共查询到20条相似文献,搜索用时 0 毫秒
1.
Cellular competence plays a role in photoreceptor differentiation in the developing Xenopus retina 总被引:1,自引:0,他引:1
Factors in the environment appear to be responsible for inducing many of the cell fates in the retina, including, for example, photoreceptors. Further, there is a conserved order of histogenesis in the vertebrate retina, suggesting that a temporal mechanism interacts in the control of cellular determination. The temporal mechanism involved could result from different inducing signals being released at different times. Alternatively, the inducing signals might be present at many stages, but an autonomous clock could regulate the competence of cells to respond to them. To differentiate between these mechanisms, cells from young embryonic retinas were dissociated and grown together with those from older embryos, and the timing of photoreceptor determination assayed. Young cells appeared uninfluenced by older cells, expressing photoreceptor markers on the same time schedule as when cultured alone. A similar result was obtained when the heterochronic mixing was done in vivo by grafting a small plug of optic vesicle from younger embryos into older hosts. Even the graft cells at the immediate margin of the transplant failed to express photoreceptor markers earlier than normal, despite their being in contact with older, strongly expressing host cells. We conclude that retinal progenitors intrinsically acquire the ability to respond to photoreceptor-inducing cues by a mechanism that runs on a cell autonomous schedule, and that the conserved order of histogenesis is based in part on this competence clock. 相似文献
2.
Summary The adrenergic innervation of the juxtaglomerular complex was studied in kidneys from mice, rats, guinea-pigs, rabbits, cats, dogs, pigs, monkeys, and humans using fluorescence histochemistry of neuronal nor-adrenaline and autoradiography of 3H-noradrenaline. The localization of the nerves was established by phase contrast optics or by perfusing the vascular system with India ink. Adrenergic nerve terminals, exhibiting a formaldehyde-induced fluorescence and having the ability to take up and accumulate 3H-noradrenaline, were easily identified when they enclosed the glomerular afferent arteriole. They continued in between and close to the macula densa and lacis cells to supply the glomerular efferent arteriole. The nerves could be seen to accompany this arteriole for a considerable distance until they branched off to the vasa recta in the juxtamedullary region and to adjacent cortical veins. This innervation pattern was found to be a constant feature except in kidneys from guinea-pigs and cats, in which post-glomerular adrenergic nerves were not found in some of the superficial glomerular units. The fluorescence in all adrenergic fibres supplying the juxtaglomerular complex disappeared after removal of the aortico-renal ganglion, showing that they belong to a common system of renal sympathetic nerves.This work is dedicated to Professor Wolfgang Bargmann in honour of his seventieth birthday, January 26, 1976 相似文献
3.
Mosaics of photoreceptors, and horizontal and bipolar cells of the Xenopus laevis retina were studied in whole-mount preparations applying lectin-cytochemical, immunocytochemical and intracellular labeling techniques. The combined density of all photoreceptor types was about 13700/mm2, of which rods represented 53%. Of the cones, the large long-wavelength-sensitive (86% of all cones) and the miniature ultraviolet-wavelength-sensitive (4%) ones could be labeled with peanut agglutinin, whereas the large short-wavelength-sensitive (10%) cones remained unlabeled. There were no significant regional differences in photoreceptor distribution. Bipolar cells were selectively labeled with antibodies against calretinin. Their density was between 4000 and 6000 cells/cm2, with slightly elevated numbers in the superior nasal quadrant. Two types of horizontal cell were injected intracellularly. The luminosity-type cells were more frequent (approximately 1000 cells/mm2) than the chromaticity cells (approximately 450 cells/mm2). The dendritic field size of the latter cell type was threefold bigger than that of the luminosity cells. The coverage factors were estimated to be 3.3 for the luminosity cells and 5.2 for the chromaticity cells. The luminosity cells contacted all photoreceptor types, whereas chromatic horizontal cells received their inputs from the short-wavelength-sensitive cones and from some, but not all, rods. Luminosity cells encounter about 50-60 potential synaptic partners within their dendritic fields, whereas chromatic horizontal cells only about 20. Chromatic horizontal cells form multiple synaptic contacts with the short-wavelength-sensitive cones. The results indicate that the overall photoreceptor to bipolar and bipolar to ganglion cell convergence in Xenopus retina is similar to that in the central retinal specialized regions of mammals, predicting comparable spatial resolutions. 相似文献
4.
