首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The presence and possible sources of more than 30 neuropeptides in the median eminence are summarized. The median eminence is the brain area which contains neuropeptides in the highest number and in the highest concentrations in the central nervous system. This area constitutes the final common pathway for signals from the brain to the pituitary. Many peptidergic fibers enter the median eminence and terminate around the pericapillary space and release their neuropeptides into hypophysial portal blood vessels. Other peptidergic fibers traverse the median eminence and terminate in the posterior pituitary. According to their origin, fibers in the median eminence can be classified as intra- or extrahypothalamic fibers. The neuropeptide-containing fibers in the median eminence are mainly intrahypothalamic, they reach the median eminence through either the lateral retrochiasmatic area or the tuberoinfundibular tract. Depending on the site of their action, neuropeptides may be either neurohormones acting on the anterior pituitary cells or neurotransmitters affecting the release of substances from other nerve terminals within the median eminence.  相似文献   

2.
Summary Dopaminergic and peptidergic nerve fibers were simultaneously demonstrated with a double-labeling technique at the ultrastructural level. The first antibody, raised against tyrosine hydroxylase, was applied during the preembedding phase and visualized with the peroxidase method. The second antibody, raised against one of the peptides met-enkephalin, somatostatin or gonadotropin-releasing hormone (GnRH), was applied to the ultrathin sections and visualized with gold-labeled goat anti-rabbit IgG. The fibers of both categories were present in the zona externa of the median eminence, frequently contacting the basal lamina of the portal vessels. In addition, topographical relationships between different types of nerve fibers were observed in the perivascular areas, although there were no morphological signs of synaptic specializations. Using serial sections, it could be established that one GnRH-fiber contacted both a dopaminergic fiber and a fiber immunoreactive for met-enkephalin. The observations support earlier physiological data concerning the regulation of the hypothalamo-hypophyseal axis, with special emphasis on the release of neurohormones in the median eminence of the newt.  相似文献   

3.
Summary The distribution of immunoreactive thyrotropin-releasing hormone (TRH) in the central nervous system of the domestic mallard was studied by means of the peroxidase-antiperoxidase technique. After colchicine pretreatment, the highest number of TRH-immunoreactive perikarya was found in the parvocellular subdivision of the paraventricular nucleus and in the preoptic region; a smaller number of immunostained perikarya was observed in the lateral hypothalamic area and in the posterior medial hypothalamic nucleus. TRH-immunoreactive nerve fibers were detected throughout the hypothalamus, forming a dense network in the periventricular area, paraventricular nucleus, preoptic-suprachiasmatic region, and baso-lateral hypothalamic area. TRH-containing nerve fibers and terminals occurred in the organon vasculosum of the lamina terminalis and in the external zone of the median eminence in juxtaposition with hypophyseal portal vessels. Scattered fibers were also seen in the internal zone of the median eminence and in the rostral portion of the neural lobe. Numerous TRH-immunoreactive fibers were detected in extra-hypothalamic brain regions: the highest number of immunoreactive nerve fibers was found in the lateral septum, nucleus accumbens, olfactory tubercle, and parolfactory lobe. Moderate numbers of fibers were located in the basal forebrain, dorsomedial thalamic nuclei, hippocampus, interpeduncular nucleus, and the central gray of the mesencephalon. The present findings suggest that TRH may be involved in hypophysiotropic regulatory mechanisms and, in addition, may also act as neuromodulator or neurotransmitter in other regions of the avian brain.  相似文献   

4.
Summary The distribution of luteinizing hormone-releasing hormone (LHRH) was studied by light-microscopic immunocytochemistry in the hypothalamo-pituitary complex of humans, monkeys, ferrets, bats, and rats. LHRH-immunoreactive fibers were identified in the median eminence of all these species, but the precise location of these fibers varied. In rats, the vast majority of LHRH fibers in the median eminence was confined to the external zone. In contrast, in bats, most of the LHRH fibers were located in the internal zone. While these two species represent opposite extremes in distribution of LHRH fibers within the median eminence, intermediate conditions were found in humans, monkeys, and ferrets, as considerable numbers of fibers occurred in both internal and external zones. In addition to fibers in the median eminence, large numbers of LHRH-immunoreactive fibers were identified traversing the infundibular stalk and entering the neural lobe of the pituitary in all species examined except the rat. In rats, only occasional fibers were observed in the infundibular stalk, and they did not project into the neural lobe. However, in humans, monkeys, ferrets, and bats, groups of LHRH-immunoreactive fibers extended well into the substance of the posterior pituitary. Most of these fibers appeared to terminate near the adenohypophysis, but others coursed away from the anterior lobe and penetrated deeper portions of the neural lobe. These observations, made in several mammalian species, indicate that multiple routes may exist in the median eminence/stalk/pituitary complex for the delivery of LHRH to the anterior pituitary.  相似文献   

