast and rabbit muscle enzymes.

  相似文献   

10.
This work reports the biochemical and functional analysis of the Burkholderia cenocepacia J2315 bceN gene, encoding a protein with GDP-D-mannose 4,6-dehydratase enzyme activity (E.C.4.2.1.47). Data presented indicate that the protein is active when in the tetrameric form, catalyzing the conversion of GDP-D-mannose into GDP-4-keto-6-deoxy-D-mannose. This sugar nucleotide is the intermediary necessary for the biosynthesis of GDP-D-rhamnose, one of the sugar residues of cepacian, the major exopolysaccharide produced by environmental and human, animal and plant pathogenic isolates of the Burkholderia cepacia complex species. Vmax and Km values of 1.5±0.2 µmol.min−1.mg−1 and 1024±123 µM, respectively, were obtained from the kinetic characterization of the B. cenocepacia J2315 BceN protein by NMR spectroscopy, at 25°C and in the presence of 1 mol MgCl2 per mol of protein. The enzyme activity was strongly inhibited by the substrate, with an estimated Ki of 2913±350 µM. The lack of a functional bceN gene in a mutant derived from B. cepacia IST408 slightly reduced cepacian production. However, in the B. multivorans ATCC17616 with bceN as the single gene in its genome with predicted GMD activity, a bceN mutant did not produce cepacian, indicating that this gene product is required for cepacian biosynthesis.  相似文献   

11.
The serine proteinase α-thrombin potently stimulates reinitiation of DNA synthesis in quiescent Chinese hamster fibroblasts (CCL39 line). 125I-labeled α-thrombin binds rapidly and specifically to CCL39 cells with high affinity (Kd ≈ 4 nM). Binding at 37°C was found to remain stable for 6 h or more during which time no receptor down-regulation, ligand internalization and/or degradation could be detected. The structure of α-thrombin receptors on CCL39 cells was identified by covalently coupling 125I-α-thrombin to intact cells using a homobifunctional cross-linking agent, ethylene glycol bis(succinimidyl succinate). By resolution in sodium dodecyl sulfate polyacrylamide gel electrophoresis we observed the specific labeling of a major α-thrombin-binding site of Mr ≈ 150 000 revealed as a 125I-α-thrombin cross-linked complex of Mr ≈ 180 000. Independent of chemical cross-linking, 125I-α-thrombin also formed a covalent complex with a minor, 35 000 Mr, membrane component identified as protease nexin. Two derivatives of α-thrombin modified at the active site are 1000-fold less than α-thrombin for mitogenicity. These two non-mitogenic derivatives bound to cells with similar affinity and maximal binding capacity as native α-thrombin, and affinity-labeled the receptor subunit of Mr 150 000. When present in large excess, during incubation of cells with α-thrombin, these binding antagonists were ineffective in blocking α-thrombin-induced DNA synthesis. These data suggest that the specific 150 000 Mr binding sites that display high affinity for α-thrombin do not mediate induction of the cellular mitogenic response.  相似文献   

12.
Given the rise in drug-resistant Streptococcus pneumoniae, there is an urgent need to discover new antimicrobials targeting this pathogen and an equally urgent need to characterize new drug targets. A promising antibiotic target is dihydrodipicolinate synthase (DHDPS), which catalyzes the rate-limiting step in lysine biosynthesis. In this study, we firstly show by gene knock out studies that S. pneumoniae (sp) lacking the DHDPS gene is unable to grow unless supplemented with lysine-rich media. We subsequently set out to characterize the structure, function and stability of the enzyme drug target. Our studies show that sp-DHDPS is folded and active with a k cat = 22 s-1, K M PYR = 2.55 ± 0.05 mM and K M ASA = 0.044 ± 0.003 mM. Thermal denaturation experiments demonstrate sp-DHDPS exhibits an apparent melting temperature (T M app) of 72 °C, which is significantly greater than Escherichia coli DHDPS (Ec-DHDPS) (T M app = 59 °C). Sedimentation studies show that sp-DHDPS exists in a dimer-tetramer equilibrium with a K D 4→2 = 1.7 nM, which is considerably tighter than its E. coli ortholog (K D 4→2 = 76 nM). To further characterize the structure of the enzyme and probe its enhanced stability, we solved the high resolution (1.9 Å) crystal structure of sp-DHDPS (PDB ID 3VFL). The enzyme is tetrameric in the crystal state, consistent with biophysical measurements in solution. Although the sp-DHDPS and Ec-DHDPS active sites are almost identical, the tetramerization interface of the s. pneumoniae enzyme is significantly different in composition and has greater buried surface area (800 Å2) compared to its E. coli counterpart (500 Å2). This larger interface area is consistent with our solution studies demonstrating that sp-DHDPS is considerably more thermally and thermodynamically stable than Ec-DHDPS. Our study describe for the first time the knock-out phenotype, solution properties, stability and crystal structure of DHDPS from S. pneumoniae, a promising antimicrobial target.  相似文献   