5.
R E Steele 《Nucleic acids research》1985,13(5):1747-1761
Genomic and cDNA clones of the X. laevis src gene have been isolated and characterized by hybridization and DNA sequence analyses. The haploid genome of X. laevis contains two src genes, which can be distinguished from one another by virtue of sequence divergence in the 3' untranslated regions. Both of the genes are functional as indicated by the fact that oocytes contain RNAs transcribed from each of the genes. The two genes each encode an RNA which is 3.3 kb in length, or twice the length required to encode the 60,000 dalton src protein (pp60). Sequence analysis of the cDNA clones revealed that nearly all of the non-coding sequence is located at the 3' end. The availability of sequence data from cDNA clones has also made it possible for the first time to identify with certainty the carboxyl terminal sequence of a cellular pp60 molecule. 相似文献
6.
Cellular determination in the Xenopus retina is independent of lineage and birth date 总被引:10,自引:0,他引:10
Xenopus embryos injected with tritiated thymidine throughout the stages of embryonic retinal neurogenesis showed that more than 95% of the embryonic retinal cells are born within a 25 hr period. While there are shallow central to peripheral, dorsal to ventral, and interlaminar gradients of neurogenesis in these eyes, throughout most of this 25 hr period, postmitotic cells are being added to all sectors and layers. Small clones of differentiated retinal neurons and glia derived from single neuroepithelial cells injected with HRP. These clones were elongated radially. They were also composed of many different combinations of cell types, suggesting a mechanism whereby determination is arbitrarily and independently assigned to postmitotic cells. Such a model, when tested statistically, fits our data very well. We present a scheme for cellular determination in the Xenopus retina in which a coherent group of clonally related cells stretch out radially as lamination begins. This brings different cells into different microenvironments. Local interactions in these microenvironments then lead the cells toward specific fates. 相似文献
7.
8.
9.
Previous studies have demonstrated that the mammalian retina contains a circadian clock system that controls several retinal functions. In mammals the location of the retinal circadian clock is unknown whereas, in non-mammalian vertebrates, earlier work has demonstrated that photoreceptor cells contain the circadian clock. New experimental evidence has suggested that in mammals the retinal circadian clock may be located outside the photoreceptor cells. In this study we report that circadian rhythms in Aa-nat mRNA (in vivo) and melatonin synthesis (in vitro) are still present in the retina of rats lacking photoreceptors. The circadian pacemaker(s) controlling such rhythms is probably located in kainic acid sensitive neurons in the inner retina since kainic acid injections abolished the rhythmicity. These data are the first direct demonstration that circadian rhythmicity in the mammalian retina can be generated independently from the photoreceptors and the suprachiasmatic nuclei of the hypothalamus. 相似文献
10.
The transmembrane receptor Notch1 plays a role in development and homeostasis in vertebrates and invertebrates. The mammalian retina is an excellent tissue in which to dissect the precise role of Notch signaling in regulating cell fate and proliferation. However, a systematic analysis has been limited by the early embryonic lethality of Notch1-null mice. Here, Notch1 was conditionally removed from the murine retina either early or late in development. Removal of Notch1 early led to a reduction in the size of the retina as well as aberrant morphology. A decrease in the number of progenitor cells and premature neurogenesis accounted for the reduction in size. Unexpectedly, ablation of Notch1 in early progenitor cells led to enhanced cone photoreceptor production, and ablation of Notch1 at later points led to an almost exclusive production of rod photoreceptor cells. These data suggest that Notch1 not only maintains the progenitor state, but is required to inhibit the photoreceptor fate. These cone enriched mutant mice should prove to be a valuable resource for the study of this relatively rare mammalian photoreceptor cell type. 相似文献
11.