5.
Summary The ultrastructural effects of vinblastine on the arcuate neurons and median eminence were studied in the rat. The animals were stereotaxically injected with solutions of 1 mM and 5 mM vinblastine into the median eminence and killed 3, 8 and 21 days after injection. Eight days after injection of 1 mM vinblastine the neurons of the arcuate nucleus showed marked changes. The Golgi complex was more distinct and considerable increases in the populations of dense bodies, granulated vesicles and coated vesicles were observed. Changes in the axo-somatic synapses and degenerating fibers in the surrounding neuropil were also characteristic of the experimental animals. The outer zone of the median eminence showed numerous degenerated nerve fibers and fibers engulfed by glial cell processes. Eight days after injection of 5 mM vinblastine arcuate neurons and median eminence showed similar changes, but quantitative differences were noted. A striking ultrastructural recovery of the arcuate neurons and axons in the outer zone of the median eminence was observed 21 days after injection of either 1 mM or 5 mM vinblastine. The results are discussed in relation to axoplasmic transport and axonal degeneration.Supported by CONICET and National University of Cuyo, Argentina.Members of the Scientific Research Career of the Consejo Nacional de Investigaciones Cientificas y Tecnicas, Argentina.  相似文献   

6.
Summary Serotonin containing structures in the median eminence of the rat have been studied by quantitative light and electron microscopic radioautography following intraventricular infusion of tritiated 5-hydroxytryptophan. One hour after injection of the tracer the highest density of silver grains was recorded in the ependymal and external zones, especially in the lateral palisade zone. The proportion of labelled neurosecretory terminals was also larger in the lateral palisade zone (29%) as compared with the medial palisade zone (13%), although the mean number of developed silver grains per one terminal was higher in the latter. On the average, 16% of neurosecretory terminals sequestered radiolabelled 5-hydroxytryptophan in the external zone of the rat median eminence. It is suggested that serotonin, like catecholamines, is discharged from neurosecretory terminals localized in the external zone and via the portal circulation affects the function of the anterior pituitary. The sites of origin of serotoninergic structures of the median eminence as well as the possible role of monoamine (catecholamine and indolamine) neurohormones in a dual peptidergic and monoaminergic control of anterior pituitary functions are discussed.This work was presented at the joint session of the Society of Anatomists, Histologists and Embryologists, the Society of Physiologists, and the Society of Neuroendocrinologists dedicated to the memory of Professor Wolfgang Bargmann, held in Leningrad, January 17, 1979  相似文献   

7.
Summary In the toad Bufo arenarum Hensel the following regions of the hypothalamic — neurohypophyseal system were studied under the electronmicroscope: preoptic and paraventricular nuclei, median eminence and infundibular process of the neurohypophysis.Neuronal perikarya of the preoptic nucleus are loaded with typical neurosecretory granules of peptidergic nature having a mean diameter of 1660 Å. While most neurons of the winter toad are in a storage stage a few show signs of a more active synthetic activity. A distinctive feature of preoptic neurons is the presence of large lipid droplets. The paraventricular nucleus contains small neurons containing granulated vesicles with a mean diameter of 800-1000 Å. In the region extending between these two nuclei and the median eminence axons containing either neurosecretory elementary granules or granulated vesicles are observed.The inner zone of the median eminence is occupied by axons of the preoptic neurohypophyseal tract; two types of axons, according to the size and density of the neurosecretory granules, may be recognized. The outer zone of the median eminence contains mainly axons and nerve terminals containing granulated vesicles of probable monoaminergic nature and only a few with granules of peptidergic type.The neurohypophysis contains two kinds of axons: one with more dense granules of 1800 Å and the other with granules of lesser electron density and 2100 Å. At the ending proper small clear vesicles of synaptic type are found.A progressive increase in volume of the peptidergic granules along the axon is demonstrated. This is of the order of 218% from the preoptic perikarya down to the infundibular process. The physiological significance of the two neurosecretory systems — i.e. the monoaminergic and the peptidergic — and the probable nature of the two types of peptidergic axons is discussed.Supported by grants from the Consejo Nacional de Investigaciones Científicas y Técnicas and by the Air Force Office of Scientific Research (AF-AFOSR 963-67).The authors want to express their gratitude to Mrs. Defilippi-Novoa and Mr. Alberto Sáenz for their skillful assistance.  相似文献   