13.
Invertase plays an important role in the hydrolysis of sucrose in higher plants, especially in the storage organs. In potato (Solanum tuberosum) tubers, and in some other plant tissues, the enzyme seems to be controlled by interaction with an endogenous proteinaceous inhibitor. An acid invertase from potato tubers (variety russet) was purified 1560-fold to electrophoretic homogeneity by consecutive use of concanvalin A-Sepharose 4B affinity chromatography, DEAE-Sephadex A-50-120 chromatography, Sephadex G-150 chromatography, and DEAE-Sephadex A-50-120 chromatography. The enzyme contained 10.9% carbohydrate, had an apparent molecular weight of 60,000 by gel filtration, and was composed of two identical molecular weight subunits (Mr 30,000). The enzyme had a Km for sucrose of 16 millimolar at pH 4.70 and was most stable and had maximum activity around pH 5. The endogenous inhibitor was purified 610-fold to homogeneity by consecutive treatment at pH 1 to 1.5 at 37°C for 1 hour, (NH4)2SO4 fractionation, Sephadex G-100 chromatography, DEAE-Sephadex G-50-120 chromatography, and hydroxylapatite chromatography. The inhibitor appears to be a single polypeptide (Mr 17,000) without glyco groups. The purified inhibitor was stable over the pH range of 2 to 7 when incubated at 37°C for 1 hour.  相似文献   

14.
We report for the first time the in vitro characterization of a reverse tetracycline repressor (revTetR). The dimeric wild-type repressor (TetR) binds to tet operator tetO in the absence of the inducer anhydrotetracycline (atc) to confer tight repression. We have isolated the revTetR G96E L205S mutant, which, contrary to TetR, binds tetO only in the presence of atc. This reverse acting mutant was overproduced and purified. Effector and DNA binding properties were analyzed by EMSA and quantified by fluorescence titration and surface plasmon resonance. The association constant KA of revTetR for binding of [atcMg]+ is ~108 M–1, four orders of magnitude lower than that of TetR. The affinity of TetR for tetO is 5.6 ± 2 × 109 M–1 and that for revTetR in the presence of atc is 1 ± 0.2 × 108 M–1. Both induced forms, the atc-bound TetR and the free revTetR, have the same low affinity of 4 ± 1 × 105 M–1 for DNA. Therefore, atc does not act as a dimerization agent for revTetR. We discuss the structural differences between TetR and revTetR potentially underlying this reversal of activity.  相似文献   