Despite very different aetiologies, age-related macular degeneration (AMD) and most inherited retinal disorders culminate in the same final common pathway, loss of the light-sensitive photoreceptors. There are few clinical treatments and none can reverse the loss of vision. Photoreceptor replacement by transplantation is proposed as a broad treatment strategy applicable to all degenerations. The past decade has seen a number of landmark achievements in this field, which together provide strong justification for continuing investigation into photoreceptor replacement strategies. These include proof of principle for restoring vision by rod-photoreceptor transplantation in mice with congenital stationary night blindness and advances in stem cell biology, which have led to the generation of complete optic structures in vitro from embryonic stem cells. The latter represents enormous potential for generating suitable and renewable donor cells with which to achieve the former. However, there are still challenges presented by the degenerating recipient retinal environment that must be addressed as we move to translating these technologies towards clinical application. 相似文献
12.
13.
Free amino acids in the photoreceptor cells of the frog retina 总被引:1,自引:5,他引:1
14.
《The Journal of cell biology》1976,70(1):86-96
The photoreceptors of dark-adapted skate retinas bathed in a Ringer solution containing horseradish peroxidase (HRP) incorporate the tracer into membrane-bound compartments within the synaptic terminal of the cell; after 1 or 2 h of incubation, approx. 10-38% of the synaptic vesicles were labeled. The receptors appeared to be functioning normally throughout the incubation period, since electrical potentials of normal amplitude could be elicited in response to dimphotic stimuli. However, it was possible to block the uptake of peroxidase by a regimen of light adaptation that effectively suppressed light-induced activity in the electroretinogram. If, during incubation with peroxidase, retinas were exposed at 10-min intervals to an intense 1-ms flash from a xenon discharge tube, the receptor terminals were almost completely devoid of peroxidase; fewer than 2% of the vesicles were labeled. The suppression of HRP uptake could also be achieved in dark-adapted retinas by adding magnesium to the bathing solution, suggesting that calcium is necessary for transmitter release from vesicles in the receptor terminals. These findings are consistent with the view that vertebrate photoreceptors discharge a neurotransmitter in darkness, and that light decreases the release of this substance. It seems likely that the incorporation of peroxidase into vesicles of physiologically active receptor terminals reflects a mechanism for the retrieval of vesicle membrane after exocytosis. 相似文献
15.
Newt photoreceptor synaptic terminals undergo a variety of morphological changes over a 24-hr (LD 12:12) cycle. During the day, dense-cored synaptic vesicles were found to increase in number and accumulate near the synaptic lamellae; during the dark phase, the dense-cored vesicles decreased in number, while large clear vesicles and profiles of smooth endoplasmic reticulum increased in frequency. The most marked change in photoreceptor synaptic terminal morphology occurred after 10 hr of darkness, at 0730 hr. At this time, photoreceptor synaptic terminal cross-sectional area was found to increase dramatically. Morphometric analysis showed that the number of synaptic vesicles in these terminals remained constant throughout the day, as did the perimeter of photoreceptor terminal profiles. The observed increase in area of synaptic terminals at 0730 hr was found to be due to a decrease in the folding of the terminal plasma membrane. Qualitative observations showed endocytosis to be occurring at a rapid rate at this time as well; and since the number of synaptic vesicles and terminal perimeter did not change, exocytosis of synaptic vesicles was assumed to be occurring at an equally rapid rate. These findings support an extension to the hypothesis of Monaghan and Osborne (1975), suggesting that photoreceptor synaptic vesicles become "supercharged" with transmitter substance in the light. 相似文献
16.
G M Hope 《Stain technology》1979,54(4):205-211
When sectioning small blocks of tissue from the retina of the eye, it is sometimes difficult to obtain sections which simultaneously cut squarely across the inner retinal layers and are on the long axis of the photoreceptors. This difficulty is, at least partially, due to the fact that the receptors tilt progressively relative to the tangent to the retinal curve at progressively more peripheral loci. Consideration of the graded differential orientation of the receptors indicates that, in order for the section to be simultaneously coaxial with the receptors and the inner retinal layers, the plane of the section must be parallel to and include the anterior-posterior axis of the eye, as is the case when the whole eye is sectioned through its center. It is illustrated that this criterion can be met for small blocks of retina if the block is excised along a parallel of the eye and the plane of section is perpendicular to the tangent to the retinal curve and the parallel. An approach which accomplishes this is described. Theoretical analysis suggests that distortion of apparent size of structures in the retina can become significant within a few degrees of the posterior pole if this condition is not met. 相似文献
17.