8.
Summary The results of an immunohistochemical investigation of the hypothalamo-neurohypophysial system in several species of birds have shown that: (1) mesotocin and vasotocin are synthesized in separate neurons; (2) in all species investigated the distribution of mesotocinergic and vasotocinergic perikarya follows a common pattern; (3) the external zone of the avian anterior median eminence contains exclusively vasotocinergic nerve fibers, originating in supraoptic and ventral paraventricular regions; (4) the distribution of immunoreactive elements in the neural lobe shows a definite species-dependent pattern.  相似文献   

9.
Summary By means of the peroxidase-antiperoxidase technique, in conjunction with a specific anti-CRF serum, it was shown that a large number of immunoreactive nerve fibers were demonstrable on the capillary loops of the hypophysial portal vessels in the external layer of the median eminence of the rat and monkey, particularly in its medial part. This result confirms the radioimmunological determination of CRF immunoreactivity in the median eminence.Supported by a grant (No. 56440022) from the Ministry of Education, Science, and Culture, Japan  相似文献   

10.
Summary The corticotropin-releasing factor (CRF)-containing neurons were investigated in the brain of the domestic fowl by means of the peroxidase-antiperoxidase technique at the light-microscopic level. The detection of CRF-immunoreactivity was facilitated by silver intensification. CRF-containing perikarya were found in the paraventricular, preoptic and mammillary nuclei of the hypothalamus and in some extrahypothalamic areas (nuclei dorsomedialis and dorsolateralis thalami, nucleus accumbens septi, lobus parolfactorius, periaqueductal gray of the mesencephalon, nucleus oculomotorius ventralis). Immunoreactive nerve fibers and terminals were demonstrated in the external zone of the median eminence and the organum vasculosum of the lamina terminalis. These results indicate that an immunologically demonstrable CRF-neurosecretory system also exists in the avian central nervous system.  相似文献   

11.
Distribution of gastrin and CCK-like peptides in rat brain   总被引:2,自引:0,他引:2  
Summary The distribution of gastrin and CCK-like peptides in the rat brain was studied by immunocytochemistry using an antiserum reacting equally well with both groups of peptides. Immunoreactive nerve cell bodies were detected in all cortical areas, in the hippocampus where they were particularly numerous, in the mesencephalic central gray and in the medulla oblongata. After colchicine treatment immunoreactive material appeared also in cell bodies of the magnocellular hypothalamic system. Immunoreactive nerve fibers were widely distributed in the brain. Particularly dense accumulations were seen in the hippocampus near the ventral surface of the brain, in the caudate nucleus, in the interpeduncular nucleus, the parabrachial nucleus, the dorsal part of the medulla oblongata and in the dorsal horn of the spinal cord. In the hypothalamus immunoreactive nerve fibers were observed in all nuclei, being most frequent in the ventromedial, dorsal and lateral hypothalamic nuclei. A rich supply of nerve fibers was seen in the outer zone of the median eminence and in the neurohypophysis. From previous immunochemical analysis it appears that the peptide demonstrated in most parts of the brain is identical with CCK-8. In the neurosecretory cell bodies of the hypothalamus, the median eminence and the neurohypophysis, however, the immunoreactive material is probably identical with gastrin.  相似文献   

12.
By use of an antiserum raised against conjugated ovine corticotropin releasing factor (CRF1–41), nerve fibres can be stained immunocytochemically in the external zone of the median eminence of rats. The presence of CRF-immunoreactive (CRFi) nerve fibres and the plasma corticosterone response to ether stress were studied in rats 6–7 days after making various types of lesions in the hypothalamus. Complete anterolateral deafferentation of the mediobasal hypothalamus caused complete disappearance of CRFi fibres from the median eminence and blocked the corticosterone response to stress. Incomplete anterolateral hypothalamic deafferentation did not prevent the stress-induced increase of corticosterone and in these rats, part of the CRFi nerve fibres remained intact. A horizontal cut placed ventral to the paraventricular nuclei, completely prevented the corticosterone response in those rats that showed a complete disappearance of CRFi nerve fibres from the median eminence. Some rats however, still exhibited CRFi nerve fibres and these animals responded to stress with increased corticosterone levels. A similar horizontal cut made just dorsal to the paraventricular nuclei affected neither the corticosterone response to stress nor the appearance of CRFi nerve fibres in the median eminence. We conclude that the presence of CRFi nerve fibres in the median eminence is a prerequisite for rats to show a pituitary-adrenal response to ether stress and therefore represents the first functional evidence for the role of these hypothalamic CRFi-neurons.  相似文献   