15.
Guy CL  Haskell D 《Plant physiology》1987,84(3):872-878
Spinach (Spinacia oleracea L. cv Bloomsdale) seedlings cultured in vitro were used to study changes in protein synthesis during cold acclimation. Seedlings grown for 3 weeks postsowing on an inorganic-nutrient-agar medium were able to increase their freezing tolerance when grown at 5°C. During cold acclimation at 5°C and deacclimation at 25°C, the kinetics of freezing tolerance induction and loss were similar to that of soil-grown plants. Freezing tolerance increased after 1 day of cold acclimation and reached a maximum within 7 days. Upon deacclimation at 25°C, freezing tolerance declined within 1 day and was largely lost by the 7th day. Leaf proteins of intact plants grown at 5 and 25°C were in vivo radiolabeled, without wounding or injury, to high specific activities with [35S]methionine. Leaf proteins were radiolabeled at 0, 1, 2, 3, 4, 7, and 14 days of cold acclimation and at 1, 3, and 7 days of deacclimation. Up to 500 labeled proteins were separated by two-dimensional gel electrophoresis and visualized by fluorography. A rapid and stable change in the protein synthesis pattern was observed when seedlings were transferred to the low temperature environment. Cold-acclimated leaves contained 22 polypeptides not found in nonacclimated leaves. Exposure to 5°C induced the synthesis of three high molecular weight cold acclimation proteins (CAPs) (Mr of about 160,000, 117,000, and 85,000) and greatly increased the synthesis of a fourth high molecular weight protein (Mr 79,000). These proteins were synthesized during day 1 and throughout the 14 day exposure to 5°C. During deacclimation, the synthesis of CAPs 160, 117, and 85 was greatly reduced by the first day of exposure to 25°C. However, CAP 79 was synthesized throughout the 7 day deacclimation treatment. Thus, the induction at low temperature and termination at warm temperature of the synthesis of CAPs 160, 117, and 85 was highly correlated with the induction and loss of freezing tolerance. Cold acclimation did not result in a general posttranslational modification of leaf proteins. Most of the observed changes in the two-dimensional gel patterns could be attributed to the de novo synthesis of proteins induced by low temperature. In spinach leaf tissue, heat shock altered the pattern of protein synthesis and induced the synthesis of several heat shock proteins (HSPs). One polypeptide synthesized in cold-acclimated leaves had a molecular weight and net charge (Mr 79,000, pI 4.8) similar to that of a HSP (Mr 83,000, pI 4.8). However, heat shock did not increase the freezing tolerance, and cold acclimation did not increase heat tolerance over that of nonacclimated plants, but heat-shocked leaf tissue was more tolerant to high temperatures than nonacclimated or cold-acclimated leaf tissue. When protein extracts from heat-shocked and cold-acclimated leaves were mixed and separated in the same two-dimensional gel, the CAP and HSP were shown to be two separate polypeptides with slightly different isoelectric points and molecular weights.  相似文献   

16.
Nitrite-dependent anaerobic methane oxidation (n-damo) is performed by “Candidatus Methylomirabilis oxyfera” (M. oxyfera), which connects the carbon and nitrogen global nutrient cycles. In the present study, M. oxyfera-like bacteria sequences were successfully recovered from Yellow River Estuary sediments using specific primers for 16S rRNA and pmoA genes. A M. oxyfera-like sequences analysis based on the 16S rRNA gene revealed greater diversity compared with the pmoA gene; the 16S rRNA gene sequences retrieved from the Yellow River Estuary sediments belong to groups A as well as B and were mainly found in freshwater habitats. Quantitative PCR showed that 16S rRNA gene abundance varied from 9.28±0.11×103 to 2.10±0.13×105 copies g-1 (dry weight), and the pmoA gene abundance ranged from 8.63±0.50×103 to 1.83±0.18×105 copies g-1 (dry weight). A correlation analysis showed that the total organic carbon (TOC) and ammonium (NH4 +) as well as the ratio of total phosphorus to total nitrogen (TP/TN) influenced the M. oxyfera-like bacteria distribution in the Yellow River Estuary sediments. These findings will aid in understanding the n-damo bacterial distribution pattern as well as their correlation with surrounding environmental factors in temperate estuarine ecosystems.  相似文献   