18.
An individual retina descends from a restricted and invariant group of nine animal blastomeres at the 32-cell stage. We tested which molecular signaling pathways are responsible for the competence of animal blastomeres to contribute to the retina. Inactivation of activin/Vg1 or fibroblast growth factor (FGF) signaling by expression of dominant-negative receptors does not prevent an animal blastomere from contributing to the retina. However, increasing bone morphogenetic protein (BMP) signaling in the retina-producing blastomeres significantly reduces their contribution. Conversely, reducing BMP signaling by expression of a dominant-negative BMP receptor or Noggin allows other animal blastomeres to contribute to the retina. Thus, the initial step in the retinal lineage is regulated by position within the BMP/Noggin field of epidermal versus neural induction. Vegetal tier blastomeres, in contrast, cannot contribute to the retina even when given access to the appropriate position and signaling fields by transplantation to the dorsal animal pole. We tested whether expression of molecules within the mesoderm inducing (activin, FGF), mesoderm-modifying (Wnt), or neural-inducing (BMP, Noggin) pathways impart a retinal fate on vegetal cell descendants. None of these, several of which induce secondary head structures, caused vegetal cells to contribute to retina. This was true even if the injected blastomeres were transplanted to the dorsal animal pole. Two pathways that specifically induce head tissues also were investigated. The simultaneous blockade of Wnt and BMP signaling, which results in the formation of a complete secondary axis with head and eyes, did not cause the vegetal clone to give rise to retina. However, Cerberus, a secreted protein that also induces an ectopic head with eyes, redirected vegetal progeny into the retina. These experiments indicate that vegetal blastomere incompetence to express a retinal fate is not due to a lack of components of known signaling pathways, but relies on a specific pathway of head induction. 相似文献
19.
Co-ordinating retinal histogenesis: early cell cycle exit enhances early cell fate determination in the Xenopus retina 总被引:1,自引:0,他引:1
Ohnuma S Hopper S Wang KC Philpott A Harris WA 《Development (Cambridge, England)》2002,129(10):2435-2446
The laminar arrays of distinct cell types in the vertebrate retina are built by a histogenic process in which cell fate is correlated with birth order. To explore this co-ordination mechanistically, we altered the relative timing of cell cycle exit in the developing Xenopus retina and asked whether this affected the activity of neural determinants. We found that Xath5, a bHLH proneural gene that promotes retinal ganglion cell (RGC) fate, ( Kanekar, S., Perron, M., Dorsky, R., Harris, W. A., Jan, L. Y., Jan, Y. N. and Vetter, M. L. (1997) Neuron 19, 981-994), does not cause these cells to be born prematurely. To drive cells out of the cell cycle early, therefore, we misexpressed the cyclin kinase inhibitor, p27Xic1. We found that early cell cycle exit potentiates the ability of Xath5 to promote RGC fate. Conversely, the cell cycle activator, cyclin E1, which inhibits cell cycle exit, biases Xath5-expressing cells toward later neuronal fates. We found that Notch activation in this system caused cells to exit the cell cycle prematurely, and when it is misexpressed with Xath5, it also potentiates the induction of RGCs. The potentiation is counteracted by co-expression of cyclin E1. These results suggest a model of histogenesis in which the activity of factors that promote early cell cycle exit enhances the activity of factors that promote early cellular fates. 相似文献
20.
Summary Dopaminergic interplexiform cells in retinae of glass catfish were investigated using an antiserum against tyrosine hydroxylase and peroxidase-anti-peroxidase (PAP) visualization. In whole-mount preparations, we observed a homogeneous distribution of cell bodies throughout the retina without any indication of regional specializations. At the ultrastructural level, we studied the morphology of labelled telodendria within the outer plexiform layer. Apart from contacts with horizontal cells and bipolar cell dendrites, we report for the first time direct contacts with cone pepdicles and rod spherules. Quantitative evaluation of short series of sections showed that all cone pedicles, and a major part of the rod terminals, were approached in this way. The dopaminergic pathway terminating on photoreceptors is discussed in the context of pharmacological effects of this transmitter in the distal retina during light adaptation, i.e., cone contraction, spinule formation and horizontal cell coupling. 相似文献