13.
Summary The neurosecretory systems producing mesotocin (MT) and vasotocin (VT) (the avian homologues of oxytocin and vasopressin, respectively) were characterized in the brains of the domestic mallard and Japanese quail by means of indirect immunofluorescence techniques using specific antisera. In the anterior preoptic region, including the organum vasculosum of the lamina terminalis, and at different levels of the supraoptic and paraventricular nuclei, separate mesotocin- and vasotocin-producing neurons were identified. Mesotocinergic and vasotocinergic neurons were also located in the tuberomammillary area, among the ectomammillary tract fibers. The supraoptico-neurohypophysial tract, formed by vasotocin- and mesotocincontaining axons, enters the internal zone of the median eminence and ends in the posterior lobe of the pituitary. The external zone of the rostral median eminence appears to contain vasotocin and mesotocin fibers, which terminate in close contact with the capillaries of the hypophysial portal system.With contributions by Dr. B. Kerdelhué, Laboratoire des Hormones Polypeptidiques du CNRS, 91190 Gif-sur-Yvette, France  相似文献   

14.
Summary The localization of vasoactive intestinal polypeptide (VIP) in the hypothalamus of the quail has been studied by means of light- and electron-microscopic immunohistochemistry. Numerous VIP-immunoreactive perikarya are distributed in the caudal portion of the nucleus infundibularis (n. tuberis) and nucleus mamillaris lateralis, and sparse in the preoptic area, nucleus supraopticus and nucleus paraventricularis. Dense localization of immunoreactive-VIP fibers is observed in the external layer of the median eminence, in close contact with the primary portal capillaries. The main origins of these fiber terminals are VIP-immunoreactive perikarya of the nucleus infundibularis. These neurons are spindle or bipolar and extend one process to the ventricular surface and another to the external layer of median eminence. They are CSF-contacting neurons and apparently constitute the tubero-hypophysial tract that links the third ventricle and the hypophysial portal circulation. VIP-reactive neurons in the nucleus mamillaris lateralis also project axons to the external layer of the median eminence, constituting the posterior bundle of the tuberohypophysial tract. Numerous VIP-immunoreactive perikarya occur also in the nucleus accumbens/pars posterior close to the lateral ventricle. They are also CSF-contacting neurons extending a process to the lateral ventricle. There are moderate distributions of VIP-reactive fibers in the area ventralis and in the area septalis.Ultrastructurally, the immunoreactive products against VIP are found in the elementary granules, 75–115 nm in diameter, within the nerve fibers in the median eminence.This investigation was supported by Scientific Research Grants No. 00556196, No. 56360027 and No. 56760183 from the Ministry of Education of Japan to Professor Mikami and Mr. Yamada  相似文献   

15.
Summary The development of the external zone of the median eminence of the mouse was studied in the electron microscope. The examination follows the development of the embryo from the 15th day of the gestation period and the juvenile growth until 24 days of age.Single terminals of the tubero-infundibular neurons of the external zone were found to extend to the outer basement membrane of the perivascular space of the portal primary capillary plexus in the 16 day-old embryo. In the 18 day-old embryo a narrow external zone has developed. Organization of the external zone into the adult pattern is accomplished at the age of three to four weeks. Small agranular as well as large granular vesicles are present in the tubero-infundibular nerve terminals even in the 16 day-old embryo.Changes in the organization of the nerve endings along the outer perivascular basement membrane in relation to the ependymal vascular feet were considered.  相似文献   

16.
Anterograde tracers, viz. Phaseolus vulgaris leucoagglutinin and fluorescein dextran, were used in conjunction with tyrosine hydroxylase immunohisto-chemistry to study the projections of the A15 dopaminergic cell group towards the median eminence and pituitary in sheep. After injection of the tracers in the retrochiasmatic area, which contains the cell group A15, fibres containing anterograde tracer were observed in the internal zone of the median eminence and in the pars nervosa of the pituitary. Numerous tyrosine hydroxylase immunoreactive fibers were present in the external zone of the median eminence and in the pars intermedia and the pars nervosa of the pituitary, with characteristic patterns of organisation in each area. Most tyrosine hydroxylase-immunoreactive fibres containing fluorescein dextran were located in the pars nervosa, whereas only a few were observed in the internal zone of the median eminence. It was concluded that at least part of the dopaminergic innervation of the pars nervosa originated from the A15 group. These results provide morphological evidence for (1) the role of dopaminergic neurons of the A15 cell group in the seasonal control of prolactin secretion via the release of dopamine in the pars nervosa, and (2) putative physiological interactions between dopamine and the secretion of neurohypophysial hormones in sheep.  相似文献   