17.
The ubiquitous algal metabolite dimethylsulfoniopropionate (DMSP) is a major source of carbon and reduced sulfur for marine bacteria. Recently, the enzyme responsible for the demethylation of DMSP, designated DmdA, was identified, and homologs were found to be common in marine bacterioplankton cells. The recombinant DmdA proteins from the cultured marine bacteria Pelagibacter ubique HTCC1062 and Silicibacter pomeroyi DSS-3 were purified with a three-step procedure using anion-exchange, hydrophobic interaction, and hydroxyapatite chromatographies. The P. ubique enzyme possessed an Mr on sodium dodecyl sulfate-polyacrylamide gel electrophoresis of 38,500. Under nondenaturing conditions, the Mr was 68,000, suggesting that the enzyme was likely to be a dimer. The purified enzyme exhibited strict substrate specificity for DMSP, as DmdA from both S. pomeroyi and P. ubique possessed no detectable demethylase activity with glycine betaine, dimethyl glycine, methylmercaptopropionate, methionine, or dimethylsulfonioacetate. Less than 1% activity was found with dimethylsulfoniobutanoate and dimethylsulfoniopentanoate. The apparent Kms for DMSP were 13.2 ± 2.0 and 5.4 ± 2.3 mM for the P. ubique and S. pomeroyi enzymes, respectively. In cell extracts of S. pomeroyi DSS-3, the apparent Km for DMSP was 8.6 ± 1.2 mM, similar to that of purified recombinant DmdA. The intracellular concentration of DMSP in chemostat-grown S. pomeroyi DSS-3 was 70 mM. These results suggest that marine bacterioplankton may actively accumulate DMSP to osmotically significant concentrations that favor near-maximal rates of DMSP demethylation activity.  相似文献   

18.
Initial reactions involved in the bacterial degradation of polycyclic aromatic hydrocarbons (PAHs) include a ring-dihydroxylation catalyzed by a dioxygenase and a subsequent oxidation of the dihydrodiol products by a dehydrogenase. In this study, the dihydrodiol dehydrogenase from the PAH-degrading Sphingomonas strain CHY-1 has been characterized. The bphB gene encoding PAH dihydrodiol dehydrogenase (PDDH) was cloned and overexpressed as a His-tagged protein. The recombinant protein was purified as a homotetramer with an apparent Mr of 110,000. PDDH oxidized the cis-dihydrodiols derived from biphenyl and eight polycyclic hydrocarbons, including chrysene, benz[a]anthracene, and benzo[a]pyene, to corresponding catechols. Remarkably, the enzyme oxidized pyrene 4,5-dihydrodiol, whereas pyrene is not metabolized by strain CHY-1. The PAH catechols produced by PDDH rapidly auto-oxidized in air but were regenerated upon reaction of the o-quinones formed with NADH. Kinetic analyses performed under anoxic conditions revealed that the enzyme efficiently utilized two- to four-ring dihydrodiols, with Km values in the range of 1.4 to 7.1 μM, and exhibited a much higher Michaelis constant for NAD+ (Km of 160 μM). At pH 7.0, the specificity constant ranged from (1.3 ± 0.1) × 106 M−1 s−1 with benz[a]anthracene 1,2-dihydrodiol to (20.0 ± 0.8) × 106 M−1 s−1 with naphthalene 1,2-dihydrodiol. The catalytic activity of the enzyme was 13-fold higher at pH 9.5. PDDH was subjected to inhibition by NADH and by 3,4-dihydroxyphenanthrene, and the inhibition patterns suggested that the mechanism of the reaction was ordered Bi Bi. The regulation of PDDH activity appears as a means to prevent the accumulation of PAH catechols in bacterial cells.  相似文献   

19.
γ-Aminobutyraldehyde dehydrogenase from Escherichia coli K-12 has been purified and characterized from cell mutants able to grow in putrescine as the sole carbon and nitrogen source. The enzyme has an Mr of 195 000±10 000 in its dimeric form with an Mr of 95 000±1000 for each subunit, a pH optimum at 5.4 in sodium citrate buffer, and does not require bivalent cations for its activity. Km values are 31.3±6.8 μM and 53.8±7.4 μM for Δ-1-pyrroline and NAD+, respectively. An inhibitory capacity for NADH is also shown using the purified enzyme.  相似文献   

20.
The CO2/O2 specificity factor of sucrose gradient purified ribulose 1,5-bisphosphate carboxylase/oxygenase from the C3-C4 intermediate plants Moricandia arvensis (79 ± 1) and Panicum milioides (89 ± 2) was similar to the respective values of the enzyme from the closely related C3 species, Moricandia foetida (80 ± 5) and Panicum laxum (86 ± 2). Thus, the kinetic properties of this bifunctional enzyme do not explain the reduced rates of photorespiration exhibited by either of these intermediate species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号