17.
The aim of the present study was to verify the hypothesis that stress exposure modifies the content and release of galanin in the hypothalamic paraventricular nucleus and the median eminence. Colchicine and immobilization served as stress stimuli, and the changes in galanin immunoreactivity were compared with those in corticotropin-releasing hormone and vasopressin. In control animals, a limited number of galanin perikarya were identified in the paraventricular nucleus. The high dose (75 g) of colchicine enhanced galanin in both parvicellular and magnocellular subdivisions, as analysed 72 h later. In the median eminence, galanin accumulated only in the external zone. High- dose colchicine did not affect galanin, while corticotropin- releasing hormone and vasopressin were depleted from the median eminence. Immobilization (120 min) neither alone nor in combination with colchicine influenced galanin immuno-reactivity in the external zone. The low dose of colchicine induced an unexpected accumulation of galanin in the internal zone of the median eminence, which was further increased by subsequent immobilization. In the external zone, low-dose colchicine induced a complete disappearance of vasopressin, substantial depletion of corticotropin-releasing hormone and no changes in galanin immunoreactivity. The present studies demonstrate that galanin in the external zone of the median eminence is not influenced by colchicine or by immobilization stress.  相似文献   

18.
Shioda  S.  Nakai  Y. 《Cell and tissue research》1983,228(3):475-487
Immunocytochemical and autoradiographic localization of thyrotropin-releasing hormone (TRH)- and 3H-TRH-binding sites was studied in the arcuate nucleus-median eminence region of the rat. TRH-like immunoreactivity was found in dense granular vesicles (90-140 nm in diameter) in TRH-like immunoreactive nerve fibers and terminals. In the median eminence, the immunoreactive terminals were observed to be in direct contact with the perivascular basal lamina of the portal vessel and to form synaptoid contacts with tanycytes. In the arcuate nucleus, the immunoreactive terminals were often found to form axosomatic and axo-axonic, and/or axo-dendritic synapses. The uptake of tritiated TRH into the nerve fibers and terminals of the median eminence was also observed by autoradiography and the distribution and localization of silver grains in them were analyzed quantitatively by circle analysis. Thirty minutes after intraventricular infusion of 3H-TRH, radioactive labeling occurred in type-2 and 3-nerve fibers and terminals containing dense granular vesicles in the median eminence. It is therefore suggested that the neurons labeled after 3H-TRH infusion possess certain functions as physiological recognition sites or receptors for TRH.  相似文献   

19.
A novel pituitary protein called 7B2 was localized in rat pituitary and brain by immunocytochemistry (unlabeled antibody technique). Immunoreactive material was present in the secretory cells of anterior and intermediate lobes and in neural structures of the posterior lobe of the hypophysis. 7B2-immunoreactive neurons were evident within the hypothalamus in the supraoptic nucleus, paraventricular nucleus (magnocellular and parvocellular parts), and lateral hypothalamus. Immunoreactive nerve fibers were seen within the internal and external zone of the median eminence. Among extrahypothalamic regions, the substantia nigra, dorsal tegmental nucleus, cuneiform nucleus, dorsal parabrachial nucleus, spinal tract trigeminal nerve, interior olive, solitary nucleus, and layers I and II of the spinal cord contained 7B2-immunoreactive material. This anatomical distribution suggests a role for 7B2 in endocrine and autonomic functions.  相似文献   

20.
Summary The GABAergic innervation of the mouse pituitary, including the median eminence, was studied at light microscopic and ultrastructural levels by use of a pre-embedding immunocytochemical technique with antibodies directed against GABA. In the median eminence, a high density of GABA-immunoreactive fibers was found in the external layer where the GABAergic varicosities were frequently observed surrounding the blood vessels of the primary capillary plexus. In the internal and subependymal layers, only few fibers were immunoreactive. The intense labeling of the external layer was observed in the entire rostro-caudal extent of the median eminence. In the pituitary proper, a dense network of GABA-immunoreactive fibers was revealed throughout the neural and intermediate lobes, entering via the hypophyseal stalk. The anterior and tuberal lobes were devoid of any immunoreactivity. The GABA-immunoreactive terminals were characterized in the median eminence, and in the intermediate and posterior lobes at the electron-microscopic level. They contained small clear vesicles, occasionally associated with dense-core vesicles or neurosecretory granules. In the intermediate lobe they were seen to be in contact with the glandular cells. In the posterior lobe and in the median eminence, GABA-immunoreactive terminals were frequently located in the vicinity of blood vessels. These results further support the concept of a role of GABA in the regulation of hypophyseal functions, via the portal blood for the anterior lobe, directly on the cells in the intermediate lobe, and via axo-axonic mechanisms in the median eminence and posterior lobe.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号